Exponential separations between classical and quantum learners arXiv:2306.16028

Casper Gyurik joint work w/ Vedran Dunjko

applied Quantum algorithms (aQa), Leiden University QTML 2023

Universiteit Leiden The Netherlands

where do we *know* quantum exponentially beats classical computation?

(a) Shor: cryptanalysis (b) Feynman: studying physics

where do we *know* quantum exponentially beats classical computation ML?

(a) Shor: cryptanalysis (b) Feynman: studying physics

where do we *know* quantum exponentially beats classical computation ML?

(a) Shor: cryptanalysis (b) Feynman: studying physics

Many/all known separations are based on cryptanalysis. *◦* "Quantum versus classical learnability" (Servedio & Gortler – SICOMP 2004), "On the quantum versus classical learnability of discrete distributions" (Sweke, Seifert et al. – Quantum 2021), "A rigorous and robust quantum speed-up in supervised machine learning" (Lui, Arunachalam & Temme – Nat. Phys. 2021) "Parametrized Quantum Policies for Reinforcement Learning" (Jerbi, Gyurik et al. – NeurIPS 2021).

where do we *know* quantum exponentially beats classical computation ML?

(a) Shor: cryptanalysis (b) Feynman: studying physics

\blacktriangleright Many/all known separations are based on cryptanalysis!

◦ "Quantum versus classical learnability" (Servedio & Gortler – SICOMP 2004), "On the quantum versus classical learnability of discrete distributions" (Sweke, Seifert et al. – Quantum 2021), "A rigorous and robust quantum speed-up in supervised machine learning" (Lui, Arunachalam & Temme – Nat. Phys. 2021) "Parametrized Quantum Policies for Reinforcement Learning" (Jerbi, Gyurik et al. – NeurIPS 2021).

▶ What about QML advantages for data from "quantum processes"? *◦* Common folklore that QML should have advantages here.

where do we *know* quantum exponentially beats classical computation ML?

(a) Shor: cryptanalysis (b) Feynman: studying physics

\blacktriangleright Many/all known separations are based on cryptanalysis!

◦ "Quantum versus classical learnability" (Servedio & Gortler – SICOMP 2004), "On the quantum versus classical learnability of discrete distributions" (Sweke, Seifert et al. – Quantum 2021), "A rigorous and robust quantum speed-up in supervised machine learning" (Lui, Arunachalam & Temme – Nat. Phys. 2021) "Parametrized Quantum Policies for Reinforcement Learning" (Jerbi, Gyurik et al. – NeurIPS 2021).

▶ What about QML advantages for data from "quantum processes"? *◦* Common folklore that QML should have advantages here.

Our work: classical data (i.e., measurements of quantum system), **no quantum states**.

Separations classical and quantum learners

understanding when/why/how quantum outperforms classical in ML

Main research question

When do complexity theoretic separations imply (various kinds of) learning separations?

Separations classical and quantum learners

understanding when/why/how quantum outperforms classical in ML

Main research question

When do complexity theoretic separations imply (various kinds of) learning separations?

RQ1: How do *existing learning separations* build on computational separations?

◦ and precisely *what learning task* do they show is impossible classically?

Separations classical and quantum learners

understanding when/why/how quantum outperforms classical in ML

Main research question

When do complexity theoretic separations imply (various kinds of) learning separations?

RQ1: How do *existing learning separations* build on computational separations?

◦ and precisely *what learning task* do they show is impossible classically?

RQ2: Why don't we have similar learning separarions for "quantum process"?

◦ what part of the above construction *fails*? and how do we get around this?

the PAC learning framework

PAC learning problem: concept class $C = \{c_i\}_{i \in I}$ & data distribution D .

the PAC learning framework

PAC learning problem: concept class $C = \{c_i\}_{i \in I}$ & data distribution D .

▶ Solved by learning consisting of learning algorithm *A* and hypothesis class *H*:

◦ "efficient" w.r.t **both** time and number of data samples.

the PAC learning framework

PAC learning problem: concept class $C = \{c_i\}_{i \in I}$ & data distribution D .

 \triangleright Solved by learning consisting of learning algorithm Λ and hypothesis class H :

◦ "efficient" w.r.t **both** time and number of data samples.

Definition (learning separations)

- *◦* efficient solvable with either *A* or *H* **quantum**,
- *◦* not efficiently solvable with **classical** *A* and **classical** *H*.

the PAC learning framework

PAC learning problem: concept class $C = \{c_i\}_{i \in I}$ & data distribution D .

 \triangleright Solved by learning consisting of learning algorithm Λ and hypothesis class H :

◦ "efficient" w.r.t **both** time and number of data samples.

Definition (learning separations)

- *◦* efficient solvable with either *A* or *H* **quantum**,
- *◦* not efficiently solvable with **classical** *A* and **classical** *H*.

Different tasks that might require quantum: *evaluation* or *identification*.

RQ1: How do *existing learning separations* build on computational separations? *◦* and precisely *what learning task* do they show is impossible classically?

RQ1: How do *existing learning separations* build on computational separations? *◦* and precisely *what learning task* do they show is impossible classically?

Three major differences computation vs learning:

▶ **Data gap**: machine learning comes with data, which radically enhances power.

RQ1: How do *existing learning separations* build on computational separations? *◦* and precisely *what learning task* do they show is impossible classically?

Three major differences computation vs learning:

▶ **Data gap**: machine learning comes with data, which radically enhances power.

10
$$
\frac{1}{\theta}
$$
 $\frac{1}{\theta}$ $\frac{1}{$

RQ1: How do *existing learning separations* build on computational separations?

◦ and precisely *what learning task* do they show is impossible classically?

Three major differences computation vs learning:

Data gap: machine learning comes with data, which radically enhances power.

RQ1: How do *existing learning separations* build on computational separations?

◦ and precisely *what learning task* do they show is impossible classically?

Three major differences computation vs learning:

Data gap: machine learning comes with data, which radically enhances power.

 \blacktriangleright Quantum learnability: e.g., even shallow q. circuits not q. learnable¹.

 $^{\rm 1}$ see Nietner et al. (arXiv:2305.05765)

RQ1: How do *existing learning separations* build on computational separations?

◦ and precisely *what learning task* do they show is impossible classically?

Three major differences computation vs learning:

Data gap: machine learning comes with data, which radically enhances power.

- \blacktriangleright Quantum learnability: e.g., even shallow q. circuits not q. learnable¹.
- Worst-case/Heuristic: ML cares about correctness on fraction of inputs.

 $^{\rm 1}$ see Nietner et al. (arXiv:2305.05765)

RQ1: How do *existing learning separations* build on computational separations?

◦ and precisely *what learning task* do they show is impossible classically?

Three major differences computation vs learning:

Data gap: machine learning comes with data, which radically enhances power.

 \blacktriangleright Quantum learnability: e.g., even shallow q. circuits not q. learnable¹.

▶ Worst-case/Heuristic: ML cares about correctness on fraction of inputs.

But, how do existing learning separations overcome this?

 $^{\rm 1}$ see Nietner et al. (arXiv:2305.05765)

RQ1: How do *existing learning separations* build on computational separations?

◦ and precisely *what learning task* do they show is impossible classically?

Three major differences computation vs learning:

Data gap: machine learning comes with data, which radically enhances power.

 \blacktriangleright Quantum learnability: e.g., even shallow q. circuits not q. learnable¹.

▶ Worst-case/Heuristic: ML cares about correctness on fraction of inputs.

But, how do existing learning separations overcome this?

Formula to proving learning separations from complexity theory

Efficient learner + Efficient data \implies Efficient (non-learning) algorithm.

◦ classical hardness of learning directly from heuristic hardness of concepts!

 $^{\rm 1}$ see Nietner et al. (arXiv:2305.05765)

RQ1: How do *existing learning separations* build on computational separations?

◦ and precisely *what learning task* do they show is impossible classically?

RQ1: How do *existing learning separations* build on computational separations?

◦ and precisely *what learning task* do they show is impossible classically?

Existing learning separations: use concepts that are heuristicly hard classically!

RQ1: How do *existing learning separations* build on computational separations?

◦ and precisely *what learning task* do they show is impossible classically?

Existing learning separations: use concepts that are heuristicly hard classically!

- ▶ classical non-learnability strongly relies on demanding *evaluation* from classical learner.
- more like computational separation instead of learning (quantum learner needs no data).

RQ1: How do *existing learning separations* build on computational separations?

◦ and precisely *what learning task* do they show is impossible classically?

Existing learning separations: use concepts that are heuristicly hard classically!

- ▶ classical non-learnability strongly relies on demanding *evaluation* from classical learner.
- more like computational separation instead of learning (quantum learner needs no data).

Our result (part 1)

Modular exponentiation concept class: $c_d(x) = x^d \mod N$.

▶ Efficiently evaluatable =*⇒* hardness must lie in identification!

RQ1: How do *existing learning separations* build on computational separations?

◦ and precisely *what learning task* do they show is impossible classically?

Existing learning separations: use concepts that are heuristicly hard classically!

- ▶ classical non-learnability strongly relies on demanding *evaluation* from classical learner.
- more like computational separation instead of learning (quantum learner needs no data).

Our result (part 1)

Modular exponentiation concept class: $c_d(x) = x^d \mod N$.

▶ Efficiently evaluatable =*⇒* hardness must lie in identification!

Classical non-learnability: identification of *d* breaks RSA-encryption.

RQ1: How do *existing learning separations* build on computational separations?

◦ and precisely *what learning task* do they show is impossible classically?

Existing learning separations: use concepts that are heuristicly hard classically!

- ▶ classical non-learnability strongly relies on demanding *evaluation* from classical learner.
- more like computational separation instead of learning (quantum learner needs no data).

Our result (part 1)

Modular exponentiation concept class: $c_d(x) = x^d \mod N$.

▶ Efficiently evaluatable =*⇒* hardness must lie in identification!

Classical non-learnability: identification of *d* breaks RSA-encryption.

Quantum learnability: example $(x, x^d \mod N)$ induces congruence $d \equiv \ell \mod r$

$$
\circ \ \ r = \text{ord}(x) \ \text{and} \ \ell = \log_x x^d.
$$

RQ1: How do *existing learning separations* build on computational separations?

◦ and precisely *what learning task* do they show is impossible classically?

Existing learning separations: use concepts that are heuristicly hard classically!

- ▶ classical non-learnability strongly relies on demanding *evaluation* from classical learner.
- more like computational separation instead of learning (quantum learner needs no data).

Our result (part 1)

Modular exponentiation concept class: $c_d(x) = x^d \mod N$.

▶ Efficiently evaluatable =*⇒* hardness must lie in identification!

Classical non-learnability: identification of *d* breaks RSA-encryption.

Quantum learnability: example $(x, x^d \mod N)$ induces congruence $d \equiv \ell \mod r$

$$
\circ \ \ r = \text{ord}(x) \ \text{and} \ \ell = \log_x x^d.
$$

Proof: poly many examples suffice to determine *d* using congruences.

RQ2: Why don't we have similar learning separarions for "quantum process"?

◦ what part of existing construction *fails*? and how to get around this?

RQ2: Why don't we have similar learning separarions for "quantum process"?

◦ what part of existing construction *fails*? and how to get around this?

For "*quantum processes*" (i.e., BQP function) cannot assume efficient data generation.

RQ2: Why don't we have similar learning separarions for "quantum process"?

◦ what part of existing construction *fails*? and how to get around this?

For "*quantum processes*" (i.e., BQP function) cannot assume efficient data generation.

Our new approach to learning separations

Classical nonlearnability: *c ̸∈* HeurP/poly.

◦ /poly *↔* hard even when given data.

RQ2: Why don't we have similar learning separarions for "quantum process"?

◦ what part of existing construction *fails*? and how to get around this?

For "*quantum processes*" (i.e., BQP function) cannot assume efficient data generation.

RQ2: Why don't we have similar learning separarions for "quantum process"?

◦ what part of existing construction *fails*? and how to get around this?

For "*quantum processes*" (i.e., BQP function) cannot assume efficient data generation.

Ingredients for learning sep: $L \in BQP$ s.t. $(L, D) \notin HeurP/poly$.

RQ2: Why don't we have similar learning separarions for "quantum process"?

◦ what part of existing construction *fails*? and how to get around this?

For "*quantum processes*" (i.e., BQP function) cannot assume efficient data generation.

Ingredients for learning sep: $L \in BQP$ s.t. $(L, D) \notin HeurP/poly$.

Theorem

Any *∃L ∈* BQP such that *L ̸∈* P/poly and it is random self-reducible, can be used to construct a learning separation from every BQP-complete problem.

RQ2: Why don't we have similar learning separarions for "quantum process"?

◦ what part of existing construction *fails*? and how to get around this?

For "*quantum processes*" (i.e., BQP function) cannot assume efficient data generation.

Ingredients for learning sep: $L \in BQP$ s.t. $(L, D) \notin HeurP/poly$.

Theorem

Any *∃L ∈* BQP such that *L ̸∈* P/poly and it is random self-reducible, can be used to construct a learning separation from every BQP-complete problem.

▶ e.g., can use DLP to build learning seps. from BQP-complete problems!

RQ2: Why don't we have similar learning separarions for "quantum process"?

◦ what part of existing construction *fails*? and how to get around this?

For "*quantum processes*" (i.e., BQP function) cannot assume efficient data generation.

Ingredients for learning sep: $L \in BQP$ s.t. $(L, D) \notin HeurP/poly$.

Theorem

Any *∃L ∈* BQP such that *L ̸∈* P/poly and it is random self-reducible, can be used to construct a learning separation from every BQP-complete problem.

▶ e.g., can use DLP to build learning seps. from BQP-complete problems!

$$
c_H(\beta)=\mathrm{sign}\left(\big|\langle 0^n|e^{iH(\beta)}Z_1e^{-iH(\beta)}|0^n\rangle\big|^2-\frac{1}{2}\right)\implies\text{ "learning separation!}''
$$

e.g., can use DLP to build learning seps. from BQP-complete problems!

$$
c_H(\beta)=\mathrm{sign}\left(\big|\langle 0^n|e^{iH(\beta)}Z_1e^{-iH(\beta)}|0^n\rangle\big|^2-\frac{1}{2}\right)\implies\text{ "learning separation!}''
$$

Thank you!