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Overview

1. A guarantee for classical learning
» The onset of learning: When can we learn something about nature from some data?
2. A quantum generalization of learning

> Interact with quantum data while preserving coherence
» Learning as the classical limit of a quantum task
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What is known already

1. Shannon theory for classical ML error lower bounds

» Minimax error: discretization and Fano's inequality (lbragimov+, 1981)
» Error upper bounds by existence proof
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What is known already

1. Shannon theory for classical ML error lower bounds
» Minimax error: discretization and Fano's inequality (Ibragimov+, 1981)
» Error upper bounds by existence proof
2. Quantum information protocols for singlet fraction
> As a teleportation resource (Horodecki+, 1999)
» Information-theoretic characterization (Kénig+, 2009)
3. Quantum information for quantum ML

Classification as state discrimination (Banchi+, 2021)

Hypothesis testing as quantum communication (Huang+, 2021)
Generalization error from quantum communication (Caro+, 2023)
Here: A relationship between classical learning and entanglement
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The learning problem

Setting:
@ Sample an unknown vector & € A € RY. A is compact.

o Data B € B is generated based on a.
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The learning problem

Setting:
@ Sample an unknown vector & € A € RY. A is compact.

o Data B € B is generated based on a.

Goal: Output an estimate & € A approximating « to e-accuracy

e Maximize ¢(d(«, &)) for distance d, score function ¢

Example: Learning hyperplanes
o Sample x; € RY from a distribution, let y; = (a, x;) + (noise)
e B= {(leyl)a SRR (Xnv}/n)}
o Output & to minimize |ja — &||? ({(x) = c — x2, d(x,y) = ||x — y||)
°

This is at least as hard as linear regression.
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The learning guarantee

For a random variable A distributed uniformly on an e-covering of A, best-case score obeys

maxmax log By, [(d(c, &))] > log ((€) — H(A|B) (1)
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The learning guarantee

For a random variable A distributed uniformly on an e-covering of A, best-case score obeys

maxmax log By, [(d(c, &))] > log ((€) — H(A|B) (1)

@ LHS: best score w/r to unknown « and estimate &

@ RHS: Score for e-accurate &, minus uncertainty H(A|B) of discretization given B
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1. Random variables A, R taking values in A are sampled from par

2. Nature uses N to prepare data B depending on the value of A

3. Learner predicts A using estimator D : B — A

Learner’s optimal probability of success obeys:

max Pr(A = R) > 2 H(RIB)
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Optimizing singlet fraction

3
R |
B .

1. RA contains an entangled state |¢)ga

2. Nature evolves A via N to prepare quantum system B

3. Learner applies D to maximize singlet overlap of RA
Learner's optimal singlet fraction obeys

—H(R|B
mDaxd<<D|(]IR®D)pRB]¢)RA Z 2 (Rl )p (4)

where |®) . 2 is a maximally entangled state on RA
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A quantum generalization of learning

Optimizing singlet fraction

Initial state

)R = X0 tralr)R ® |3

Singlet
() ra x 2r[N)RI) 4

Quantum generalization

Initial state
|W)ra := [y dr [, doap(r,a)|r)r @ |a)a

Entangled state

Is there an analogue for the classical learning guarantee?
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A quantum generalization of learning

Optimizing singlet fraction Quantum generalization

Initial state Initial state
[V)rRA =32, 2 %ralr)R @ |a)a [W)Ra 1= [y dr [, daip(r,a)|r)r @ |a)a

Singlet Entangled state
[®)pa o< 22, IN)RIN 4 [P)ra o [y drine ® f]BE(r) dalé) g

Is there an analogue for the classical learning guarantee?

_H(R|B)p < max maX|0g<¢e|(H®D)pRB|¢E>RA
[W)ra D
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Summary

o Classical learning: Learn D such that p,:(c, &) is highly correlated

e Generalized task: Learn D such that pj; is highly entangled

Applications
@ Understanding ability to manipulate quantum data coherently
@ Continuous-variable resources for teleportation

e Entanglement resources as learning resources
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