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Overview

1. A guarantee for classical learning

▶ The onset of learning: When can we learn something about nature from some data?

2. A quantum generalization of learning

▶ Interact with quantum data while preserving coherence
▶ Learning as the classical limit of a quantum task
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What is known already

1. Shannon theory for classical ML error lower bounds
▶ Minimax error: discretization and Fano’s inequality (Ibragimov+, 1981)
▶ Error upper bounds by existence proof

2. Quantum information protocols for singlet fraction
▶ As a teleportation resource (Horodecki+, 1999)
▶ Information-theoretic characterization (König+, 2009)

3. Quantum information for quantum ML
▶ Classification as state discrimination (Banchi+, 2021)

▶ Hypothesis testing as quantum communication (Huang+, 2021)
▶ Generalization error from quantum communication (Caro+, 2023)
▶ Here: A relationship between classical learning and entanglement

(Ibragimov et al., 1981; Horodecki et al., 1999; Koenig et al., 2009; Banchi et al., 2021;
Huang et al., 2021; Caro et al., 2023)
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The learning problem

Setting:

Sample an unknown vector α ∈ A ⊂ Rd . A is compact.

Data B ∈ B is generated based on α.

Goal: Output an estimate α̂ ∈ A approximating α to ϵ-accuracy

Maximize ℓ(d(α, α̂)) for distance d , score function ℓ

Example: Learning hyperplanes

Sample xi ∈ Rd from a distribution, let yi = ⟨α, xi ⟩+ (noise)

B = {(x1, y1), . . . , (xn, yn)}
Output α̂ to minimize ∥α− α̂∥2 (ℓ(x) = c − x2, d(x , y) = ∥x − y∥)
This is at least as hard as linear regression.
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The learning guarantee

For a random variable A distributed uniformly on an ϵ-covering of A, best-case score obeys

max
α∈A

max
α̂

logEpα̂|α [ℓ(d(α, α̂))] ≥ log ℓ(ϵ)− H(A|B) (1)

LHS: best score w/r to unknown α and estimate α̂
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Classical hypothesis testing

R

A N D Â

1

B

1. Random variables A,R taking values in A are sampled from pAR

2. Nature uses N to prepare data B depending on the value of A

3. Learner predicts A using estimator D : B → Â

Learner’s optimal probability of success obeys:

max
D

Pr(Â = R) ≥ 2−H(R|B) (2)
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2

B

1. Random variables A,R taking values in A are sampled from pAR

2. Nature uses N to prepare data B depending on the value of A

3. Learner predicts A using estimator D : B → Â
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Pr(Â = R) ≥ 2−H(R|B) (2)

November 19, 2023 7 / 13



Optimizing singlet fraction

R

A N D Â

1

B

Entangled state in quantum system RA is prepared

Nature interacts Ξ with |0⟩ to prepare quantum system B

Tester applies operation D to maximize entanglement of RB

Learner’s optimal singlet fraction obeys

max
D

d⟨Φ|(IR ⊗D)ρRB |Φ⟩ (3)

where |Φ⟩ is a maximally entangled state on RÂ
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Optimizing singlet fraction

R
A N D Â
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November 19, 2023 9 / 13



Optimizing singlet fraction

R
A N D Â
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A quantum generalization of learning

Optimizing singlet fraction Quantum generalization

Initial state
|ψ⟩RA =

∑
r ,a ψra|r⟩R ⊗ |a⟩A

Initial state
|Ψ⟩RA :=

∫
A dr

∫
A dαψ(r , α)|r⟩R ⊗ |α⟩A

Singlet
|Φ⟩RÂ ∝

∑
r |r⟩R |r⟩Â

Entangled state
|Φϵ⟩RÂ ∝

∫
A dr |r⟩R ⊗

∫
Bϵ(r) dα̂|α̂⟩Â

Is there an analogue for the classical learning guarantee?

−H(R|B)ρ ≤ max
|Ψ⟩RA

max
D

log⟨Φϵ|(I⊗D)ρRB|Φϵ⟩RÂ
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Entangled state
|Φϵ⟩RÂ ∝
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∑
r |r⟩R |r⟩Â
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November 19, 2023 11 / 13



A quantum generalization of learning

Optimizing singlet fraction Quantum generalization

Initial state
|ψ⟩RA =

∑
r ,a ψra|r⟩R ⊗ |a⟩A

Initial state
|Ψ⟩RA :=

∫
A dr

∫
A dαψ(r , α)|r⟩R ⊗ |α⟩A

Singlet
|Φ⟩RÂ ∝
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Summary

Classical learning: Learn D such that pAÂ(α, α̂) is highly correlated

Generalized task: Learn D such that ρRÂ is highly entangled

Applications

Understanding ability to manipulate quantum data coherently

Continuous-variable resources for teleportation

Entanglement resources as learning resources
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Generalized task: Learn D such that ρRÂ is highly entangled
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Thank you!

@e6peters X (twitter) for manuscript eventually
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