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4 Binary Neural Networks (BiNNs for friends): what and why?
4 BINNs training and quantum hypernetworks
4 Our proposal: A Variational Quantum Algorithm (VQA) to train BiNNs
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4 Preliminary results and open challenges




Binary Neural Networks (BINNs): what?

CIaSSicaI Neural Networks

.............

Simple example:
a binary perceptron

Input layer

Blnary weights and biases: interpret them as classical SPINS




Binary Neural Networks (BINNs): what?

Multi-layer feed-forward BiNNs
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Binary Neural Networks (BINNs): what?

Multi-layer feed-forward BiNNs iy 1
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Binary Neural Networks (BINNs): what?

Supervised Learning (a.k.a. training)
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CIﬂSSlcaI Loss Function to minimize during training
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Binary Neural Networks (BINNs): why?

Deep NN models are computationally expensive: memory, energy...

2 Require a lot of GPUs: difficult to deploy on small devices (a smartphone)

@ Pros

Replace most float-arithmetic operations with bit-wise operations: from 32 to 1 bit.
& Can reduce storage, computational cost, and energy consumption
2z Implementable on specialized hardware

2 Robustness against adversarial attacks




Binary Neural Networks (BINNs): why?

2z Deep NN models are computationally expensive: memory, energy...

2 Require a lot of GPUs: difficult to deploy on small devices (a smartphone)

2 Training is challenging
{ 1. Standard backpropagation: it cannot be applied (non-differentiable activations!)

2. Binarization after training on float weights: it does not work

2 Other challenges: architectural design, hyper-parameter tuning: hard combinatorial optimization tasks




Binary Neural Networks (BINNs): how?

Our proposal: to use Quantum hypernetworks to train BiNNs

Q Only binary weights during training

Q Unify the search over parameters, hyper-parameters, and architectures in a single loop




Quantum Hypernetwork

»Hypernetwork: a Neural Network used to generate the weights of another Neural Network

Quantum hypernetwork: quantum state that generates the weights of a classical BINNs
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Quantum Hypernetwork

zWe can exploit quantum superposition even further: train different BINN architectures at the same time

Binary architectural choice OR binary hyper-parameter selection = additional qubit ¢*

N
ly) = Z w(oy...0p, 6%)|0;...0y,0%)
i=1

Example of architectural choice:
weights dropout

ot =+ 1 c* = —1




Quantum Hypernetwork

zWe can exploit quantum superposition even further: train different BINN architectures at the same time

Binary architectural choice OR binary hyper-parameter selection = additional qubit ¢*
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Take-home message

The quantum hyper-network state | ) is now a Parameterized Quantum Circuit: we train it in a VQA

BiNN Quantum Hypernetwork
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Take-home message

The quantum hyper-network state | ) is now a Parameterized Quantum Circuit: we train it in a VQA
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A few final comments

#(10) = Jadi+ X o5+ B X Fepusiarsie .
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Efficiency of quantum vs. classical annealing in
nonconvex learning problems

I‘ Carlo Baldassi*"? and Riccardo Zecchina®<'?2
l =< oni Insti ata Science and Analytics, Bocconi University, 20136 Milan, Italy; Plstituto Nazionale di Fisica Nucleare, Sezione di Torino, 10125
.'

>Why should it work?

ited by William Bialek, Princeton rsity, P on, NJ, and approved January 2, 2018 (received for review June 26, 2017)

uan nealers aim at soIving nonconvex optim' n prob- gl obal minima pl nted in such a way that tun l ng cascades
I ems by pl ooper tiv I ng effect p I al n become more effici tth th ermal fluctu t ns (4, 15) As
ing idea of des g g a classical f as the physic l implementations of quantum annealers is con

- BiNNs optimal configurations (o, ..., o)) tend to cluster in Hamming Distance
- & Quantum fluctuations are efficient to sample in these clusters

We want to run large-scale simulations with shot noise (we already have proofs-of-principle)

PT, G. B. Mbeng, C. Baldassi, R. Zecchina, G. E. Santoro, Quantum Approximate Optimization
Algorithm applied to the binary perceptron, Physical Review B 107 (9), 094202 (2023)

G. Lami, PT, G. E. Santoro, M. Collura, Quantum annealing for neural network optimization
problems: A new approach via tensor network simulations, SciPost Phys. 14, 117 (2023)

> Supervised learning of BINNs: hard binary optimization beyond 2-bodies interaction (beyond QUBO)
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How to get them?

Methods

<L <{0k}> Sample mean over /N, shots

Measure a real quantum state

Sample a Matrix Product State
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How to get them?

Methods

<L <{0k}> Sample mean over /N, shots

Measure a real quantum state

MPS

Sample a Matrix Product State
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Methods

P
X~ € Simulation of quantum circuit

" Sample a Matrix Product State
‘ << e’ Classical quantum-inspired algorithm

P = number of layers

0 = variational parameters

» Unbiased sampling of the MPS wave function with a computation cost of O(NV, )(ZN ) :linearin N

> Optimization routine for @ : Quantum Natural - Simultaneous Perturbation Stochastic Approximation (QN-SPSA)

J Gacon et al., Simultaneous Perturbation Stochastic Approximation of the Quantum Fisher Information, Quantum, 5:567, (2021)
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Preliminary results

2 Scaled-down version of the MNIST: 0 v.s. 1 binary classification
2 One-layer BiINN with an hyperparameter for the activation function: 66 qubits

& Trained with binary cross entropy loss

? P = 2 layers of Hardware-Efficient-Ansatz, regime y ~ el (accurate simulation)

..............
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Preliminary results

Perform repeated measurements (shots) on the final state | l//( 0 OPt))

Final quantum state sampling

20%
Activations B Sigmoid activation
B ArcTan activation
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Test-set accuracy

> lw( 0

Opt)) learns batch of BINN solutions, with both choices of the activation (~Bayesian approaches)

2 Mutual Hamming distance between optimal BNN: e.g. &~ 22 for configurations with test accuracy > 90 %
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Outlook

# Full MNIST: (100s of qubits) better Ansatz is required

+ QN-SPSA seems numerically unstable in this regime

- Preliminary feature extraction e.g. with PCA

% Investigate the role of the bond dim. y as a potential regularization parameter

4 Generalize to low-precision NNs: float with less than 32-bits but more than 1




Thanks for surviving until Friday afternoon :)




Binary Neural Networks (BiNNs): how?

State of the art: shortcomings

& Existing algorithms often require full-precision network parameters in the training phase

E.g.: straight-through estimator (STE)

M. Courbariaux et al., BinaryNet: Training Deep Neural Networks with Weights and Activations constrained to +1 or -1
arXiv:1602.02830 (2016)

Forward pass: binary weights

+1 +
Backward propagation: float weights > rremrsme Sy / >

Two loops:

1. Outer Loop (architecture, hyper parameters tuning with a validation set)

2. Inner Loop (weights and biases training with a training set)

Our proposal

Use Quantum hypernetworks to train BiNNs

Q Only binary weights during training

Q Unify the search over parameters, hyper-parameters, and architectures in a single loop
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Supervised Learning: standard formulation
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Quantum Hypernetwork

2z We can exploit quantum superposition even further: train different BINN architectures at the same time

Binary architectural choice OR binary hyper-parameter selection = additional qubit o™

N
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Binary Neural Networks (BINNs): why?

2z Deep NN models are computationally expensive: memory, energy...

2z Require a lot of GPUs: difficult to deploy on small devices (a smartphone)

& cons

2 Training is challenging

1. Standard backpropagation: it cannot be applied (non-differentiable activations!)

2. Binarization after training on float weights: it does not work

2 Other challenges: architectural design, hyper-parameter tuning: hard combinatorial optimization tasks

z Worse performance?

Y. Zhang et al., Binarized Neural Machine Translation arXiv:2302.04907 (2023)
... Or maybe not

“one-bit weight-only Transformer can achieve the same quality as a float one [...]"




