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• We propose a new algorithm (Optimistic Matrix Multiplicative Weight Updates) 

for finding approximate Nash equilibria of quantum zero-sum games.

– To do so we leverage a gradient-based view of QZSG.

– This allows us to easily leverage optimization techniques from the classical games literature.

• We prove that OMMWU achieves an 𝒪(1/𝜖) iteration complexity.

– This is a quadratic speedup relative to the best prior algorithm [JW09].

– We leverage the proof technique of [EN20] for monotone variational inequalities.

• We further introduce a design framework for QZSG algorithms.

– We use this to unify the QZSG algorithms landscape and motivate OMMWU.
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𝛼 ∈ 𝒜 = ℂ!!"!! , 𝛽 ∈ ℬ = ℂ!""!"

• They send joint state Ψ = 𝛼, 𝛽 to a referee

• The referee makes a joint measurement 

w.r.t. payoff observable: 

𝑈 = ∑!∈#𝒰 𝜔 𝑃!

• Based on the measurement outcome, the 

referee rewards the players

– zero-sum⇒ one player’s win is the other’s loss
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• General quantum games have emerged in many areas of quantum information:

– Non-local games (Bell, CSHS, …, MIP*=RE)

– Quantum interactive proofs (competitive refereed games)

– Multi-prover quantum interactive proofs (cooperative games)

– Quantum coin-flipping (two player game)

• However, optimization of general quantum games is PPAD-complete [BW22]
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– [JW09] proposed an explicit QZSG algo that converges to an 𝜖-approx soln in  𝒪(1/𝜖!) iterations

• Uses of QZSG:

– Game theory: proof that quantum strategies ≥ classical strategies [M99] 

– Complexity theory: proof that QRG(1) ⊆ PSPACE [JW09] 

– Machine learning: Quantum Generative Adversarial Networks [DK18]
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• Algorithmically, we will view the game 

as an online learning problem

• In each round, each player queries the 

referee ("oracle") with a state

• The ref returns feedback to each player

• The players use this feedback to update 

and improve their states

• Goal: minimize the number of rounds 

until the players reach an 𝜖-approx

Nash equilibrium
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– In Bob’s direction: 𝑢 𝛼, 𝛽 = −Tr 𝛽 ℱ% 𝛼 = Tr 𝛽 ∇%# 𝑢 𝛼, 𝛽

• With a directional derivative, we can characterize the game’s 

equilibria as solutions of the variational inequality (VI):

Tr Ψ − Ψ∗ ℱ Ψ∗ ≤ 0, ∀ Ψ ∈ 𝒜⊕ℬ

• We further prove that ℱ(Ψ) is monotone and Lipschitz, which 
offers additional structure about the game that we can use to 

leverage efficient classical algorithms for solving such VIs.

𝑢 Ψ = Tr Ψ	ℱ Ψ = Tr Ψ	∇*#𝑢 Ψ
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• We show MMWU is “Lazy” Mirror Descent, with a von Neumann entropy regularizer: 

ℎ(𝜓) = 𝑇𝑟[𝜓 log𝜓]

• Like classical MWU, they prove an 𝒪(1/𝜖.) convergence.

– However, in classical games, while this is optimal for classical black-box optimization, 

Nemirovski [N04] showed that 𝒪(1/𝜖) can be achieved for monotone VIs.
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• To improve upon the MMWU, we leverage proximal instead of mirror steps

– Proximal steps introduce “momentum”

• We further leverage “optimism” to reduce the total number of oracle calls from 2 to 1
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• We leverage proximal maps and optimism in our proposal of

Optimistic Matrix Multiplicative Weight Updates (OMMWU) : 

• Like classical OMWU, we prove an 𝒪(1/𝜖) convergence. 

– The proof follows the proof structure of [EN20] for monotone VIs.

– We leverage notions of strong convexity, smoothness, and Fenchel conjugacy.
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