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Classical simulations of noisy
variational quantum circuits
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Motivations for VQASs

It can be argued that there are three main motivations for VQAs:

1. Ease of implementation

No fault-tolerance required. Respects native gateset, topology.

2. Usefulness

Can solve interesting problems. Not trivially simulatable.

3. Noise resilience
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Conjectured [1] and observed resilience to noise, coherent [2] and incoherent [3].

Amenable to quantum error mitigation (QEM) techniques.

[1] McClean, Jarrod R., et al. "The theory of variational hybrid quantum-classical algorithms." New Journal of Physics 18.2 (2016): 023023.
[2] O’'Malley, Peter JJ, et al. "Scalable quantum simulation of molecular energies." Physical Review X 6.3 (2016): 031007.
[3] Sharma, Kunal, et al. "Noise resilience of variational guantum compiling." New Journal of Physics 22.4 (2020): 043006.



Motivations for VQASs

It can be argued that there are three main motivations for VQAs:

1. Ease of implementation

No fault-tolerance required. Respects native gateset, topology.

2. Usefulness

Can solve interesting problems. Not trivially simulatable.

3. Noise resilience
Conjectured [1] and observed resilience to noise, coherent [2] and incoherent [3]. (}9
-
Amenable to quantum error mitigation (QEM) techniques.
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Questioning VQA noise resilience

Mixed evidence of partial resilience, at best.

» Basic numerical experiments found that there was some resilience, but
only for very low noise rates [1].

» |t also appeared that noise tends to accumulate -> noise-induced barren
plateaus [2].

« For any QEM technique, overhead scales worst-case exponentially in
both circuit depth and width [3].
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Even with QEM, asymptotically we cannot get rid
of the noise

[1] Fontana, Enrico, et al. "Evaluating the noise resilience of variational quantum algorithms." Physical Review A 104.2 (2021)
[2, image] Wang, Samson, et al. "Noise-induced barren plateaus in variational quantum algorithms." Nature communications 12.1 (2021)
[3] Takagi, Ryuiji, et al. "Fundamental limits of quantum error mitigation." npj Quantum Information 8.1 (2022)
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Questioning VQA noise resilience

Does noise prevent quantum advantage?

Heuristically: MPS with truncation = noisy QC [1].

?
VQE with sufficient noise can be classically simulated via Gibbs states [2]. q j 3
N | D
. . . - O | S©
This suggests that as noise accumulates, at some point a transition c,\'bf\@’ | o\’%@
occurs and “quantumness” disappears. |
0 Noise ]

[Q: In VQASs, at what point is ‘quantumness’ lost? ]

[1] Zhou, Yiging, E. Miles Stoudenmire, and Xavier Waintal. "What limits the simulation of quantum computers?." Physical Review X 10.4 (2020)
[2] Stilck Franca, Daniel, and Raul Garcia-Patron. "Limitations of optimization algorithms on noisy quantum devices." Nature Physics 17.11 (2021)
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[Q: In VQASs, at what point is ‘quantumness’ lost? ]

[A: In some sense, immediately! J

[1] Zhou, Yiging, E. Miles Stoudenmire, and Xavier Waintal. "What limits the simulation of quantum computers?." Physical Review X 10.4 (2020)
[2] Stilck Franca, Daniel, and Raul Garcia-Patron. "Limitations of optimization algorithms on noisy quantum devices." Nature Physics 17.11 (2021)
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[A: In some sense, immediately!
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[1] Zhou, Yiging, E. Miles Stoudenmire, and Xavier Waintal. "What limits the simulation of quantum computers?." Physical Review X 10.4 (2020)
[2] Stilck Franca, Daniel, and Raul Garcia-Patron. "Limitations of optimization algorithms on noisy quantum devices." Nature Physics 17.11 (2021)
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VQA cost functions are Fourier series

It is well-known [1,2,3,4] that VQA cost functions admit a Fourier series representation:

a(ws)+/\/\/\/\
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« The frequencies w live in a discrete, finite (but large) spectrum (.

« Spectrum is set of pairwise differences of eigenvalues of rotations:

R.(0) = e 92 5 \(0,/2) = {£1/2} — Q = {-1,0, +1}

[1] Schuld, Maria, Ryan Sweke, and Johannes Jakob Meyer. "Effect of data encoding on the expressive power of variational quantum-machine-learning models." Physical
Review A 103.3 (2021): 032430.

[2] Gil Vidal, Francisco Javier, and Dirk Oliver Theis. "Input redundancy for parameterized quantum circuits." Frontiers in Physics 8 (2020): 297.

[3] Nakanishi, Ken M., Keisuke Fuijii, and Synge Todo. "Sequential minimal optimization for quantum-classical hybrid algorithms." Physical Review Research 2.4 (2020):
043158.

[4] Parrish, Robert M., et al. "A Jacobi diagonalization and Anderson acceleration algorithm for variational quantum algorithm parameter optimization." arXiv preprint
arXiv:1904.03206 (2019).
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VQA cost functions are Fourier series

It is well-known [1,2,3,4] that VQA cost functions admit a Fourier series representation:
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« The frequencies w live in a discrete, finite (but large) spectrum (.

« Spectrum is set of pairwise differences of eigenvalues of rotations:

R.(0) = e 92 5 \(0,/2) = {£1/2} — Q = {-1,0, +1}

[Q: What happens when noise is present? ]

[1] Schuld, Maria, Ryan Sweke, and Johannes Jakob Meyer. "Effect of data encoding on the expressive power of variational quantum-machine-learning models." Physical
Review A 103.3 (2021): 032430.

[2] Gil Vidal, Francisco Javier, and Dirk Oliver Theis. "Input redundancy for parameterized quantum circuits." Frontiers in Physics 8 (2020): 297.

[3] Nakanishi, Ken M., Keisuke Fuijii, and Synge Todo. "Sequential minimal optimization for quantum-classical hybrid algorithms." Physical Review Research 2.4 (2020):
043158.

[4] Parrish, Robert M., et al. "A Jacobi diagonalization and Anderson acceleration algorithm for variational quantum algorithm parameter optimization." arXiv preprint
arXiv:1904.03206 (2019).



Channel mode decomposition

« To include noise, move to channels.
Rz() = Cy+€e’Ci +eC_,
« Now go from Fourier to trigonometric decomposition for single-Pauli rotation gate channel:
Rz(0) = Do + cos(0)D; + sin(6)D_,
 With noise, the channel modes{Dy, D1} will depend on the error parameters.

« Single qubit Pauli noise following rotation give PTM:
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1000 000 00 0000 Decomposition gives
000 O 0gx 0 O 10 0 -gx O

D, = . D, = , D_1 = PTMs that map 1
000 O 0 0 g O 0Ogr 0 O Pauli into <1 Paull
000 gz 00 00 00 0 0 auiiinto =1 Faulis




Noisy Heisenberg-picture simulation

* Evolving a Pauli measurement in the Heisenberg picture, we obtain a trigonometric decomposition
of the cost function that includes noise factors.

U(0) = [1(C:- R2(6:)) - Co

il

Rz(6) = Dg + cos(#)D +sin(6)D_;

Noisy Rz
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» The cost function (expectation value of Pauli operator) is

() =3 . (6)(0[UL[0) -

NG _

Contains sin/cos and noise  Constant (=1 or 0)
Classically simulatable

XXX
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Low-weight efficient simulation algorithm (LOWESA)

x+<—  weight cutoff ¢

Weight of a path w
= number of sin/cos

J Path exceeds

Surviving

path Pauli

Armlhllates observable

with 1, J

a(ws)- /\/\/\/\ Each path contributes
. . term (trigonometric
Trigonometric 0 %5 a(ws) /\/\/\ one term
[polynomial J f( ) £ a(wr)- /\/\ monomial) to the sum
o CL(LU()) \/



Why this algorithm?

« Similar algorithms had been developed before [1, 2].

« Same algorithm developed in parallel by Nemkov ef a/. [3] and Begusic ef a/. [4] (different
truncation scheme).

« However, these versions had no noise.

What is the effect of noise on the cost function?

£(8) =" du®,(6) [y f(6) = (1~ p)i*du®u(6)
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With noise, paths with large weights
are suppressed exponentially

1] Cerf, N. J., and S. E. Koonin. "Monte Carlo simulation of quantum computation." Mathematics and Computers in Simulation 47.2-5 (1998): 143-152.

2] Gao, Xun, and Luming Duan. "Efficient classical simulation of noisy quantum computation." 1810.03176

3] Nemkov, Nikita, et al. “Fourier expansion in variational quantum algorithms.” arXiv:2304.03787

4] Begusic¢, Tomislav, Kasra Hejazi, and Garnet Kin Chan. "Simulating quantum circuit expectation values by Clifford perturbation theory." arXiv:2306.04797
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Theoretical performance

« Truncation reduces the paths from exponential in the number of rotations (2™ for m
rotations) to constant (2* for cutoff #).

 The overall runtime is now polynomial in the number of qubits and gates: 0(n?m2%).

« Since discarded paths are the ones most affected by noise, the average error over
landscape is bounded:

A(f,9) < (1-2p-2pz)™! < e2rP2)f
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« Given any nonzero, constant amount of noise, a VQA is approximately simulatable in
polynomial time with guaranteed average error.
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« Given any nonzero, constant amount of noise, a VQA is approximately simulatable in
polynomial time with guaranteed average error.

Within a small average error, there is no exponential
separation between classical and quantum with noise
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Experiments

« Simulated large random noisy circuits (up to 50 qubits) in 2D topology, in under ~10s on laptop.
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« With high ¢, worst-case number of paths is huge.
« However, vast majority annihilate early and so simulation is still fast.
« Bounds on simulation error are loose by 1-3 orders of magnitude.
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Caveats

« Intheory, there is a strong dependency of optimal cutoff on the noise rate: ¢ ~ p~!loge™
With 1% phase noise, 1% error tolerance, worst-case runtime has a prefactor of 101°° = 1Go gle
-> Large gap between empirical and worst-case performance.

« Bound holds for uncorrelated, single qubit rotation gates only.

» Expectation values only.
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C Open questions A

« Can we improve the bounds?
Can we extend to correlated parameter VQAs?
Can we do sampling?

/. [ ]




Outlook

« Presented LOWESA, a Fourier-based simulation algorithm that can handle noise.

« Under a reasonable noise model, uncorrelated parameter VQAs are classically simulatable
in polynomial time.

Noise is a fundamental barrier to exponential
quantum advantage for VQAs.
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|s it a practical algorithm, though?
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|s it a practical algorithm, though?
« If hardware noise is large, LOWESA may be more accurate and efficient than a QC.

« There's indication that the bounds are potentially very loose for certain circuits.

« Appears that LOWESA has a role as a standalone (noiseless) simulation algorithm [1].

[1] Rudolph, Manuel S., et al. "Classical surrogate simulation of quantum systems with LOWESA.” arXiv:2308.09109



Thank you!
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Bonus: Simulating 127 clean qubits

Transverse Field Ising Hamiltonian Trotter Time Evolution Circuit
. : L . .
H = Z J(%,J)ZZ.Z]. n Z K x4 U@) =111 (RZZ(OSZ’”))) ] (RX(H,(;’)))
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4+  Google 31 qubit lightcone
@ Mitigated hardware result
—— LOWESA, ¢#=36,p=0.05,W=9
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4+  Google 31 qubit lightcone
@ Mitigated hardware result
= LOWESA, trivial path sin(@;,)**
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