Quantum optimization of Binary Neural Networks

Estelle Inack

Pietro Torta (SISSA, Trieste)

Guglielmo Lami **Mario Collura** Juan Carrasquilla Mario Collura

23/11/2023

Outline

Binary Neural Networks (BiNNs for friends): what and why?

- **BiNNs training and quantum hypernetworks**
- **Our proposal: A Variational Quantum Algorithm (VQA) to train BiNNs**
- **Preliminary results and open challenges**

Binary weights and biases: interpret them as classical **Spins** $w_j = \pm 1$ $b = \pm 1$

Input layer

Classical Neural Networks

Multi-layer feed-forward BiNNs

$$
f_2\bigg(V\big[f_1(Wx+b)\big]+c\bigg)=y
$$

Output (label)

$f_2(V[f_1(Wx+b)]+c) \equiv y$ **Output (label)**

with $\{\sigma_\alpha\}_{\alpha=1}^N\equiv\{W,\boldsymbol{b},V,\boldsymbol{c}\}$ *N* : total number of binary parameters

Multi-layer feed-forward BiNNs

Supervised Learning (a.k.a. training)

Classical Loss Function to minimize during training

Training and Test Set
$$
\{x^{(\mu)}, \bar{y}^{(\mu)}\}_{\mu=1}^{N_{train}}
$$

$$
\mathscr{L}(\lbrace \sigma_{\alpha}\rbrace) = \sum_{\mu=1}^{N_{train}} l\left(\text{NN}(\mathbf{x}^{(\mu)}, \lbrace \sigma_{\alpha}\rbrace), \bar{y}^{(\mu)}\right)
$$

N-bit real Boolean function

$$
N_{train} \qquad \{ \boldsymbol{x}^{(\mu)}, \bar{y}^{(\mu)} \}_{\mu=1}^{N_{test}} \qquad \qquad \boldsymbol{x}^{(\mu)} \qquad \text{data point (pattern) to classify} \\ \bar{y}^{(\mu)} \qquad \text{prescribed label}
$$

$$
\text{ction} \quad \mathscr{L}: \{0,1\}^N \rightarrow \mathbb{R}
$$

Can reduce *storage*, *computational cost*, and *energy consumption*

Deep NN models are **computationally expensive**: **memory, energy…**

Require a lot of GPUs: difficult to deploy on **small devices (a smartphone)**

▶ Replace most float-arithmetic operations with bit-wise operations: from 32 to 1 bit.

Robustness against adversarial attacks

Implementable on **specialized hardware**

Deep NN models are **computationally expensive**: **memory, energy…**

Require a lot of GPUs: difficult to deploy on **small devices (a smartphone)**

Training is **challenging**

 $\left\{$ 2. **Binarization after training on float weights:** it does not work

Other challenges: architectural design, hyper-parameter tuning: hard combinatorial optimization tasks

1. **Standard backpropagation:** it cannot be applied (non-differentiable activations!)

Our proposal: to use *Quantum hypernetworks to train BiNNs*

Unify the search over parameters, hyper-parameters, and architectures in a single loop

Quantum Hypernetwork

Quantum hypernetwork: quantum state that generates the weights of a classical BiNNs

$$
|\psi\rangle = \sum_{i=1}^{N} \psi(\sigma_1, ..., \sigma_N) | \sigma_1, ..., \sigma_N\rangle
$$

Computational basis state corresponds to \overrightarrow{b} *b* \overrightarrow{c} *c* \overrightarrow{c} **BiNN** configuration

✦ Gives a BiNNs configuration upon **measurement on** |*ψ*⟩ *^z*

$$
\hat{\sigma}_{\alpha}^{z} | \sigma_{1}, \ldots, \sigma_{N} \rangle = \sigma_{\alpha} | \sigma_{1}, \ldots, \sigma_{N} \rangle
$$

 $\{\sigma_{\alpha}\}_{\alpha=1}^{N} \equiv \{W, \bm{b}, V, \bm{c}\}\$

Hypernetwork: a Neural Network used to generate the weights of another Neural Network

✦ **Quantum superposition of classical** BiNNs configurations

We can exploit **quantum superposition** even further: train **different BiNN architectures** at the same time

Binary architectural choice OR binary hyper-parameter selection = additional qubit σ^*

 $\ket{\psi(\sigma_1...\sigma_N,\sigma^*)\ket{\sigma_1...\sigma_N,\sigma^*}}$

Example of architectural choice: weights dropout

Quantum Hypernetwork

Example of hyper-parameter selection: activation in the last layer

We can exploit **quantum superposition** even further: train **different BiNN architectures** at the same time

Quantum Hypernetwork

 $|\psi\rangle =$

N

∑

i=1

Binary architectural choice OR binary hyper-parameter selection = additional qubit σ^*

$$
\psi(\sigma_1...\sigma_N,\sigma^\ast)\,|\,\sigma_1...\sigma_N,\sigma^\ast\rangle
$$

 $\{\sigma_{\alpha}\}_{\alpha=1}^{N} \equiv \{W, \bm{b}, V, \bm{c}\}\$ **N binary** variables

$$
\mathscr{L}\left(\{\sigma_{\alpha}\}_{\alpha=1}^{N}\right)=\sum_{\mu=1}^{N_{train}} l\left(\text{NN}\left(\boldsymbol{x}^{(\mu)}, \{\sigma_{\alpha}\}\right), \bar{y}^{(\mu)}\right)
$$

Classical Loss

Take-home message

 $\{\theta_j\}_{j=1}^d$ *j*=1

Quantum Hypernetwork

 $= \text{CNOT}$ $= R(\theta)$

Quantum variational energy

$$
E_{var}(\vec{\theta}) = \langle \psi(\vec{\theta}) | \mathcal{L}(\{\hat{\sigma}^z_{\alpha}\}) | \psi(\vec{\theta}) \rangle
$$

The quantum hyper-network state|*ψ*⟩ **is now a Parameterized Quantum Circuit: we train it in a VQA**

Stochastic Relaxation $p({\sigma_{\alpha}}) = \psi({\sigma_{\alpha}})$ 2

The quantum hyper-network state|*ψ*⟩ **is now a Parameterized Quantum Circuit: we train it in a VQA**

A few final comments

Why should it work?

Supervised learning of BiNNs**: hard binary optimization** beyond 2-bodies interaction **(beyond QUBO)**

t solving nonconvex optimization prob-
global minima are planted in such a way that tunneling cascades ative tunneling effects to escape local $\overline{}$ can become more efficient than thermal fluctuations (4, 15). As
dea consists of designing a classical far as the physical implementations of quantum annealers is con-

• BiNNs optimal configurations $(\sigma_1, ..., \sigma_N)$ tend to cluster in Hamming Distance

PT, G. B. Mbeng, C. Baldassi, R. Zecchina, G. E. Santoro, Quantum Approximate Optimization Algorithm applied to the binary perceptron, **Physical Review B 107 (9)**, 094202 (2023)

G. Lami, PT, G. E. Santoro, M. Collura, Quantum annealing for neural network optimization problems: A new approach via tensor network simulations, SciPost Phys. 14, 117 (2023) 10

-
- & Quantum fluctuations are efficient to sample in these clusters

We want to run **large-scale simulations** with **shot noise** (we already have proofs-of-principle)

Methods

 $\mathscr{L}\left(\{\sigma_k\}\right)$ Sample mean over N_s shots

Measure a real quantum state

Sample a Matrix Product State

$$
E_{var}(\vec{\theta}) = \langle \psi(\vec{\theta}) | \mathcal{L}(\{\hat{\sigma}_{\alpha}^{z}\}) | \psi(\vec{\theta}) \rangle \approx \frac{1}{N_{s}} \sum_{k=1}^{N_{s}} \mathcal{L}
$$

The contract of the contract of

Methods

 $\mathscr{L}\left(\{\sigma_k\}\right)$ Sample mean over N_s shots

Measure a real quantum state

Sample a Matrix Product State

$$
E_{var}(\vec{\theta}) = \langle \psi(\vec{\theta}) | \mathcal{L}(\{\hat{\sigma}_{\alpha}^{z}\}) | \psi(\vec{\theta}) \rangle \approx \frac{1}{N_{s}} \sum_{k=1}^{N_{s}} \mathcal{L}
$$

The contract of the contract of

J Gacon et al., Simultaneous Perturbation Stochastic Approximation of the Quantum Fisher Information, Quantum, 5:567, (2021)

Methods

 \blacktriangleright Unbiased sampling of the MPS wave function with a computation cost of $\mathcal{O}(N_s \chi^2 N)$: linear in N

 $\bm{\mathsf{Optimization}}$ routine for $\bm{\theta}$: Quantum Natural - Simultaneous Perturbation Stochastic Approximation ($\bm{\mathsf{QN}\text{-}\mathsf{SPSA}}$)

-
-
- *P* = 2 layers of Hardware-Efficient-Ansatz, regime $\chi \sim e^P$ (accurate simulation)

Preliminary results

▶ Scaled-down version of the MNIST: 0 v.s. 1 binary classification One-layer BiNN with an hyperparameter for the activation function: **66 qubits Trained with binary cross entropy loss**

Preliminary results

Perform repeated measurements (shots) on the final state

 $|\psi(\theta_{opt})\rangle$ learns batch of BiNN solutions, with both choices of the activation (~Bayesian approaches)

Mutual Hamming distance between optimal BNN: e.g. ≈ 22 for configurations with test accuracy $> 90\,\%$ 14

Investigate the role of the **bond dim.** *χ* as a potential **regularization parameter**

Full MNIST: (100s of qubits) *better Ansatz* is required **Allay**

Outlook

- QN-SPSA seems numerically unstable in this regime
- Preliminary feature extraction e.g. with **PCA**

Generalize to **low-precision NNs**: float with less than 32-bits but more than 1

All Deaths

All you

Thanks for surviving until Friday afternoon :)

M. Courbariaux et al., BinaryNet: Training Deep Neural Networks with Weights and Activations constrained to +1 or -1 *arXiv:1602.02830 (2016)*

Existing algorithms often require **full-precision network parameters** in the **training phase**

E.g.: **straight-through estimator (STE)**

State of the art: shortcomings

Forward pass: **binary** weights

Backward propagation: **float** weights

▶ Two loops:

Our proposal

Use **Quantum hypernetworks** to **train BiNNs**

Only binary weights during training

- **1. Outer Loop** (architecture, hyper parameters tuning with a **validation set**)
- **2. Inner Loop** (weights and biases training with a **training set**)

Unify the search over parameters, hyper-parameters, and architectures in a single loop

Preliminary results

$$
E_{var}(\overrightarrow{\theta}) = \langle \psi(\overrightarrow{\theta}) | \mathscr{L} \Big(\{ \hat{\sigma}_{\alpha}^{z} \} \Big) | \psi(\overrightarrow{\theta}) \rangle \approx \frac{1}{N_s} \sum_{n=1}^{N_s} \mathscr{L} \Big(\{ \sigma_{n_{\alpha}} \} \Big) \qquad \text{Sample mean over } N_s \text{ samples (or shots)}
$$

Supervised Learning: standard formulation

Classification: predicted label *y* with $\{\sigma_{\alpha}\}_{\alpha=1}^N \equiv \{W, \bm{b}, V, \bm{c}\}\$ *N* : total number of binary parameters

Classical Loss Function to minimize during training

Training and Test Set

 $\{\mathbf{x}^{(\mu)}\}_{\mu=1}^{N_{train}}$ { $\mathbf{x}^{(\mu)}$

$$
\mathscr{L}\left({\lbrace \sigma_\alpha \rbrace}\right) = \sum_{\mu=1}^{N_{train}} l\left(\text{NN}\big(\boldsymbol{x}^{(\mu)}, {\lbrace \sigma_\alpha \rbrace}\big), \bar{y}^{(\mu)}\right)
$$

N-bit real Boolean function $\mathscr{L}: \{0,1\}^N \to \mathbb{R}$

$$
\mathfrak{r}^{(\mu)}, \bar{\mathfrak{y}}^{(\mu)}\}_{\mu=1}^{N_{test}} \qquad \qquad \mathfrak{x}^{(\mu)} \text{ data point } (\text{pattern}) \text{ to classify}
$$

We can exploit **quantum superposition** even further: train **different BiNN architectures** at the same time

Binary architectural choice OR binary hyper-parameter selection = additional qubit σ^*

$$
\psi(\sigma_1...\sigma_N,\sigma^\ast)\,|\,\sigma_1...\sigma_N,\sigma^\ast\rangle
$$

 $\sigma^* = +1$ $\sigma^* = -1$

Quantum Hypernetwork

Training is **challenging**

Other challenges: architectural design, hyper-parameter tuning: hard combinatorial optimization tasks

Deep NN models are **computationally expensive**: **memory, energy…**

Require a lot of GPUs: difficult to deploy on **small devices (a smartphone)**

 $\left\{$ 1. **Standard backpropagation:** it cannot be applied (non-differentiable activations!)

… or maybe not Y. Zhang et al., Binarized Neural Machine Translation arXiv:2302.04907 (2023)

"one-bit weight-only Transformer can achieve the same quality as a float one […]"

2. **Binarization after training on float weights:** it does not work

Worse performance?