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Overview of Results

* We propose a new algorithm (Optimistic Matrix Multiplicative Weight Updates)

for finding approximate Nash equilibria of quantum zero-sum games.
— To do so we leverage a gradient-based view of QZSG.

— This allows us to easily leverage optimization techniques from the classical games literature.

* We prove that OMMWU achieves an 0(1/¢) iteration complexity.
— This is a quadratic speedup relative to the best prior algorithm [JWO09].

— We leverage the proof technique of [EN20] for monotone variational inequalities.

« We further introduce a design framework for QZSG algorithm:s.

— We use this to unify the QZSG algorithms landscape and motivate OMMWU.
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What is a Quantum Zero-Sum Game (QZSG)?
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A two-player game

In each round, players play unentangled
mixed states (spectraplex):
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They send joint state ¥ = (a, 8) to a referee

The referee makes a joint measurement

w.r.t. payoff observable:

U= YupeaU(w) R,
Based on the measurement outcome, the
referee rewards the players

— zero-sum = one player’s win is the other’s loss



Game Strategies & Expected Payoff

« CZSG are played in the simplex:

 Players play indeterministic strategies:

— Probability vectors: |a), |B) € [0,1]"

- Expected utility for specific strategies:

u(a, B) = (BlU]a)
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« QZSG are played in the spectraplex:
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* Players play mixtures of indeterministic

strategies (meta-strategies):
— Density matrices: a € €2"*2", g e ¢2"*2™

« Expected utility for specific strategies:

u(a, p) = Tr[U(a ® B)]



The QZSG Objective

* If Alice's expected payoffis u(a, ),
Bob's expected payoff is —u(a, §)

* In playing the game, each player wants to

maximize their expected payoff:
— Alice wants: max u(a, 8)
a
— Bob wants: ml?x —u(a, B) = mﬁin u(a, f)

« These are competing interests, defining a

minimax optimization problem:

~1/2

1/2
min max U(a, ﬁ) 1 -1 Image Source: Wikipedia
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Why Study Quantum Games?

« General quantum games have emerged in many areas of quantum information:
— Non-local games (Bell, CSHS, ..., MIP*=RE)
— Quantum interactive proofs (competitive refereed games)
— Multi-prover quantum interactive proofs (cooperative games)

— Quantum coin-flipping (two player game)

* However, optimization of general quantum games is PPAD-complete [BW22]
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Why Study QZSG, Specifically?

« Meanwhile, as classically, QZSG optimization is computationally tractable

— [JWO09] proposed an explicit QZSG algo that converges to an e-approx soln in 0(1/€?) iterations

e Uses of QZSG:

— Game theory: proof that quantum strategies = classical strategies [M99]
— Complexity theory: proof that QRG(1) € PSPACE [JW09]
— Machine learning: Quantum Generative Adversarial Networks [DK18]
Real data
e e data “H |Real) or |Fake)
Discriminator
m-
Noise

Generator

Image Source: [DK18]
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Nash Equilibria of QZSG

* The solutions (fixed points) of this minimax

define the game’s value:

u(a*,f*) = mﬁin mg?xu(a,ﬁ) = max mﬁin u(a, B)

T

von Neumann’s Minimax Thm

A

* Nash equilibria are game states (a*, %) such
that neither player has an incentive to change
to another state unilaterally:

u(a*,f*) = u(a, ), Va € A
u(a*, f*) <u(a*,p), VS € B
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Algorithmic QZSG

 Algorithmically, we will view the game

as an online learning problem

-----------------------

* In each round, each player queries the

referee ("oracle") with a state

_ Fo(a) = Tr(Ut(a®1g))

* The ref returns feedback to each player

« The players use this feedback to update Roger

and improve their states : N
: : =Vyru

* Goal: minimize the number of rounds Bob ... : R :
YeC Feedback ¥ (V)
until the players reach an e-approx

Nash equilibrium
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Superoperator vs Gradient-Based Feedback

* Previous work on QZSG characterized the game’s feedback via superoperators:
— Alice’s Feedback:  E(8) = Trp[U(l, ® )]
— Bob's Feedback:  E*(a) = Tru[U(a”T ® I3)]

« We instead characterize the game’'s feedback via gradient-based operators:
— Alice’s Feedback:  F,(B) = V ru(a,p) = TrglUl, Q B)]

— Bob's Feedback: Fpla) = —Vgrula,f) = —Tru[U(l, @ B)]
* The two characterizations are equivalent:
— Feedback: F(B) = E(BT), Fpla) = —E*(a™)
— Alice's expected payoff : u(a, ) = Trla F(B)] = Tr|a 2(87)]

— Bob's expected payoff: —u(a, B) = TF[,B Fp (d)] = —Tr[,B 5*(“T)]
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Formulating QZSG as a Variation

al Inequality

« With gradient-based feedback, the expected payoff is a directional derivative:

\
— In Alice's direction: u(a,f) = Trla F,(B)] = Tr|a V, r u(a, )]

> w(W) = Tr[¥ F(W)] = Tr[¥ Vyru(¥)]

— In Bob’s direction:  u(a,p) = —Tr[ﬁ Tﬁ(a)] = Tr[,B Vgr u(oc,,B)] )

« With a directional derivative, we can characterize the game's
equilibria as solutions of the variational inequality (VI):

Tr[(¥ — ¥*) F(PH)] <0, VP EADB

« We further prove that F(¥) is monotone and Lipschitz, which
offers additional structure about the game that we can use to

leverage efficient classical algorithms for solving such Vils.
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Gradient to Mirror Descent

 Classical gradient descent (GD): Xepq = X — N VF(x;p) «

« Equivalently, GD minimizes the 1st-order approx of F with Euclidean regularizer :

1
Xerr = argmin (F ) + VF () (6 = x) + 5 llx = x?)

x 21 For h(y) = LlyII%

Vh(y) =y

* To generalize GD to other regularizers h, perform mirror descent (MD):/
Xep1 = (VA TH[Vh(xy) — 0 VF(xy) ]
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Gradient to Mirror Descent

* To generalize GD to other regularizers h, perform mirror descent (MD):

Xe1 = (V) THVR(xe) — 1 VF(xp) |

Primal Space

Dual Space
Vh
Feasible Set
Vh(xt) ®
~nVE(x) -
® Xi+1

Vh(xti1) .\—/

(Vh)™
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Prior Work: The Jain-Watrous Algorithm [JWO09]

* In 2009, Jain and Watrous proposed the Matrix Multiplicative Weight Updates (MMWU)

algorithm, with the following update in each round t :

t—1 t—1
i . (x)
o = A (n D B )>, Pe=A ("7 2, ) where AL = Ti’éipfx»

1=0

« We show MMWU is “Lazy” Mirror Descent, with a von Neumann entropy regularizer:
h(¥) = Tr[ylogi]
« Like classical MWU, they prove an 0(1/€?) convergence.

— However, in classical games, while this is optimal for classical black-box optimization,

Nemirovski [NO4] showed that 0(1/€) can be achieved for monotone Vis.
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Achieving Speedup: Proximal Steps and Optimism

* To improve upon the MMWU, we leverage proximal instead of mirror steps

— Proximal steps introduce “/momentum”

Mirror Step

. ( ~d) Proximal Step
Dual Space (IRd) Primal Space (C”)

. (d)
Dual Space (Rd) Primal Space \C )

Vh Feasible Set ((Hfi) Vi Feasible Set ((Hf_)
V(W) om
\ ~ < _ . \Pt

Vh(\lft) o
W ~ <
l’? F(Wy) S N F(Ppsa) i\ e N D
~ @ i+l
4 o Vi .Yh(q)fﬂ) - -y

Vh(\ytﬂ) V(Y1) @ R - o Vi
wl/ t+1 W

« We further leverage “optimism” to reduce the total number of oracle calls from 2 to 1
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Our Proposal: Optimistic Matrix Multiplicative Weight Updates

« We leverage proximal maps and optimism in our proposal of

Optimistic Matrix Multiplicative Weight Updates (OMMWVU) :

s

oOMMWU
Di1 = A(log @, + 1 F(WVy) )
Wi = A( 108 DO+ F(Wis1))

MMWU
Wi = A( ) Z::'?:() (Vi) )

* Like classical OMWU, we prove an 0(1/€) convergence.
— The proof follows the proof structure of [EN20] for monotone Vis.

— We leverage notions of strong convexity, smoothness, and Fenchel conjugacy.
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QZSG Algorithm Design

-
Projected Matrix Dual Averaging (PMDA)
Matrix Dual Averaging (MDA) 5 Wi = OrthHC( g ‘T(‘I’i))
h = {, norm
Op1 = Py + F (V) ) Kr-rie
( \
W= Mirng(rl q)t+1) h = entropy > Matrix Mul‘tlilplicativ/e\z Wei;thts Ui);ate (MMWU)
1 Gradient Call Per Iteration ]— t+l = ( 1 Zi=o (F( i) )

\[i\\{Jain & Watrous 2009 Proposal ﬂ
| X 04(1/¢?) Iterations

\2

2 Matrix Extra-Gradient (EG)
CI)t+1 = Orthl_IC( \Ilt aF 7] T(‘Ijt) )
W1 = OrthIo( W, + 1 F(Pri1) )

Mirror — Proximal Maps

Matrix Mirror Prox (MMP)

h,
W= ProxHC"( Wy, F(Dy))
@111 = ProdIg (W, F(Win))
X 2 Gradient Calls Per Iteration ]—

h = entropy

MMWU with Advice
G = A(logWi + 1 F(Vy))
Wi = A(log Wy + 1 F(Prs1) )
N (VT-4/2

l 0,(1/¢) Iterations

v

h = {, norm »

"Optimistic" Reuse of F(P;)

Y ( Optimistic Matrix Extra-Gradient (OMEG)
D1 = OrthITg( D; + 04

Optimistic Matrix Mirror Prox (OMMP) o o( e+ FC¥))
h — /1 = {, norm +k Wi = Orthl'[c( (I)t+T]‘F(\I’t+1)) X T=20/¢
Wiy = ProxIT (¢, F(Dy) ) . ==
i Optimistic Matrix Multiplicative Weights Update (OMMWU)

(I)t+1 = PrOXHC ( \Ilt+1l g:(q)t) ) — /1 = entropy D1 = A( 108 D +1nF(Vy))

1 Gradient Call Per Iteration ]_J Wi = A( 10g D; + n F(We1))
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Thank you! Questions?
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