Classical learning guarantees and entanglement manipulation

Evan Peters

Quantum Techniques in Machine Learning 2023 Nov 19, 2023

- 1. A guarantee for classical learning
- 2. A quantum generalization of learning

- 1. A guarantee for classical learning
 - ► The onset of learning: When can we learn something about nature from some data?
- 2. A quantum generalization of learning

Overview

- $1. \ \mbox{A}$ guarantee for classical learning
 - ► The onset of learning: When can we learn something about nature from some data?
- 2. A quantum generalization of learning
 - Interact with quantum data while preserving coherence

Overview

- $1. \ \mbox{A}$ guarantee for classical learning
 - ► The onset of learning: When can we learn something about nature from some data?
- 2. A quantum generalization of learning
 - Interact with quantum data while preserving coherence
 - Learning as the classical limit of a quantum task

- 1. Shannon theory for classical ML error *lower bounds*
 - Minimax error: discretization and Fano's inequality (Ibragimov+, 1981)
 - Error upper bounds by existence proof

- 1. Shannon theory for classical ML error lower bounds
 - Minimax error: discretization and Fano's inequality (Ibragimov+, 1981)
 - Error upper bounds by *existence proof*
- 2. Quantum information protocols for singlet fraction
 - ► As a teleportation resource (Horodecki+, 1999)
 - Information-theoretic characterization (König+, 2009)

- 1. Shannon theory for classical ML error lower bounds
 - Minimax error: discretization and Fano's inequality (Ibragimov+, 1981)
 - Error upper bounds by existence proof
- 2. Quantum information protocols for singlet fraction
 - ► As a teleportation resource (Horodecki+, 1999)
 - Information-theoretic characterization (König+, 2009)
- 3. Quantum information for quantum ML
 - Classification as state discrimination (Banchi+, 2021)
 - ▶ Hypothesis testing as quantum communication (Huang+, 2021)
 - ▶ Generalization error from quantum communication (Caro+, 2023)

- 1. Shannon theory for classical ML error lower bounds
 - Minimax error: discretization and Fano's inequality (Ibragimov+, 1981)
 - Error upper bounds by existence proof
- 2. Quantum information protocols for singlet fraction
 - ► As a teleportation resource (Horodecki+, 1999)
 - Information-theoretic characterization (König+, 2009)
- 3. Quantum information for quantum ML
 - Classification as state discrimination (Banchi+, 2021)
 - ▶ Hypothesis testing as quantum communication (Huang+, 2021)
 - ▶ Generalization error from quantum communication (Caro+, 2023)
 - ► Here: A relationship between classical learning and entanglement

Setting:

- Sample an unknown vector $\alpha \in \mathcal{A} \subset \mathbb{R}^d$. A is compact.
- Data $B \in \mathcal{B}$ is generated based on α .

Setting:

- Sample an unknown vector $\alpha \in \mathcal{A} \subset \mathbb{R}^d$. A is compact.
- Data $B \in \mathcal{B}$ is generated based on α .

Goal: Output an *estimate* $\hat{\alpha} \in A$ approximating α to ϵ -accuracy

• Maximize $\ell(d(\alpha, \hat{\alpha}))$ for distance d, score function ℓ

Setting:

- Sample an unknown vector $\alpha \in \mathcal{A} \subset \mathbb{R}^d$. A is compact.
- Data $B \in \mathcal{B}$ is generated based on α .

Goal: Output an *estimate* $\hat{\alpha} \in A$ approximating α to ϵ -accuracy

• Maximize $\ell(d(\alpha, \hat{\alpha}))$ for distance d, score function ℓ

Setting:

- Sample an unknown vector $\alpha \in \mathcal{A} \subset \mathbb{R}^d$. A is compact.
- Data $B \in \mathcal{B}$ is generated based on α .

Goal: Output an *estimate* $\hat{\alpha} \in A$ approximating α to ϵ -accuracy

• Maximize $\ell(d(\alpha, \hat{\alpha}))$ for distance d, score function ℓ

Example: Learning hyperplanes

• Sample $x_i \in \mathbb{R}^d$ from a distribution, let $y_i = \langle \alpha, x_i \rangle + (\text{noise})$

Setting:

- Sample an unknown vector $\alpha \in \mathcal{A} \subset \mathbb{R}^d$. A is compact.
- Data $B \in \mathcal{B}$ is generated based on α .

Goal: Output an *estimate* $\hat{\alpha} \in A$ approximating α to ϵ -accuracy

• Maximize $\ell(d(\alpha, \hat{\alpha}))$ for distance d, score function ℓ

- Sample $x_i \in \mathbb{R}^d$ from a distribution, let $y_i = \langle \alpha, x_i \rangle + (\text{noise})$
- $B = \{(x_1, y_1), \dots, (x_n, y_n)\}$

Setting:

- Sample an unknown vector $\alpha \in \mathcal{A} \subset \mathbb{R}^d$. A is compact.
- Data $B \in \mathcal{B}$ is generated based on α .

Goal: Output an *estimate* $\hat{\alpha} \in A$ approximating α to ϵ -accuracy

• Maximize $\ell(d(\alpha, \hat{\alpha}))$ for distance d, score function ℓ

- Sample $x_i \in \mathbb{R}^d$ from a distribution, let $y_i = \langle \alpha, x_i \rangle + (\text{noise})$
- $B = \{(x_1, y_1), \dots, (x_n, y_n)\}$
- Output $\hat{\alpha}$ to minimize $\|\alpha \hat{\alpha}\|^2$ $(\ell(x) = c x^2, d(x, y) = \|x y\|)$

Setting:

- Sample an unknown vector $\alpha \in \mathcal{A} \subset \mathbb{R}^d$. A is compact.
- Data $B \in \mathcal{B}$ is generated based on α .

Goal: Output an *estimate* $\hat{\alpha} \in A$ approximating α to ϵ -accuracy

• Maximize $\ell(d(\alpha, \hat{\alpha}))$ for distance d, score function ℓ

- Sample $x_i \in \mathbb{R}^d$ from a distribution, let $y_i = \langle \alpha, x_i \rangle + (\text{noise})$
- $B = \{(x_1, y_1), \dots, (x_n, y_n)\}$
- Output $\hat{\alpha}$ to minimize $\|\alpha \hat{\alpha}\|^2$ $(\ell(x) = c x^2, d(x, y) = \|x y\|)$
- This is at least as hard as linear regression.

$$\max_{\alpha \in A} \max_{\hat{\alpha}} \log \mathbb{E}_{p_{\hat{\alpha}|\alpha}}[\ell(d(\alpha, \hat{\alpha}))] \ge \log \ell(\epsilon) - H(A|B)$$
(1)

$$\max_{\alpha \in A} \max_{\hat{\alpha}} \log \mathbb{E}_{p_{\hat{\alpha}|\alpha}}[\ell(d(\alpha, \hat{\alpha}))] \ge \log \ell(\epsilon) - H(A|B)$$
(1)

$$\max_{\alpha \in A} \max_{\hat{\alpha}} \log \mathbb{E}_{p_{\hat{\alpha}|\alpha}}[\ell(d(\alpha, \hat{\alpha}))] \ge \log \ell(\epsilon) - H(A|B)$$
(1)

$$\max_{\alpha \in \mathcal{A}} \max_{\hat{\alpha}} \log \mathbb{E}_{p_{\hat{\alpha}|\alpha}}[\ell(d(\alpha, \hat{\alpha}))] \ge \log \ell(\epsilon) - H(A|B)$$
(1)

$$\max_{\alpha \in A} \max_{\hat{\alpha}} \log \mathbb{E}_{p_{\hat{\alpha}|\alpha}}[\ell(d(\alpha, \hat{\alpha}))] \ge \log \ell(\epsilon) - H(A|B)$$
(1)

$$\max_{\alpha \in A} \max_{\hat{\alpha}} \log \mathbb{E}_{p_{\hat{\alpha}|\alpha}}[\ell(d(\alpha, \hat{\alpha}))] \ge \log \ell(\epsilon) - H(A|B)$$
(1)

- LHS: best score w/r to unknown α and estimate $\hat{\alpha}$
- **RHS**: Score for ϵ -accurate $\hat{\alpha}$, minus uncertainty H(A|B) of discretization given B

1. Random variables A, R taking values in A are sampled from p_{AR}

Random variables A, R taking values in A are sampled from p_{AR}
 Nature uses N to prepare data B depending on the value of A

- 1. Random variables A, R taking values in \mathcal{A} are sampled from p_{AR}
- 2. Nature uses $\mathcal N$ to prepare data B depending on the value of A
- 3. Learner predicts A using estimator $\mathcal{D}: B \to \hat{A}$

1. Random variables A, R taking values in A are sampled from p_{AR} 2. Nature uses N to prepare data B depending on the value of A

3. Learner predicts A using estimator $\mathcal{D}: B \to \hat{A}$

Learner's optimal probability of success obeys:

$$\max_{\mathcal{D}} \Pr(\hat{A} = R) \ge 2^{-H(R|B)}$$

(2)

1. RA contains an entangled state $|\psi\rangle_{RA}$

- 1. RA contains an entangled state $|\psi\rangle_{RA}$
- 2. Nature evolves A via $\mathcal N$ to prepare quantum system B

- 1. RA contains an entangled state $|\psi\rangle_{RA}$
- 2. Nature evolves A via $\mathcal N$ to prepare quantum system B
- 3. Learner applies ${\cal D}$ to maximize singlet overlap of $R\hat{A}$

- 1. RA contains an entangled state $|\psi\rangle_{RA}$
- 2. Nature evolves A via $\mathcal N$ to prepare quantum system B
- 3. Learner applies ${\cal D}$ to maximize singlet overlap of $R\hat{A}$

Learner's optimal singlet fraction obeys

$$\max_{\mathcal{D}} d\langle \Phi | (\mathbb{I}_R \otimes \mathcal{D}) \rho_{RB} | \Phi \rangle_{R\hat{A}} \geq 2^{-H(R|B)_{\rho}}$$

where $|\Phi\rangle_{R\hat{A}}$ is a maximally entangled state on $R\hat{A}$

(4)

Optimizing singlet fraction

Optimizing singlet fraction

Initial state $|\psi
angle_{RA} = \sum_{r,a} \psi_{ra} |r
angle_R \otimes |a
angle_A$

Optimizing singlet fraction

Initial state $|\psi
angle_{RA} = \sum_{r,a} \psi_{ra} |r
angle_R \otimes |a
angle_A$

Initial state
$$|\Psi
angle_{\mathbf{RA}} := \int_{\mathrm{A}} dr \int_{\mathrm{A}} dlpha \psi(r, lpha) |r
angle_{\mathbf{R}} \otimes |lpha
angle_{\mathbf{A}}$$

Optimizing singlet fraction

Initial state $|\psi
angle_{RA} = \sum_{r,a} \psi_{ra} |r
angle_R \otimes |a
angle_A$

 $\begin{array}{c} \mathsf{Singlet} \\ |\Phi\rangle_{R\hat{A}} \propto \sum_{r} |r\rangle_{R} |r\rangle_{\hat{A}} \end{array}$

Initial state
$$|\Psi
angle_{\mathbf{RA}} := \int_{\mathrm{A}} dr \int_{\mathrm{A}} dlpha \psi(r, lpha) |r
angle_{\mathbf{R}} \otimes |lpha
angle_{\mathbf{A}}$$

Optimizing singlet fraction

Initial state $|\psi
angle_{RA} = \sum_{r,a} \psi_{ra} |r
angle_R \otimes |a
angle_A$

 $\begin{array}{c} \mathsf{Singlet} \\ |\Phi\rangle_{R\hat{A}} \propto \sum_{r} |r\rangle_{R} |r\rangle_{\hat{A}} \end{array}$

Quantum generalization

Initial state

$$|\Psi\rangle_{\mathbf{RA}} := \int_{A} dr \int_{A} d\alpha \psi(r, \alpha) |r\rangle_{\mathbf{R}} \otimes |\alpha\rangle_{\mathbf{A}}$$

Entangled state $|\Phi_{\epsilon}\rangle_{\mathbf{R}\hat{\mathbf{A}}} \propto \int_{A} dr |\mathbf{r}\rangle_{\mathbf{R}} \otimes \int_{\mathbb{B}_{\epsilon}(\mathbf{r})} d\hat{\alpha} |\hat{\alpha}\rangle_{\hat{\mathbf{A}}}$

Optimizing singlet fraction

Initial stateInitial state $|\psi\rangle_{RA} = \sum_{r,a} \psi_{ra} |r\rangle_R \otimes |a\rangle_A$ $|\Psi\rangle_{RA} := \int_A dr \int_A d\alpha \psi(r, \alpha) |r\rangle_R \otimes |\alpha\rangle_A$ SingletEntangled state $|\Phi\rangle_{R\hat{A}} \propto \sum_r |r\rangle_R |r\rangle_{\hat{A}}$ $|\Phi_\epsilon\rangle_{R\hat{A}} \propto \int_A dr |r\rangle_R \otimes \int_{\mathbb{B}_\epsilon(r)} d\hat{\alpha} |\hat{\alpha}\rangle_{\hat{A}}$

Quantum generalization

Is there an analogue for the classical learning guarantee?

Optimizing singlet fraction

Initial stateInitial state $|\psi\rangle_{RA} = \sum_{r,a} \psi_{ra} |r\rangle_R \otimes |a\rangle_A$ $|\Psi\rangle_{RA} := \int_A dr \int_A d\alpha \psi(r, \alpha) |r\rangle_R \otimes |\alpha\rangle_A$ SingletEntangled state $|\Phi\rangle_{R\hat{A}} \propto \sum_r |r\rangle_R |r\rangle_{\hat{A}}$ $|\Phi_\epsilon\rangle_{R\hat{A}} \propto \int_A dr |r\rangle_R \otimes \int_{\mathbb{B}_\epsilon(r)} d\hat{\alpha} |\hat{\alpha}\rangle_{\hat{A}}$

Quantum generalization

Is there an analogue for the classical learning guarantee?

$$-H(R|B)_
ho \leq \max_{|\Psi
angle_{\mathsf{RA}}} \max_{\mathcal{D}} \log \langle \Phi_\epsilon | (\mathbb{I}\otimes \mathcal{D})
ho_{\mathsf{RB}} | \Phi_\epsilon
angle_{\mathsf{RA}}$$

• Classical learning: Learn ${\cal D}$ such that $p_{A\hat{A}}(\alpha,\hat{\alpha})$ is highly correlated

- Classical learning: Learn $\mathcal D$ such that $p_{A\hat{A}}(\alpha,\hat{\alpha})$ is highly correlated
- \bullet Generalized task: Learn ${\mathcal D}$ such that $\rho_{R\hat{A}}$ is highly entangled

- Classical learning: Learn $\mathcal D$ such that $p_{A\hat{A}}(\alpha, \hat{\alpha})$ is highly correlated
- \bullet Generalized task: Learn ${\mathcal D}$ such that $\rho_{R\hat{A}}$ is highly entangled

Applications

- Understanding ability to manipulate quantum data coherently
- Continuous-variable resources for teleportation
- Entanglement resources as learning resources

Thank you!

@e6peters X (twitter) for manuscript eventually

- Leonardo Banchi, Jason Pereira, and Stefano Pirandola. Generalization in quantum machine learning: A quantum information standpoint. PRX Quantum, 2: 040321, Nov 2021. doi: 10.1103/PRXQuantum.2.040321.
- Matthias Caro, Tom Gur, Cambyse Rouzé, Daniel Stilck França, and Sathyawageeswar Subramanian. Information-theoretic generalization bounds for learning from quantum data, 2023. arXiv:2311.05529.
- Michał Horodecki, Paweł Horodecki, and Ryszard Horodecki. General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A, 60:1888–1898, Sep 1999. doi: 10.1103/PhysRevA.60.1888.
- Hsin-Yuan Huang, Richard Kueng, and John Preskill. Information-theoretic bounds on quantum advantage in machine learning. Phys. Rev. Lett., 126:190505, May 2021. doi: 10.1103/PhysRevLett.126.190505.
- I. A. Ibragimov, R. Z. Has'minskii, and Samuel Kotz. Statistical estimation : asymptotic theory. Stochastic Modelling and Applied Probability, 16. Springer Science+Business Media, LLC, New York, 1st ed. 1981. edition, 1981. ISBN 1-4899-0027-6.
- Robert Koenig, Renato Renner, and Christian Schaffner. The operational meaning of min- and max-entropy. IEEE Trans. Inform. Theory, 55(9):4337-4347, 2009. doi: 10.1109/TIT.2009.2025545.