Learning t doped stabilizer states

Alioscia Hamma

Work based on on:

Learning t-doped stabilizer states ArXiv:2305.15398

Joint Work with

SFE Oliviero, SNS Pisa

- Introduction to the notion of learning.
- Clifford Group and Stabilizer states.
- *t*-doped stabilizer states.
- Learning *t*-doped stabilizer states.

Learning Theory

- Main idea: Learn information about an unknown system.
- General setup: Black box access to multiple copies of a state.
- Measure the state in a suitable way to learn information.
- Examples: Tomography, Shadow Tomography.
- Can the structure of a state help in its learning?

Learning Theory: Precision and sample complexity

- Learning tasks characterized by a trade-off between precision and sample complexity.
- Goal is to obtain an efficient learning with high precision.
- Tomography of a state involves $\mathcal{O}(\exp{(n)})$ samples.
- Two ways around:
 - Learn minimal amount of information for predictions: Classical shadows
 - Leverage on the structure of class of states.

Pauli group and stabilizer states

- The Pauli group \mathcal{P}_n is defined as the group generated by $\langle \{\sigma_i^x, \sigma_i^z\}_{i=1}^n \rangle$ times a multiplicative factor of $\pm 1, \pm i$
- Focus on the quotient group $\mathbb{P}_n = \mathcal{P}_n / \{ \pm \mathbb{1}_n, \pm i \mathbb{1}_n \}$
- Cardinality of the Pauli group $|\mathbb{P}_n|=4^n$
- When given a state $|\psi\rangle$ it holds that $P|\psi\rangle=\pm|\psi\rangle$ with P a Pauli operator, stabilized by P_{\cdot} $|\psi\rangle$
- A pure stabilizer state $|\sigma\rangle$ is defined as a state stabilized by 2^n commuting Pauli operators.

$$\begin{aligned} |\sigma\rangle\langle\sigma| &= \frac{1}{2^n} \sum_P \sigma_P P \qquad \sigma_P = \pm 1 \\ \text{or} \end{aligned}$$

$$|\sigma\rangle\langle\sigma| = \frac{1}{2^n}\prod_i(\mathbb{I} + \sigma_i g_i) \qquad \sigma_i = \pm 1$$

Clifford Group and simulability

- The Clifford group C_n is the normalizer of \mathcal{P}_n $CPC^{\dagger} \in \mathcal{P}_n, \quad \forall C \in \mathcal{C}_n, \forall P \in \mathcal{P}_n$
- C_n is generated by:

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \quad \mathbf{H} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad \mathbf{S} = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

- Efficient encoding of *n*-qubits Pauli strings on *2n*-bit-strings. $\mathbbm{1} \to (00), \sigma^x \to (10), \sigma^z \to (01), \sigma^y \to (11)$
- From classical encoding one can show classical simulability of stabilizer states, and Clifford group.

Learning of stabilizer states

- Two-qubit Bell basis corresponds to vectorization of single qubit Pauli operators. $|\mathbb{I}\rangle, |X\rangle, |Y\rangle, |Z\rangle$
- Measurement in the Bell basis realized by

- Given a stabilizer state $|\sigma\rangle$ and its conjugate $|\sigma^*\rangle$, measuring in the Bell basis returns outcome P with the following probability distribution $2^{-n} |\langle \sigma | P | \sigma \rangle|^2$
- No access to $\ket{\sigma^*}$

Learning of stabilizer states

- Given two copies of $|\sigma
angle$ we receive outcome P with probability

 $2^{-n} |\langle \sigma | P | \sigma^* \rangle|^2 = 2^{-n} |\langle \sigma | P P_Z | \sigma \rangle|^2$

- Outcome P does not stabilize |σ⟩ but given two outcomes P₁, P₂ their product P₁P₂ is a stabilizer.
- Sketch of the algorithm:
 - Estimate 2n + 1Pauli operators P
 - Measure their phases.
- Failure probability 2^{-n}
- Number of required samples 5n+2

• Addition of a non-Clifford gate to the set {CNOT, H, Spakes it *universal* for quantum computation.

• For example, the *T*-gate
$$T = \begin{pmatrix} 1 & 01 \\ 0 & e^{i\pi/4} \end{pmatrix}$$

• Its action spreads Pauli operators T

$$\sigma_i^x T^\dagger = \frac{1}{\sqrt{2}} \left(\sigma_i^x + \sigma_i^y \right)$$

 Classical algorithm to simulate action of Clifford circuit polluted with Tgate scales exponentially with the the number of T-gates*

*S. Bravyi and D. Gosset, PRL 116 (250501)

Doping of Clifford circuits.

• *t*-doped Clifford circuits

• <u>A</u> *t*-doped Clifford circuit possesses a preserved subsystem $G(C_t)$ of Pauli operators

$$G(C_t) := \{ P \in \mathbb{P}(n) | C_t^{\dagger} P C_t \in \mathbb{P}(n) \}$$

• For t = 0 (Clifford circuit) $G(C_0 \in \mathcal{C}_n) \equiv \mathbb{P}(n)$

• Lower bound on cardinality $|G(C_t)| \ge 4^{n-t}$

Doping of Clifford circuits.

- There exists a Clifford operator $V \in \mathcal{C}_n$ such that

$$V^{\dagger}PV = C_t^{\dagger}PC_t \qquad \forall P \in G(C_t)$$

Definition: (*Diagonalizer*) Give a subset of Pauli generators $\mathfrak{h} \equiv \{h_1, h_2, \dots h_2m - 1, h_{2m}\}$ The Diagonalizer is defined as $\mathcal{D}_{\mathfrak{h}} : \mathfrak{h} \mapsto \{\sigma_1^x, \sigma_1^z, \dots, \sigma_m^x, \sigma_m^z\}$

• Given V and $\mathcal{D}_{g(C_t)}$, for t < n the following decomposition holds

$$C_t \equiv \mathcal{D}_{g(C_t)}(\mathbb{I}^{\otimes n-t} \otimes c_t)V$$

• Sketch of the proof:

$$\mathcal{D}_{g(U_t)}^{\dagger} V U_t^{\dagger} \mathcal{D}_{g(U_t)} P_s \mathcal{D}_{g(U_t)}^{\dagger} U_t V^{\dagger} \mathcal{D}_{g(U_t)} = P_s \qquad s \in [1, \dots, m]$$

Leone et al., Learning efficient decoders for quasi-chaotic quantum scramblers, https://arxiv.org/abs/2212.11338v3

t-doped stabilizer states

• Given a *t*-doped Clifford Circuit, a *t*-doped stabilizer state is defined as

 $|\psi_t\rangle \equiv C_t|0\rangle^{\otimes n}$

• For any *t* holds the following decomposition

$$|\psi_t\rangle\langle\psi_t| \equiv 2^{t-n} \left(\mathbb{I} + \sum_{i=1}^k \operatorname{tr}(h_i |\psi_t\rangle\langle\psi_t|)h_i\right) \underbrace{\left(\prod_{j=1}^{|G_{\psi_t}|} \left(\frac{\mathbb{I} + \phi_j g_j}{2}\right)\right)}_{H}\right)_{H}$$

• Elements of H and Π commute.

• For
$$t < n$$
 it holds that: $\ket{\psi_t} \equiv ilde{\mathcal{D}}_{G(C_t)} \ket{\phi_t} \otimes \ket{0}^{n-t}$

Learning algorithm – main elements

- A t-doped stabilizer state $|\psi_t\rangle$ characterized by *m* generators g_j with *m* relative phases ϕ_j and *k* bad generators h_i with relative expectation values.
- Assumption: the ability to sample from the distribution

$$\Xi_t \equiv \{ |\langle \psi_t | P | \psi_t \rangle|^2 \}_{P \in \mathcal{P}(n)}$$

- Step 1: Learn g_j s.
 - Probability of sample a $P \in G_{\psi_t}$ is

$$Pr(P \in G_{\psi_t}) = d^{-1}|G_{\psi_t}| \ge 2^{-t}$$

- Check whether is a stabilizer or not. Measure M times P. Failure probability $\geq (1 - 2^{-t})(h_{max}/2 + 1/2)^M$
- n+m samples are required to get an exponential small probability of failure to build G_{ψ_t}
- Total samples required to build G_{ψ_i} $\mathcal{O}(\left[2^t-1\right](n+m)(h_{\max}/2+1/2)^M+2^{-n})$

Learning algorithm – main elements

- Step 2: Learn $k h_i s$.
 - By Step 1, already found *l* bad generators.
 - Learn $h_{l+1}{
 m s}$ sampling from Ξ_t
 - Probability of sampling an element outside $G_{\psi_l} \cup h_1 G_{\psi_l} \cup \ldots \cup h_l G_{\psi_l}$

$$\pi_l = 1 - \frac{|G_{\psi_t}|}{d} \left(1 + \sum_{i=1}^l \operatorname{tr}^2(h_i \psi_t) \right) \ge 2^{-n} |G_{\psi_t}| (k-l) h_{\min}^2$$

- Problem: is there an efficient way to check whether an element belong to $G_{\psi_l} \cup h_1 G_{\psi_l} \cup \ldots \cup h_l G_{\psi_l}$ or not?
 - Introduction of a diagonalizer operator $\mathcal{D}: G_{\psi_t} \mapsto \tilde{G}_{\psi_t} \cap \mathbb{Z}$
 - Bad generators are now localized in *l* qubits.
 - Operation can now be achieved checking each qubit. Runtime: $\mathcal{O}(nl)$
 - Total number of samples $\mathcal{O}(2^t h_{min}^{-2}(\gamma + \log(k+1)))$
 - Computational steps $\mathcal{O}(n^2k + nk)$

Finite Resolution – dependence on T gates doping

- Step 1 and 2 depend on h_{max} and h_{min} .
- *t*-doped stabilizer states are a discrete set \implies finite resolution δ_t .
- Resolution depends on the choice of the doping.
- In general $h_{min} \ge c2^{-bt}$ and $h_{max} \ge 1 c2^{-bt}$
- For T gates $c=\sqrt{2}/6$ and $b\sim 2.27$
- Total number of samples $\mathcal{O}(2^{7t}t + 2^{4t}n(n+t))$
- Computational steps $\mathcal{O}(4^t n^2)$
- Failure probability $\mathcal{O}(n2^{-n})$

Sampling from probability distribution

- Sampling of Ξ_{ψ_t} requires to have access to both ψ_t and its conjugate ψ_t^* .
- What happens when we have only access to ψ_t ?
- The probability distribution given by Bell sampling is $\tilde{\Xi}_t\equiv 2^{-n}|\langle\psi_t|P|\psi_t^*\rangle|$
- Differently from Montanaro there is no P_Z such that $P_Z |\psi_t
 angle = |\psi_t^*
 angle$
- However, statement holds for stabilizer part $P_Z \Pi P_Z = \Pi^*$
- Probability that the product of two samples P, P' is in G_{ψ_t} $Pr(PP' \in G_{\psi_t}) \ge 2^{-4t}$
- Total samples $\mathcal{O}(2^{4t}(n+m))$
- Learning of the state can be done with $\mathcal{O}(\exp(t) \operatorname{poly}(n))$

Conclusion and outlooks

- *t*-doped stabilizer states present a peculiar algebraic structure.
- Learning of a *t*-doped stabilizer state can be done for poly(n)exp(t)
- Learned generators and bad generators, can one synthesize a Clifford+T circuit to generate $|\psi_t\rangle$
- Can the algebraic structure be of help in estimating quantities?
- Can it be applied to *t-doped* fermionic and bosonic states?

Similar works:

Grewal et al., Efficient Learning of Quantum States Prepared with Few Non-Clifford gates, <u>https://arxiv.org/pdf/2305.13409.pdf</u> Hangleiter et al., Bell sampling from quantum circuits, <u>https://arxiv.org/abs/2306.00083</u>