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Separations classical and quantum learners
understanding when/why/how quantum outperforms classical in ML

Main research question

When do complexity theoretic separations imply (various kinds of)
learning separations?

RQ1: How do existing learning separations build on computational separations?

◦ and precisely what learning task do they show is impossible classically?

RQ2: Why don’t we have similar learning separarions for “quantum process”?

◦ what part of the above construction fails? and how do we get around this?
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Defining a learning separation
the PAC learning framework

PAC learning problem: concept class C = {ci}i∈I & data distribution D.

▶ Solved by learning consisting of learning algorithm A and hypothesis class H:

◦ “efficient” w.r.t both time and number of data samples.

Definition (learning separations)
◦ efficient solvable with either A or H quantum,

◦ not efficiently solvable with classical A and classical H.

Different tasks that might require quantum: evaluation or identification.
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Understanding existing learning separations
RQ1: How do existing learning separations build on computational separations?

◦ and precisely what learning task do they show is impossible classically?

Three major differences computation vs learning:
▶ Data gap: machine learning comes with data, which radically enhances power.
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▶ Quantum learnability: e.g., even shallow q. circuits not q. learnable1.

▶ Worst-case/Heuristic: ML cares about correctness on fraction of inputs.
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Understanding existing learning separations
RQ1: How do existing learning separations build on computational separations?

◦ and precisely what learning task do they show is impossible classically?

Existing learning separations: use concepts that are heuristicly hard classically!
▶ classical non-learnability strongly relies on demanding evaluation from classical learner.
- more like computational separation instead of learning (quantum learner needs no data).

Our result (part 1)

Modular exponentiation concept class: cd(x) = xd mod N.

▶ Efficiently evaluatable =⇒ hardness must lie in identification!

Classical non-learnability: identification of d breaks RSA-encryption.

Quantum learnability: example (x, xd mod N) induces congruence d ≡ ℓ mod r

◦ r = ord(x) and ℓ = logx xd.

Proof: poly many examples suffice to determine d using congruences.
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Learning separations from quantum processes
RQ2: Why don’t we have similar learning separarions for “quantum process”?

◦ what part of existing construction fails? and how to get around this?

For “quantum processes” (i.e., BQP function) cannot assume efficient data generation.

Our new approach to learning separations
Classical nonlearnability: c ̸∈ HeurP/poly.

◦ /poly ↔ hard even when given data.

Quantum learnability: c ∈ BQP, |C| = poly(n).
◦ Emprical risk minimization works!

Ingredients for learning sep: L ∈ BQP s.t. (L,D) ̸∈ HeurP/poly.

Theorem

Any ∃L ∈ BQP such that L ̸∈ P/poly and it is random self-reducible, can be used to construct
a learning separation from every BQP-complete problem.

▶ e.g., can use DLP to build learning seps. from BQP-complete problems!

cH(β) = sign
(∣∣⟨0n|eiH(β)Z1e

−iH(β)|0n⟩
∣∣2 −

1

2

)
=⇒ “learning separation!”

Discover the world at Leiden University 5 / 5



Learning separations from quantum processes
RQ2: Why don’t we have similar learning separarions for “quantum process”?

◦ what part of existing construction fails? and how to get around this?

For “quantum processes” (i.e., BQP function) cannot assume efficient data generation.

Our new approach to learning separations
Classical nonlearnability: c ̸∈ HeurP/poly.

◦ /poly ↔ hard even when given data.

Quantum learnability: c ∈ BQP, |C| = poly(n).
◦ Emprical risk minimization works!

Ingredients for learning sep: L ∈ BQP s.t. (L,D) ̸∈ HeurP/poly.

Theorem

Any ∃L ∈ BQP such that L ̸∈ P/poly and it is random self-reducible, can be used to construct
a learning separation from every BQP-complete problem.

▶ e.g., can use DLP to build learning seps. from BQP-complete problems!

cH(β) = sign
(∣∣⟨0n|eiH(β)Z1e

−iH(β)|0n⟩
∣∣2 −

1

2

)
=⇒ “learning separation!”

Discover the world at Leiden University 5 / 5



Learning separations from quantum processes
RQ2: Why don’t we have similar learning separarions for “quantum process”?

◦ what part of existing construction fails? and how to get around this?

For “quantum processes” (i.e., BQP function) cannot assume efficient data generation.

Our new approach to learning separations
Classical nonlearnability: c ̸∈ HeurP/poly.

◦ /poly ↔ hard even when given data.

Quantum learnability: c ∈ BQP, |C| = poly(n).
◦ Emprical risk minimization works!

Ingredients for learning sep: L ∈ BQP s.t. (L,D) ̸∈ HeurP/poly.

Theorem

Any ∃L ∈ BQP such that L ̸∈ P/poly and it is random self-reducible, can be used to construct
a learning separation from every BQP-complete problem.

▶ e.g., can use DLP to build learning seps. from BQP-complete problems!

cH(β) = sign
(∣∣⟨0n|eiH(β)Z1e

−iH(β)|0n⟩
∣∣2 −

1

2

)
=⇒ “learning separation!”

Discover the world at Leiden University 5 / 5



Learning separations from quantum processes
RQ2: Why don’t we have similar learning separarions for “quantum process”?

◦ what part of existing construction fails? and how to get around this?

For “quantum processes” (i.e., BQP function) cannot assume efficient data generation.

Our new approach to learning separations
Classical nonlearnability: c ̸∈ HeurP/poly.

◦ /poly ↔ hard even when given data.

Quantum learnability: c ∈ BQP, |C| = poly(n).
◦ Emprical risk minimization works!

Ingredients for learning sep: L ∈ BQP s.t. (L,D) ̸∈ HeurP/poly.

Theorem

Any ∃L ∈ BQP such that L ̸∈ P/poly and it is random self-reducible, can be used to construct
a learning separation from every BQP-complete problem.

▶ e.g., can use DLP to build learning seps. from BQP-complete problems!

cH(β) = sign
(∣∣⟨0n|eiH(β)Z1e

−iH(β)|0n⟩
∣∣2 −

1

2

)
=⇒ “learning separation!”

Discover the world at Leiden University 5 / 5



Learning separations from quantum processes
RQ2: Why don’t we have similar learning separarions for “quantum process”?

◦ what part of existing construction fails? and how to get around this?

For “quantum processes” (i.e., BQP function) cannot assume efficient data generation.

Our new approach to learning separations
Classical nonlearnability: c ̸∈ HeurP/poly.

◦ /poly ↔ hard even when given data.

Quantum learnability: c ∈ BQP, |C| = poly(n).
◦ Emprical risk minimization works!

Ingredients for learning sep: L ∈ BQP s.t. (L,D) ̸∈ HeurP/poly.

Theorem

Any ∃L ∈ BQP such that L ̸∈ P/poly and it is random self-reducible, can be used to construct
a learning separation from every BQP-complete problem.

▶ e.g., can use DLP to build learning seps. from BQP-complete problems!

cH(β) = sign
(∣∣⟨0n|eiH(β)Z1e

−iH(β)|0n⟩
∣∣2 −

1

2

)
=⇒ “learning separation!”

Discover the world at Leiden University 5 / 5



Learning separations from quantum processes
RQ2: Why don’t we have similar learning separarions for “quantum process”?

◦ what part of existing construction fails? and how to get around this?

For “quantum processes” (i.e., BQP function) cannot assume efficient data generation.

Our new approach to learning separations
Classical nonlearnability: c ̸∈ HeurP/poly.

◦ /poly ↔ hard even when given data.

Quantum learnability: c ∈ BQP, |C| = poly(n).
◦ Emprical risk minimization works!

Ingredients for learning sep: L ∈ BQP s.t. (L,D) ̸∈ HeurP/poly.

Theorem

Any ∃L ∈ BQP such that L ̸∈ P/poly and it is random self-reducible, can be used to construct
a learning separation from every BQP-complete problem.

▶ e.g., can use DLP to build learning seps. from BQP-complete problems!

cH(β) = sign
(∣∣⟨0n|eiH(β)Z1e

−iH(β)|0n⟩
∣∣2 −

1

2

)
=⇒ “learning separation!”

Discover the world at Leiden University 5 / 5



Learning separations from quantum processes
RQ2: Why don’t we have similar learning separarions for “quantum process”?

◦ what part of existing construction fails? and how to get around this?

For “quantum processes” (i.e., BQP function) cannot assume efficient data generation.

Our new approach to learning separations
Classical nonlearnability: c ̸∈ HeurP/poly.

◦ /poly ↔ hard even when given data.

Quantum learnability: c ∈ BQP, |C| = poly(n).
◦ Emprical risk minimization works!

Ingredients for learning sep: L ∈ BQP s.t. (L,D) ̸∈ HeurP/poly.

Theorem

Any ∃L ∈ BQP such that L ̸∈ P/poly and it is random self-reducible, can be used to construct
a learning separation from every BQP-complete problem.

▶ e.g., can use DLP to build learning seps. from BQP-complete problems!

cH(β) = sign
(∣∣⟨0n|eiH(β)Z1e

−iH(β)|0n⟩
∣∣2 −

1

2

)
=⇒ “learning separation!”

Discover the world at Leiden University 5 / 5



Learning separations from quantum processes
RQ2: Why don’t we have similar learning separarions for “quantum process”?

◦ what part of existing construction fails? and how to get around this?

For “quantum processes” (i.e., BQP function) cannot assume efficient data generation.

Our new approach to learning separations
Classical nonlearnability: c ̸∈ HeurP/poly.

◦ /poly ↔ hard even when given data.

Quantum learnability: c ∈ BQP, |C| = poly(n).
◦ Emprical risk minimization works!

Ingredients for learning sep: L ∈ BQP s.t. (L,D) ̸∈ HeurP/poly.

Theorem

Any ∃L ∈ BQP such that L ̸∈ P/poly and it is random self-reducible, can be used to construct
a learning separation from every BQP-complete problem.

▶ e.g., can use DLP to build learning seps. from BQP-complete problems!

cH(β) = sign
(∣∣⟨0n|eiH(β)Z1e

−iH(β)|0n⟩
∣∣2 −

1

2

)
=⇒ “learning separation!”

Discover the world at Leiden University 5 / 5



Learning separations from quantum processes
RQ2: Why don’t we have similar learning separarions for “quantum process”?

◦ what part of existing construction fails? and how to get around this?

For “quantum processes” (i.e., BQP function) cannot assume efficient data generation.

Our new approach to learning separations
Classical nonlearnability: c ̸∈ HeurP/poly.

◦ /poly ↔ hard even when given data.

Quantum learnability: c ∈ BQP, |C| = poly(n).
◦ Emprical risk minimization works!

Ingredients for learning sep: L ∈ BQP s.t. (L,D) ̸∈ HeurP/poly.

Theorem

Any ∃L ∈ BQP such that L ̸∈ P/poly and it is random self-reducible, can be used to construct
a learning separation from every BQP-complete problem.

▶ e.g., can use DLP to build learning seps. from BQP-complete problems!

cH(β) = sign
(∣∣⟨0n|eiH(β)Z1e

−iH(β)|0n⟩
∣∣2 −

1

2

)
=⇒ “learning separation!”

Discover the world at Leiden University 5 / 5



Thank you!


