
Quantum optimization of Binary Neural Networks

 Estelle Inack

Pietro Torta (SISSA, Trieste)

23/11/2023

 Guglielmo Lami Juan Carrasquilla Mario Collura

Outline

 Binary Neural Networks (BiNNs for friends): what and why?

 BiNNs training and quantum hypernetworks

 Our proposal: A Variational Quantum Algorithm (VQA) to train BiNNs

 Preliminary results and open challenges

1

Binary Neural Networks (BiNNs): what?

w1

w2

w3
w4
w5

b

Input layer

Output layer

Binary weights and biases: interpret them as classical spins wj = ± 1 b = ± 1

Classical Neural Networks

Simple example:
a binary perceptron

2

Binary Neural Networks (BiNNs): what?
Multi-layer feed-forward BiNNs

Input layer Hidden layer Output layer

f2(V [f1 (W x + b)]+ c) ≡ y

Output (label)

x ∈ {−1, + 1}Nin

Input (data)

or

x ∈ ℝNin

b
W V

c

f1 f2

3

Binary Neural Networks (BiNNs): what?

Input layer Hidden layer Output layer

f2(V [f1 (W x + b)]+ c) ≡ y

Output (label)

x ∈ {−1, + 1}Nin

Input (data)

or

x ∈ ℝNin

b
W V

c

f1 f2

3

with {σα}N
α=1 ≡ {W, b, V, c}

N : total number of binary parameters

Multi-layer feed-forward BiNNs

Binary Neural Networks (BiNNs): what?

Input layer Hidden layer Output layer

f2(V [f1 (W x + b)]+ c) ≡ y

Output (label)

x ∈ {−1, + 1}Nin

Input (data)

or

x ∈ ℝNin

b
W V

c

f1 f2

3

with {σα}N
α=1 ≡ {W, b, V, c}

N : total number of binary parameters

= = sgn(⋅)

Non differentiable!

−1

+1
Multi-layer feed-forward BiNNs

Binary Neural Networks (BiNNs): what?

Supervised Learning (a.k.a. training)

Classical Loss Function to minimize during training

Training and Test Set {x(μ), ȳ(μ)}Ntrain
μ=1 {x(μ), ȳ(μ)}Ntest

μ=1

ℒ({σα}) =
Ntrain

∑
μ=1

l (NN(x(μ), {σα}) , ȳ(μ))

x(μ)

ȳ(μ)

data point (pattern) to classify

prescribed label

N-bit real Boolean function ℒ : {0,1}N → ℝ

4

Binary Neural Networks (BiNNs): why?

Replace most float-arithmetic operations with bit-wise operations: from 32 to 1 bit.

Can reduce storage, computational cost, and energy consumption

Deep NN models are computationally expensive: memory, energy…

Require a lot of GPUs: difficult to deploy on small devices (a smartphone)

Pros

Robustness against adversarial attacks

Implementable on specialized hardware

5

BiNNs

Cons

5

Binary Neural Networks (BiNNs): why?

Deep NN models are computationally expensive: memory, energy…

Require a lot of GPUs: difficult to deploy on small devices (a smartphone)

{
Training is challenging

Other challenges: architectural design, hyper-parameter tuning: hard combinatorial optimization tasks

1. Standard backpropagation: it cannot be applied (non-differentiable activations!) 

2. Binarization after training on float weights: it does not work

BiNNs

Binary Neural Networks (BiNNs): how?

Our proposal: to use Quantum hypernetworks to train BiNNs

Only binary weights during training

Unify the search over parameters, hyper-parameters, and architectures in a single loop

6

Quantum Hypernetwork

Quantum hypernetwork: quantum state that generates the weights of a classical BiNNs

|ψ⟩ =
N

∑
i=1

ψ(σ1, …, σN) |σ1, …, σN⟩

✦ Gives a BiNNs configuration upon measurement on |ψ⟩̂σz
α |σ1, …, σN⟩ = σα |σ1, …, σN⟩

Hypernetwork: a Neural Network used to generate the weights of another Neural Network

Computational basis state
corresponds to

BiNN configuration
b

W V
c

{σα}N
α=1 ≡ {W, b, V, c}

7

✦ Quantum superposition of classical BiNNs configurations

We can exploit quantum superposition even further: train different BiNN architectures at the same time

Example of architectural choice: 
weights dropout

|ψ⟩ =
N

∑
i=1

ψ(σ1…σN, σ*) |σ1…σN , σ*⟩

Quantum Hypernetwork

Binary architectural choice OR binary hyper-parameter selection = additional qubit σ*

8
σ* = − 1σ* = + 1

8

Example of hyper-parameter selection: 
activation in the last layer

f̃2f2 σ* = − 1σ* = + 1

We can exploit quantum superposition even further: train different BiNN architectures at the same time

Quantum Hypernetwork

Binary architectural choice OR binary hyper-parameter selection = additional qubit σ*

|ψ⟩ =
N

∑
i=1

ψ(σ1…σN, σ*) |σ1…σN , σ*⟩

{σα}N
α=1 ≡ {W, b, V, c}

ℒ({σα}N
α=1) =

Ntrain

∑
μ=1

l (NN(x(μ), {σα}) , ȳ(μ))

BiNN

N binary variables

Classical Loss

Take-home message

Quantum Hypernetwork

d real angles

Quantum variational energy

⃗θ

Evar(⃗θ) = ⟨ψ(⃗θ) |ℒ({ ̂σz
α}) |ψ(⃗θ)⟩

{θj}d
j=1

The quantum hyper-network state is now a Parameterized Quantum Circuit: we train it in a VQA|ψ⟩

Stochastic Relaxation

p({σα}) = ψ({σα})
2

b
W V

c

9

{σα}N
α=1 ≡ {W, b, V, c}

ℒ({σα}N
α=1) =

Ntrain

∑
μ=1

l (NN(x(μ), {σα}) , ȳ(μ))

BiNN

N binary variables

Classical Loss

Take-home message

Quantum Hypernetwork

d real angles

Quantum variational energy

⃗θ

Evar(⃗θ) = ⟨ψ(⃗θ) |ℒ({ ̂σz
α}) |ψ(⃗θ)⟩

{θj}d
j=1

The quantum hyper-network state is now a Parameterized Quantum Circuit: we train it in a VQA|ψ⟩

Stochastic Relaxation

p({σα}) = ψ({σα})
2

b
W V

c

9

A few final comments

Why should it work?

Supervised learning of BiNNs: hard binary optimization beyond 2-bodies interaction (beyond QUBO)

ℒ({ ̂σz
i}) =

N

∑
i=1

ai ̂σz
i +

N

∑
i=1

∑
j>i

bi j ̂σz
i ̂σz

j +
N

∑
i=1

∑
j>i

∑
k>j

ci j k ̂σz
i ̂σz

j ̂σz
k + …

PT, G. B. Mbeng, C. Baldassi, R. Zecchina, G. E. Santoro, Quantum Approximate Optimization
Algorithm applied to the binary perceptron, Physical Review B 107 (9), 094202 (2023)

• BiNNs optimal configurations tend to cluster in Hamming Distance
• & Quantum fluctuations are efficient to sample in these clusters

(σ1, …, σN)

We want to run large-scale simulations with shot noise (we already have proofs-of-principle)

G. Lami, PT, G. E. Santoro, M. Collura, Quantum annealing for neural network optimization
problems: A new approach via tensor network simulations, SciPost Phys. 14, 117 (2023) 10

11

Methods

Measure a real quantum state

Sample a Matrix Product State

Evar(⃗θ) = ⟨ψ(⃗θ) |ℒ({ ̂σz
α}) |ψ(⃗θ)⟩ ≈

1
Ns

Ns

∑
k=1

ℒ({σk}) Sample mean over shotsNs

How to get them?

Methods

Measure a real quantum state

Sample a Matrix Product State

Evar(⃗θ) = ⟨ψ(⃗θ) |ℒ({ ̂σz
α}) |ψ(⃗θ)⟩ ≈

1
Ns

Ns

∑
k=1

ℒ({σk}) Sample mean over shotsNs

How to get them?

11

χ ≪ eP

χ ∼ eP
Simulation of quantum circuit

Methods

Sample a Matrix Product State
Classical quantum-inspired algorithm

P = number of layers

Unbiased sampling of the MPS wave function with a computation cost of : linear in N𝒪(Ns χ2N)

⃗θOptimization routine for : Quantum Natural - Simultaneous Perturbation Stochastic Approximation (QN-SPSA)

J Gacon et al., Simultaneous Perturbation Stochastic Approximation of the Quantum Fisher Information, Quantum, 5:567, (2021)
12

⃗θ = variational parameters

Scaled-down version of the MNIST: 0 v.s. 1 binary classification  

 One-layer BiNN with an hyperparameter for the activation function: 66 qubits  

Trained with binary cross entropy loss 

 layers of Hardware-Efficient-Ansatz, regime (accurate simulation)P = 2 χ ∼ eP

Input pattern x

8

8

σ64

Input layer

Output layer

Nin = 64

σ1
σ2

σ65

σ3
σ66

Binary choice on the activation

{

1 layer

Preliminary results

13

Preliminary results
|ψ(⃗θ opt)⟩Perform repeated measurements (shots) on the final state

 learns batch of BiNN solutions, with both choices of the activation (Bayesian approaches)

 Mutual Hamming distance between optimal BNN: e.g. for configurations with test accuracy

|ψ(⃗θ opt)⟩ ∼

≈ 22 > 90 % 14

Investigate the role of the bond dim. as a potential regularization parameterχ

Outlook

Full MNIST: (100s of qubits) better Ansatz is required

• Preliminary feature extraction e.g. with PCA

Generalize to low-precision NNs: float with less than 32-bits but more than 1

• QN-SPSA seems numerically unstable in this regime

Thanks for surviving until Friday afternoon :)

Binary Neural Networks (BiNNs): how?

M. Courbariaux et al., BinaryNet: Training Deep Neural Networks with Weights and Activations constrained to +1 or -1
arXiv:1602.02830 (2016)

Existing algorithms often require full-precision network parameters in the training phase  
 
E.g.: straight-through estimator (STE)

State of the art: shortcomings

−1

+1
Forward pass: binary weights

Backward propagation: float weights
−1

+1

Our proposal

Use Quantum hypernetworks to train BiNNs

Only binary weights during training

1. Outer Loop (architecture, hyper parameters tuning with a validation set)

2. Inner Loop (weights and biases training with a training set)

Two loops:

Unify the search over parameters, hyper-parameters, and architectures in a single loop

6

Preliminary results

Evar(⃗θ) = ⟨ψ(⃗θ) |ℒ({ ̂σz
α}) |ψ(⃗θ)⟩ ≈

1
Ns

Ns

∑
n=1

ℒ({σnα}) Sample mean over samples (or shots)Ns

15

Supervised Learning: standard formulation

Input pattern

x y = NN(x, {σα})
Classification: predicted label y

with {σα}N
α=1 ≡ {W, b, V, c}

Classical Loss Function to minimize during training

Training and Test Set {x(μ), ȳ(μ)}Ntrain
μ=1 {x(μ), ȳ(μ)}Ntest

μ=1

ℒ({σα}) =
Ntrain

∑
μ=1

l (NN(x(μ), {σα}) , ȳ(μ))

x(μ)

ȳ(μ)
data point (pattern) to classify

prescribed label

N-bit real Boolean function ℒ : {0,1}N → ℝ

N : total number of binary parameters

b
W V

c

Binary architectural choice OR binary hyper-parameter selection = additional qubit σ*

We can exploit quantum superposition even further: train different BiNN architectures at the same time

|ψ⟩ =
N

∑
i=1

ψ(σ1…σN, σ*) |σ1…σN , σ*⟩

σ* = − 1σ* = + 1

Example of
architectural choice: 
remove some neurons

8

Quantum Hypernetwork

Binary Neural Networks (BiNNs): why?

Cons

Training is challenging

Other challenges: architectural design, hyper-parameter tuning: hard combinatorial optimization tasks

{

Deep NN models are computationally expensive: memory, energy…

Require a lot of GPUs: difficult to deploy on small devices (a smartphone)

BiNNs

… or maybe not
Y. Zhang et al., Binarized Neural Machine Translation arXiv:2302.04907 (2023)

“one-bit weight-only Transformer can achieve the same quality as a float one […]”

1. Standard backpropagation: it cannot be applied (non-differentiable activations!) 

2. Binarization after training on float weights: it does not work

5

Worse performance?

