A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games

[arXiv:2311.10859]

Francisca Vasconcelos*

UC Berkeley

Quantum Techniques in Machine Learning Conference 2023

November 21st, 2023

Joint work with:

Emmanouil Vlatakis-Gkaragkounis* UC Berkeley

Panayotis Mertikopoulos CNRS Grenoble

Georgios Piliouras SUTD

Michael I. Jordan UC Berkeley

F. Vasconcelos - 1 QTML 2023

• We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.

- We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.
 - To do so we leverage a **gradient-based** view of QZSG.

- We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.
 - To do so we leverage a **gradient-based** view of QZSG.
 - This allows us to easily leverage optimization techniques from the **classical** games literature.

- We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.
 - To do so we leverage a **gradient-based** view of QZSG.
 - This allows us to easily leverage optimization techniques from the **classical** games literature.
- We prove that OMMWU achieves an $\mathcal{O}(1/\epsilon)$ iteration complexity.

- We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.
 - To do so we leverage a **gradient-based** view of QZSG.
 - This allows us to easily leverage optimization techniques from the **classical** games literature.
- We prove that OMMWU achieves an $\mathcal{O}(1/\epsilon)$ iteration complexity.
 - This is a **quadratic speedup** relative to the best prior algorithm [JW09].

- We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.
 - To do so we leverage a **gradient-based** view of QZSG.
 - This allows us to easily leverage optimization techniques from the **classical** games literature.
- We prove that OMMWU achieves an $\mathcal{O}(1/\epsilon)$ iteration complexity.
 - This is a **quadratic speedup** relative to the best prior algorithm [JW09].
 - We leverage the proof technique of [EN20] for **monotone variational inequalities**.

- We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.
 - To do so we leverage a **gradient-based** view of QZSG.
 - This allows us to easily leverage optimization techniques from the **classical** games literature.
- We prove that OMMWU achieves an $\mathcal{O}(1/\epsilon)$ iteration complexity.
 - This is a **quadratic speedup** relative to the best prior algorithm [JW09].
 - We leverage the proof technique of [EN20] for **monotone variational inequalities**.
- We further introduce a design framework for QZSG algorithms.

- We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.
 - To do so we leverage a **gradient-based** view of QZSG.
 - This allows us to easily leverage optimization techniques from the **classical** games literature.
- We prove that OMMWU achieves an $\mathcal{O}(1/\epsilon)$ iteration complexity.
 - This is a **quadratic speedup** relative to the best prior algorithm [JW09].
 - We leverage the proof technique of [EN20] for **monotone variational inequalities**.
- We further introduce a design framework for QZSG algorithms.
 - We use this to **unify** the QZSG algorithms landscape and **motivate** OMMWU.

A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games

F. Vasconcelos - 3 QTML 2023

• A two-player game

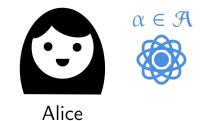
Alice

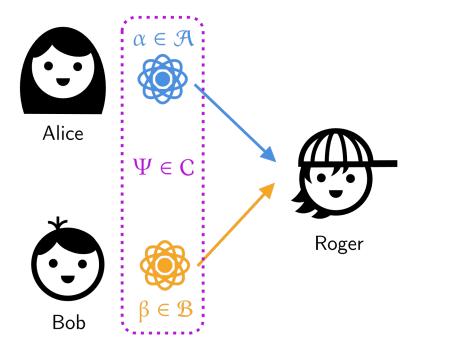
Bob

F. Vasconcelos - 3 QTML 2023

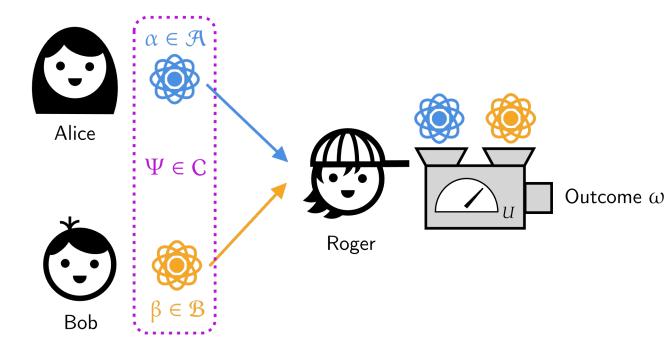
- A **two-player** game
- In each round, players play unentangled mixed states (spectraplex):

 $\alpha \in \mathcal{A} = \mathbb{C}^{2^n x 2^n}, \qquad \beta \in \mathcal{B} = \mathbb{C}^{2^m x 2^m}$





- A two-player game
- In each round, players play **unentangled** mixed states (**spectraplex**): $\alpha \in \mathcal{A} = \mathbb{C}^{2^n x 2^n}, \qquad \beta \in \mathcal{B} = \mathbb{C}^{2^m x 2^m}$
- They send joint state $\Psi = (\alpha, \beta)$ to a referee

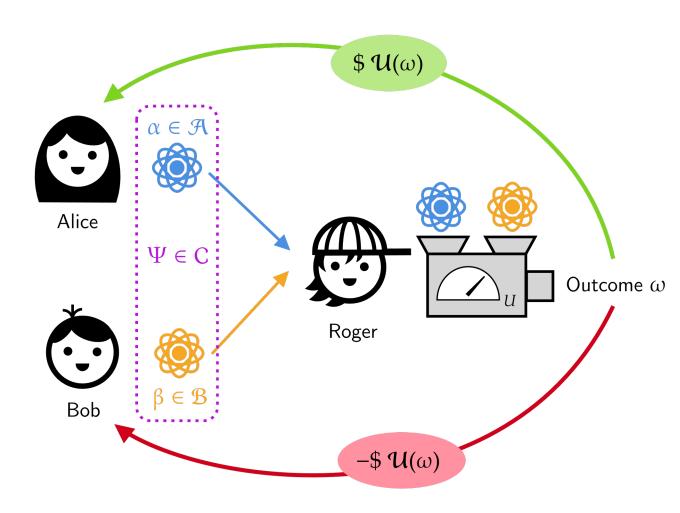


- A two-player game
- In each round, players play unentangled mixed states (spectraplex):

 $\alpha \in \mathcal{A} = \mathbb{C}^{2^n x 2^n}, \qquad \beta \in \mathcal{B} = \mathbb{C}^{2^m x 2^m}$

- They send **joint state** $\Psi = (\alpha, \beta)$ to a referee
- The referee makes a joint measurement w.r.t. payoff observable:

 $U = \sum_{\omega \in \Omega} \mathcal{U}(\omega) P_{\omega}$



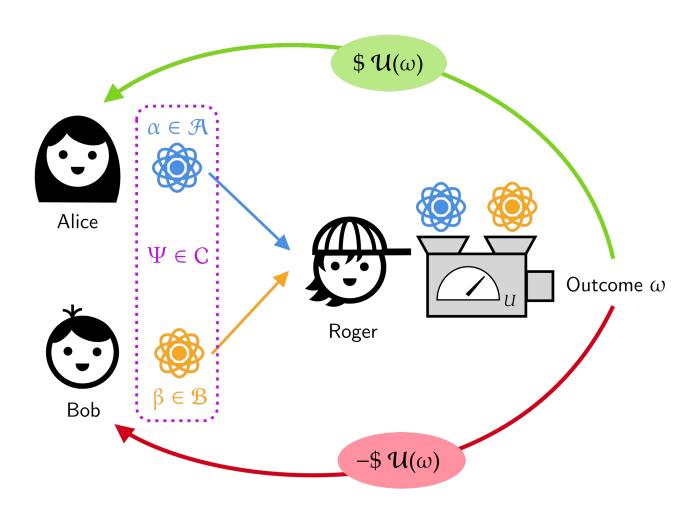
- A two-player game
- In each round, players play unentangled mixed states (spectraplex):

 $\alpha \in \mathcal{A} = \mathbb{C}^{2^n x 2^n}, \qquad \beta \in \mathcal{B} = \mathbb{C}^{2^m x 2^m}$

- They send **joint state** $\Psi = (\alpha, \beta)$ to a referee
- The referee makes a joint measurement w.r.t. payoff observable:

 $U = \sum_{\omega \in \Omega} \mathcal{U}(\omega) P_{\omega}$

• Based on the measurement outcome, the referee **rewards** the players



- A **two-player** game
- In each round, players play unentangled mixed states (spectraplex):

 $\alpha \in \mathcal{A} = \mathbb{C}^{2^n x 2^n}, \qquad \beta \in \mathcal{B} = \mathbb{C}^{2^m x 2^m}$

- They send **joint state** $\Psi = (\alpha, \beta)$ to a referee
- The referee makes a joint measurement w.r.t. payoff observable:

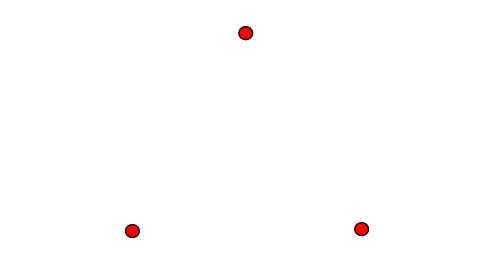
 $U = \sum_{\omega \in \Omega} \mathcal{U}(\omega) P_{\omega}$

- Based on the measurement outcome, the referee **rewards** the players
 - **zero-sum** \Rightarrow one player's **win** is the other's **loss**

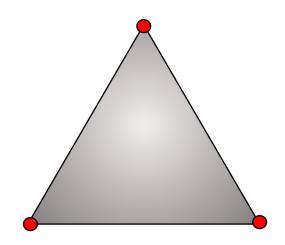
F. Vasconcelos - 4 QTML 2023

• CZSG are played in the **simplex**

• CZSG are played in the **simplex**:

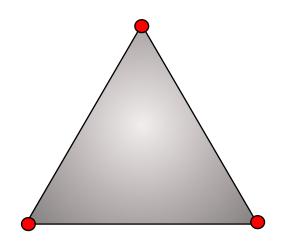


• CZSG are played in the **simplex**:



- Players play indeterministic strategies:
 - Probability vectors: $|\alpha\rangle$, $|\beta\rangle \in [0,1]^n$

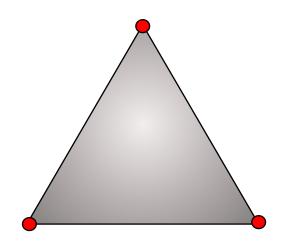
• CZSG are played in the **simplex**:



- Players play indeterministic strategies:
 - Probability vectors: $|\alpha\rangle$, $|\beta\rangle \in [0,1]^n$
- **Expected utility** for specific strategies:

 $u(\alpha,\beta) = \langle \beta | U | \alpha \rangle$

• CZSG are played in the **simplex**:

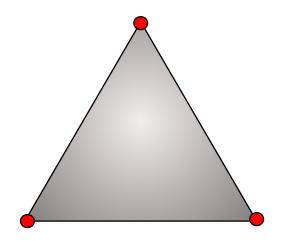


- Players play indeterministic strategies:
 - Probability vectors: $|\alpha\rangle$, $|\beta\rangle \in [0,1]^n$
- **Expected utility** for specific strategies:

 $u(\alpha,\beta) = \langle \beta | U | \alpha \rangle$

• QZSG are played in the **spectraplex**

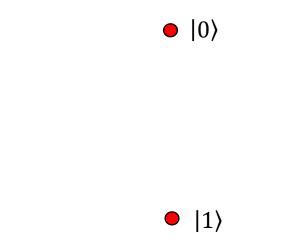
• CZSG are played in the **simplex**:



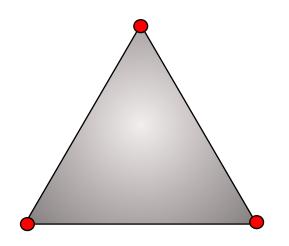
- Players play indeterministic strategies:
 - Probability vectors: $|\alpha\rangle$, $|\beta\rangle \in [0,1]^n$
- **Expected utility** for specific strategies:

 $u(\alpha,\beta) = \langle \beta | U | \alpha \rangle$

• QZSG are played in the **spectraplex**:



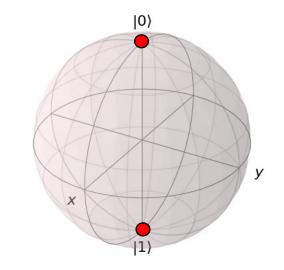
• CZSG are played in the **simplex**:



- Players play indeterministic strategies:
 - Probability vectors: $|\alpha\rangle$, $|\beta\rangle \in [0,1]^n$
- **Expected utility** for specific strategies:

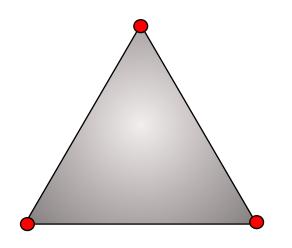
 $u(\alpha,\beta) = \langle \beta | U | \alpha \rangle$

• QZSG are played in the **spectraplex**:



F. Vasconcelos - 4 QTML 2023

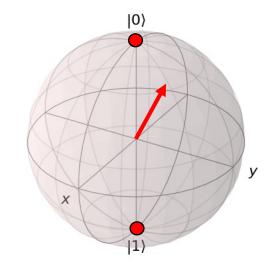
• CZSG are played in the **simplex**:



- Players play indeterministic strategies:
 - Probability vectors: $|\alpha\rangle$, $|\beta\rangle \in [0,1]^n$
- **Expected utility** for specific strategies:

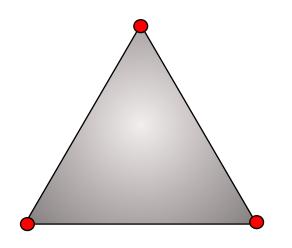
 $u(\alpha,\beta) = \langle \beta | U | \alpha \rangle$

• QZSG are played in the **spectraplex**:



- Players play mixtures of indeterministic strategies (meta-strategies):
 - Density matrices: $\alpha \in \mathbb{C}^{2^n x 2^n}$, $\beta \in \mathbb{C}^{2^m x 2^m}$

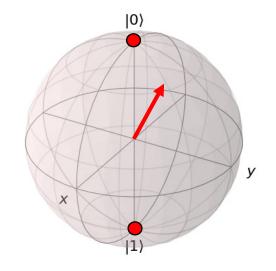
• CZSG are played in the **simplex**:



- Players play indeterministic strategies:
 - Probability vectors: $|\alpha\rangle$, $|\beta\rangle \in [0,1]^n$
- **Expected utility** for specific strategies:

 $u(\alpha,\beta) = \langle \beta | U | \alpha \rangle$

• QZSG are played in the **spectraplex**:



- Players play mixtures of indeterministic strategies (meta-strategies):
 - Density matrices: $\alpha \in \mathbb{C}^{2^n x 2^n}$, $\beta \in \mathbb{C}^{2^m x 2^m}$
- **Expected utility** for specific strategies: $u(\alpha, \beta) = \operatorname{Tr}[U(\alpha \otimes \beta)]$

F. Vasconcelos - 5 QTML 2023

• If Alice's expected payoff is $u(\alpha, \beta)$, Bob's expected payoff is $-u(\alpha, \beta)$

- If Alice's expected payoff is $u(\alpha, \beta)$, Bob's expected payoff is $-u(\alpha, \beta)$
- In playing the game, each player wants to maximize their expected payoff:

- If Alice's expected payoff is $u(\alpha, \beta)$, Bob's expected payoff is $-u(\alpha, \beta)$
- In playing the game, each player wants to maximize their expected payoff:
 - Alice wants: $\max_{\alpha} u(\alpha, \beta)$

- If Alice's expected payoff is $u(\alpha, \beta)$, Bob's expected payoff is $-u(\alpha, \beta)$
- In playing the game, each player wants to maximize their expected payoff:
 - Alice wants: $\max_{\alpha} u(\alpha, \beta)$

- Bob wants:
$$\max_{\beta} - u(\alpha, \beta) = \min_{\beta} u(\alpha, \beta)$$

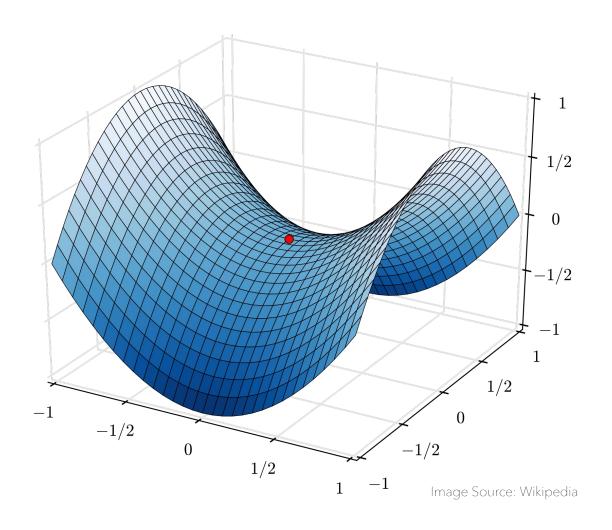
- If Alice's expected payoff is $u(\alpha, \beta)$, Bob's expected payoff is $-u(\alpha, \beta)$
- In playing the game, each player wants to maximize their expected payoff:
 - Alice wants: $\max_{\alpha} u(\alpha, \beta)$
 - Bob wants: $\max_{\beta} u(\alpha, \beta) = \min_{\beta} u(\alpha, \beta)$
- These are **competing** interests, defining a **minimax** optimization problem:

 $\min_{\beta \in \mathcal{B}} \max_{\alpha \in \mathcal{A}} u(\alpha, \beta)$

F. Vasconcelos - 5 QTML 2023

- If Alice's expected payoff is $u(\alpha, \beta)$, Bob's expected payoff is $-u(\alpha, \beta)$
- In playing the game, each player wants to maximize their expected payoff:
 - Alice wants: $\max_{\alpha} u(\alpha, \beta)$
 - Bob wants: $\max_{\beta} u(\alpha, \beta) = \min_{\beta} u(\alpha, \beta)$
- These are competing interests, defining a minimax optimization problem:

 $\min_{\beta \in \mathcal{B}} \max_{\alpha \in \mathcal{A}} u(\alpha, \beta)$



F. Vasconcelos - 5 QTML 2023

Why Study Quantum Games?

F. Vasconcelos - 6 QTML 2023

• General quantum games have emerged in many areas of quantum information:

- General quantum games have emerged in many areas of quantum information:
 - Non-local games (Bell, CSHS, ..., MIP*=RE)

- General quantum games have emerged in many areas of quantum information:
 - Non-local games (Bell, CSHS, ..., MIP*=RE)
 - Quantum interactive proofs (competitive refereed games)

- General quantum games have emerged in many areas of quantum information:
 - Non-local games (Bell, CSHS, ..., MIP*=RE)
 - Quantum interactive proofs (competitive refereed games)
 - Multi-prover quantum interactive proofs (cooperative games)

- General quantum games have emerged in many areas of quantum information:
 - Non-local games (Bell, CSHS, ..., MIP*=RE)
 - Quantum interactive proofs (competitive refereed games)
 - Multi-prover quantum interactive proofs (cooperative games)
 - Quantum coin-flipping (two player game)

- General quantum games have emerged in many areas of quantum information:
 - Non-local games (Bell, CSHS, ..., MIP*=RE)
 - Quantum interactive proofs (competitive refereed games)
 - Multi-prover quantum interactive proofs (cooperative games)
 - Quantum coin-flipping (two player game)

• However, optimization of general quantum games is **PPAD-complete** [BW22]

• Meanwhile, as classically, QZSG optimization is **computationally tractable**

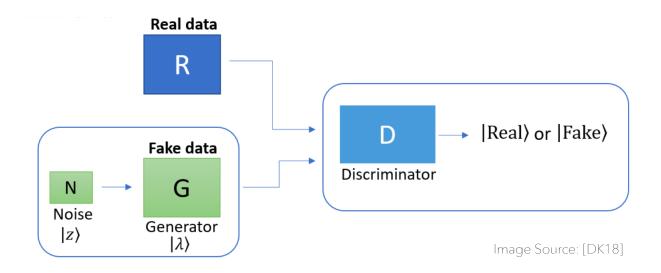
- Meanwhile, as classically, QZSG optimization is **computationally tractable**
 - [JW09] proposed an explicit QZSG algo that converges to an ϵ -approx soln in $\mathcal{O}(1/\epsilon^2)$ iterations

- Meanwhile, as classically, QZSG optimization is **computationally tractable**
 - [JW09] proposed an explicit QZSG algo that converges to an ϵ -approx soln in $\mathcal{O}(1/\epsilon^2)$ iterations
- Uses of QZSG:

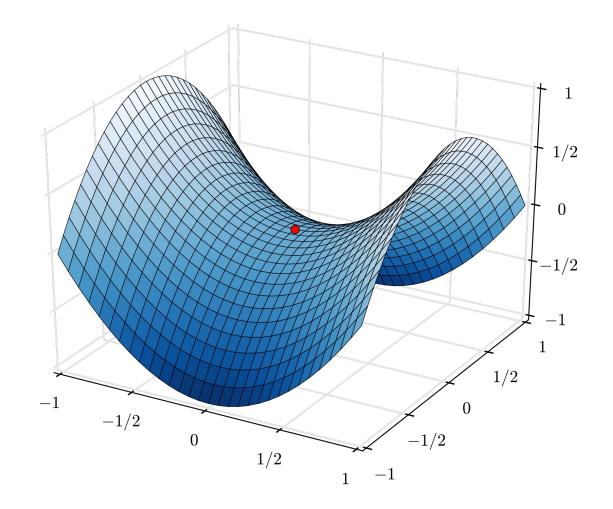
- Meanwhile, as classically, QZSG optimization is **computationally tractable**
 - [JW09] proposed an explicit QZSG algo that converges to an ϵ -approx soln in $\mathcal{O}(1/\epsilon^2)$ iterations
- Uses of QZSG:
 - Game theory: proof that quantum strategies \geq classical strategies [M99]

- Meanwhile, as classically, QZSG optimization is **computationally tractable**
 - [JW09] proposed an explicit QZSG algo that converges to an ϵ -approx soln in $\mathcal{O}(1/\epsilon^2)$ iterations
- Uses of QZSG:
 - Game theory: proof that quantum strategies \geq classical strategies [M99]
 - Complexity theory: proof that $QRG(1) \subseteq PSPACE[JW09]$

- Meanwhile, as classically, QZSG optimization is **computationally tractable**
 - [JW09] proposed an explicit QZSG algo that converges to an ϵ -approx soln in $\mathcal{O}(1/\epsilon^2)$ iterations
- Uses of QZSG:
 - Game theory: proof that quantum strategies \geq classical strategies [M99]
 - Complexity theory: proof that $QRG(1) \subseteq PSPACE[JW09]$
 - Machine learning: **Quantum Generative Adversarial Networks** [DK18]



A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games

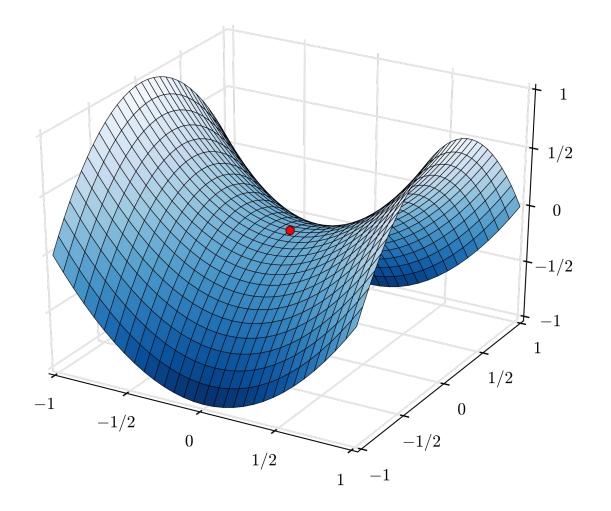


F. Vasconcelos -9 QTML 2023

Image Source: Wikipedia

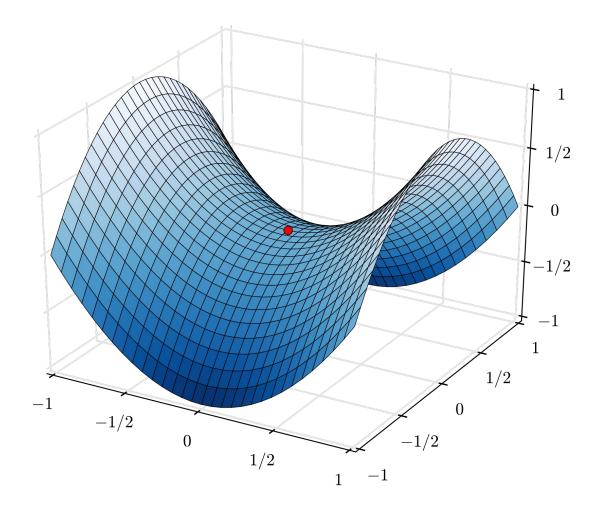
• The solutions (**fixed points**) of this minimax define the game's value:

 $u(\alpha^*,\beta^*) = \min_{\beta} \max_{\alpha} u(\alpha,\beta) = \max_{\alpha} \min_{\beta} u(\alpha,\beta)$



• The solutions (**fixed points**) of this minimax define the game's value:

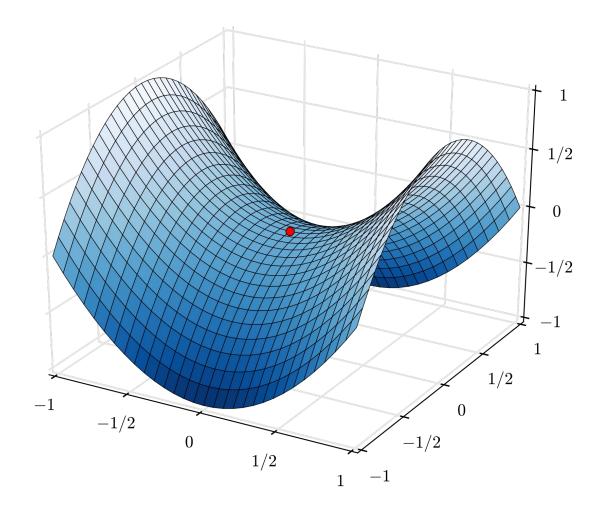
$$u(\alpha^*, \beta^*) = \min_{\beta} \max_{\alpha} u(\alpha, \beta) = \max_{\alpha} \min_{\beta} u(\alpha, \beta)$$
von Neumann's Minimax Thm



• The solutions (**fixed points**) of this minimax define the game's value:

 $u(\alpha^*, \beta^*) = \min_{\beta} \max_{\alpha} u(\alpha, \beta) = \max_{\alpha} \min_{\beta} u(\alpha, \beta)$ von Neumann's Minimax Thm

 Nash equilibria are game states (α*, β*) such that neither player has an incentive to change to another state unilaterally:

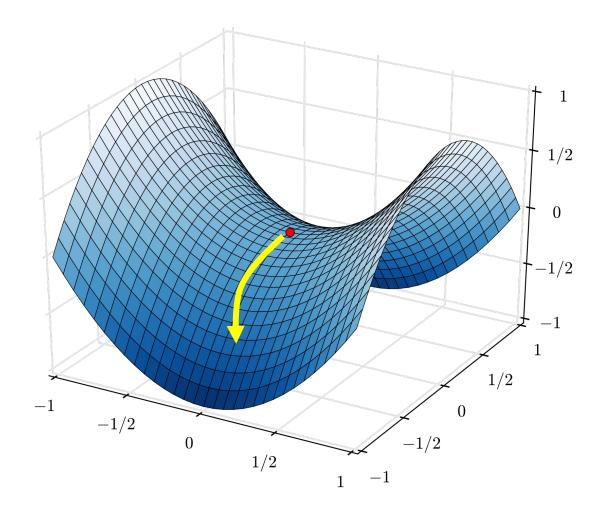


• The solutions (**fixed points**) of this minimax define the game's value:

 $u(\alpha^*, \beta^*) = \min_{\beta} \max_{\alpha} u(\alpha, \beta) = \max_{\alpha} \min_{\beta} u(\alpha, \beta)$ von Neumann's Minimax Thm

 Nash equilibria are game states (α*, β*) such that neither player has an incentive to change to another state unilaterally:

 $u(\alpha^*, \beta^*) \ge u(\alpha, \beta^*), \quad \forall \alpha \in \mathcal{A}$

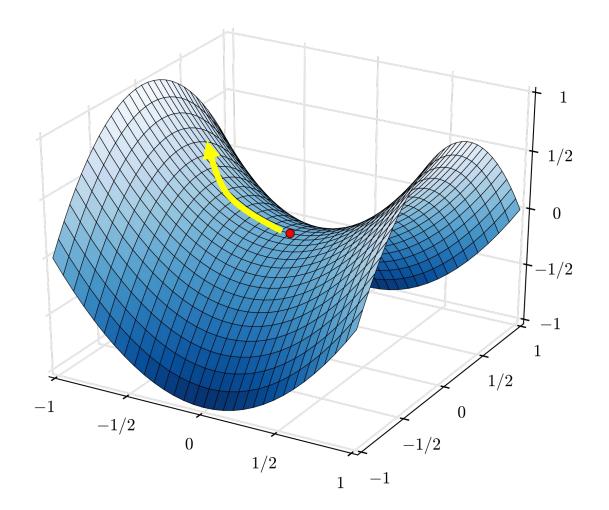


• The solutions (**fixed points**) of this minimax define the game's value:

 $u(\alpha^*, \beta^*) = \min_{\beta} \max_{\alpha} u(\alpha, \beta) = \max_{\alpha} \min_{\beta} u(\alpha, \beta)$ von Neumann's Minimax Thm

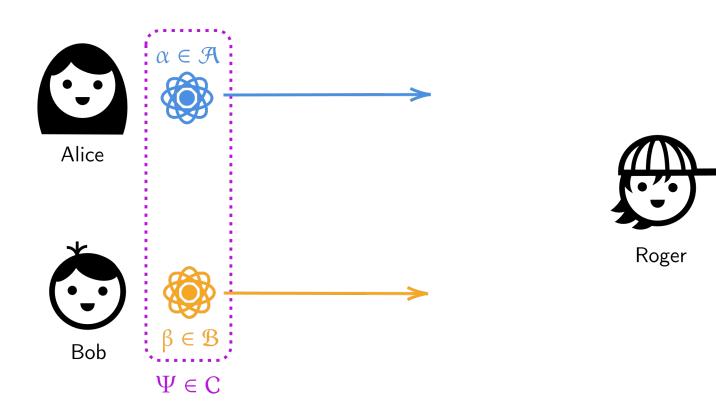
 Nash equilibria are game states (α*, β*) such that neither player has an incentive to change to another state unilaterally:

$$\begin{split} u(\alpha^*, \beta^*) &\geq u(\alpha, \beta^*), \qquad \forall \alpha \in \mathcal{A} \\ u(\alpha^*, \beta^*) &\leq u(\alpha^*, \beta), \qquad \forall \beta \in \mathcal{B} \end{split}$$

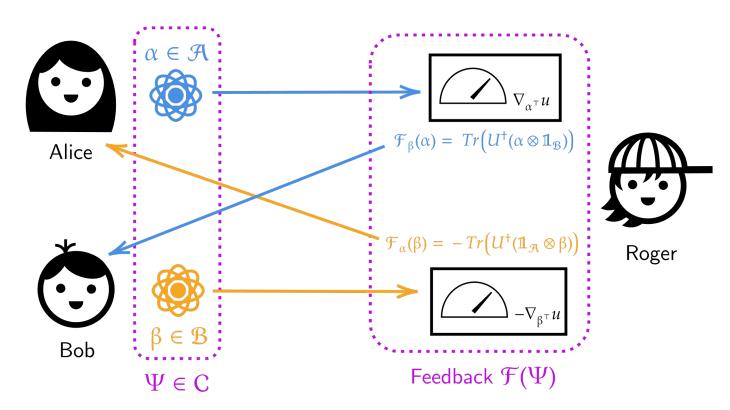


• Algorithmically, we will view the game as an **online** learning problem

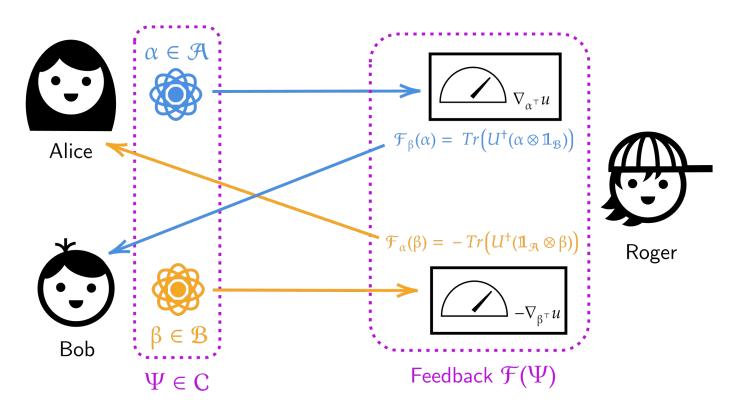
- Algorithmically, we will view the game as an **online** learning problem
- In each round, each player **queries** the referee ("oracle") with a state



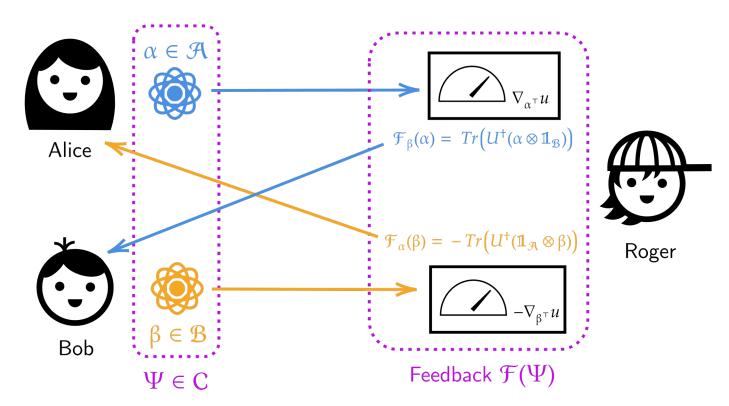
- Algorithmically, we will view the game as an **online** learning problem
- In each round, each player **queries** the referee ("oracle") with a state
- The ref returns **feedback** to each player



- Algorithmically, we will view the game as an **online** learning problem
- In each round, each player **queries** the referee ("oracle") with a state
- The ref returns **feedback** to each player
- The players use this feedback to update and improve their states



- Algorithmically, we will view the game as an **online** learning problem
- In each round, each player **queries** the referee ("oracle") with a state
- The ref returns **feedback** to each player
- The players use this feedback to update and improve their states
- Goal: minimize the number of rounds until the players reach an *e*-approx
 Nash equilibrium



• Previous work on QZSG characterized the game's feedback via **superoperators**:

- Previous work on QZSG characterized the game's feedback via **superoperators**:
 - Alice's Feedback: $\Xi(\beta) = \operatorname{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$

- Previous work on QZSG characterized the game's feedback via **superoperators**:
 - Alice's Feedback: $\Xi(\beta) = \operatorname{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
 - Bob's Feedback: $\Xi^*(\alpha) = \operatorname{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_{\mathcal{B}})]$

- Previous work on QZSG characterized the game's feedback via **superoperators**:
 - Alice's Feedback: $\Xi(\beta) = \operatorname{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
 - Bob's Feedback: $\Xi^*(\alpha) = \operatorname{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_{\mathcal{B}})]$
- We instead characterize the game's feedback via **gradient-based** operators:

- Previous work on QZSG characterized the game's feedback via **superoperators**:
 - Alice's Feedback: $\Xi(\beta) = \operatorname{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
 - Bob's Feedback: $\Xi^*(\alpha) = \operatorname{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_{\mathcal{B}})]$
- We instead characterize the game's feedback via **gradient-based** operators:
 - Alice's Feedback: $\mathcal{F}_{\alpha}(\beta) = \nabla_{\alpha^{\mathrm{T}}} u(\alpha, \beta) = \mathrm{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$

- Previous work on QZSG characterized the game's feedback via **superoperators**:
 - Alice's Feedback: $\Xi(\beta) = \operatorname{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
 - Bob's Feedback: $\Xi^*(\alpha) = \operatorname{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_{\mathcal{B}})]$
- We instead characterize the game's feedback via **gradient-based** operators:
 - Alice's Feedback: $\mathcal{F}_{\alpha}(\beta) = \nabla_{\alpha^{\mathrm{T}}} u(\alpha, \beta) = \mathrm{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
 - Bob's Feedback: $\mathcal{F}_{\beta}(\alpha) = -\nabla_{\beta^{\mathrm{T}}} u(\alpha, \beta) = -\mathrm{Tr}_{\mathcal{A}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$

- Previous work on QZSG characterized the game's feedback via **superoperators**:
 - Alice's Feedback: $\Xi(\beta) = \operatorname{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
 - Bob's Feedback: $\Xi^*(\alpha) = \operatorname{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_{\mathcal{B}})]$
- We instead characterize the game's feedback via **gradient-based** operators:
 - Alice's Feedback: $\mathcal{F}_{\alpha}(\beta) = \nabla_{\alpha^{\mathrm{T}}} u(\alpha, \beta) = \mathrm{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
 - Bob's Feedback: $\mathcal{F}_{\beta}(\alpha) = -\nabla_{\beta^{\mathrm{T}}} u(\alpha, \beta) = -\mathrm{Tr}_{\mathcal{A}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
- The two characterizations are **equivalent**:

- Previous work on QZSG characterized the game's feedback via **superoperators**:
 - Alice's Feedback: $\Xi(\beta) = \operatorname{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
 - Bob's Feedback: $\Xi^*(\alpha) = \operatorname{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_{\mathcal{B}})]$
- We instead characterize the game's feedback via **gradient-based** operators:
 - Alice's Feedback: $\mathcal{F}_{\alpha}(\beta) = \nabla_{\alpha^{\mathrm{T}}} u(\alpha, \beta) = \mathrm{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
 - Bob's Feedback: $\mathcal{F}_{\beta}(\alpha) = -\nabla_{\beta^{\mathrm{T}}} u(\alpha, \beta) = -\mathrm{Tr}_{\mathcal{A}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
- The two characterizations are **equivalent**:
 - Feedback: $\mathcal{F}_{\alpha}(\beta) = \Xi(\beta^{T}), \quad \mathcal{F}_{\beta}(\alpha) = -\Xi^{*}(\alpha^{T})$

- Previous work on QZSG characterized the game's feedback via **superoperators**:
 - Alice's Feedback: $\Xi(\beta) = \operatorname{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
 - Bob's Feedback: $\Xi^*(\alpha) = \operatorname{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_{\mathcal{B}})]$
- We instead characterize the game's feedback via **gradient-based** operators:
 - Alice's Feedback: $\mathcal{F}_{\alpha}(\beta) = \nabla_{\alpha^{\mathrm{T}}} u(\alpha, \beta) = \mathrm{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
 - Bob's Feedback: $\mathcal{F}_{\beta}(\alpha) = -\nabla_{\beta^{\mathrm{T}}} u(\alpha, \beta) = -\mathrm{Tr}_{\mathcal{A}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
- The two characterizations are **equivalent**:
 - Feedback: $\mathcal{F}_{\alpha}(\beta) = \Xi(\beta^{T}), \quad \mathcal{F}_{\beta}(\alpha) = -\Xi^{*}(\alpha^{T})$
 - Alice's expected payoff: $u(\alpha,\beta) = \operatorname{Tr}[\alpha \mathcal{F}_{\alpha}(\beta)] = \operatorname{Tr}[\alpha \Xi(\beta^{T})]$

Superoperator vs Gradient-Based Feedback

- Previous work on QZSG characterized the game's feedback via **superoperators**:
 - Alice's Feedback: $\Xi(\beta) = \operatorname{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
 - Bob's Feedback: $\Xi^*(\alpha) = \operatorname{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_{\mathcal{B}})]$
- We instead characterize the game's feedback via **gradient-based** operators:
 - Alice's Feedback: $\mathcal{F}_{\alpha}(\beta) = \nabla_{\alpha^{\mathrm{T}}} u(\alpha, \beta) = \mathrm{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
 - Bob's Feedback: $\mathcal{F}_{\beta}(\alpha) = -\nabla_{\beta^{\mathrm{T}}} u(\alpha, \beta) = -\mathrm{Tr}_{\mathcal{A}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
- The two characterizations are **equivalent**:
 - Feedback: - Alice's expected payoff: - Bob's expected payoff: $\mathcal{F}_{\alpha}(\beta) = \Xi(\beta^{T}), \quad \mathcal{F}_{\beta}(\alpha) = -\Xi^{*}(\alpha^{T})$ $u(\alpha, \beta) = \operatorname{Tr}[\alpha \mathcal{F}_{\alpha}(\beta)] = \operatorname{Tr}[\alpha \Xi(\beta^{T})]$ $-u(\alpha, \beta) = \operatorname{Tr}[\beta \mathcal{F}_{\beta}(\alpha)] = -\operatorname{Tr}[\beta \Xi^{*}(\alpha^{T})]$

F. Vasconcelos - 11 QTML 2023

F. Vasconcelos - 12 QTML 2023

• With gradient-based feedback, the expected payoff is a **directional derivative**:

- With gradient-based feedback, the expected payoff is a **directional derivative**:
 - In Alice's direction: $u(\alpha, \beta) = \operatorname{Tr}[\alpha \mathcal{F}_{\alpha}(\beta)] = \operatorname{Tr}[\alpha \nabla_{\alpha^{\mathrm{T}}} u(\alpha, \beta)]$

- With gradient-based feedback, the expected payoff is a **directional derivative**:
 - In Alice's direction: $u(\alpha, \beta) = \operatorname{Tr}[\alpha \mathcal{F}_{\alpha}(\beta)] = \operatorname{Tr}[\alpha \nabla_{\alpha^{\mathrm{T}}} u(\alpha, \beta)]$
 - In Bob's direction: $u(\alpha,\beta) = -\mathrm{Tr}[\beta \mathcal{F}_{\beta}(\alpha)] = \mathrm{Tr}[\beta \nabla_{\beta^{\mathrm{T}}} u(\alpha,\beta)]$

- With gradient-based feedback, the expected payoff is a **directional derivative**:
 - In Alice's direction: $u(\alpha,\beta) = \operatorname{Tr}[\alpha \mathcal{F}_{\alpha}(\beta)] = \operatorname{Tr}[\alpha \nabla_{\alpha^{\mathrm{T}}} u(\alpha,\beta)]$

$$u(\Psi) = \operatorname{Tr}[\Psi \mathcal{F}(\Psi)] = \operatorname{Tr}[\Psi \nabla_{\Psi^{\mathrm{T}}} u(\Psi)]$$

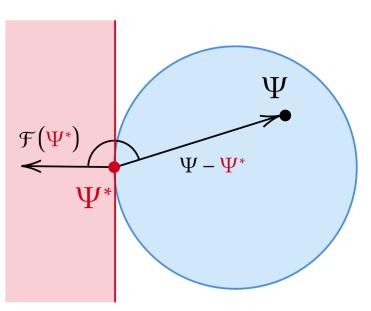
- In Bob's direction: $u(\alpha,\beta) = -\mathrm{Tr}[\beta \mathcal{F}_{\beta}(\alpha)] = \mathrm{Tr}[\beta \nabla_{\beta^{\mathrm{T}}} u(\alpha,\beta)]$

- With gradient-based feedback, the expected payoff is a **directional derivative**:

 - $\ln \text{Alice's direction:} \quad u(\alpha, \beta) = \operatorname{Tr}[\alpha \mathcal{F}_{\alpha}(\beta)] = \operatorname{Tr}[\alpha \nabla_{\alpha^{\mathrm{T}}} u(\alpha, \beta)] \\ \ln \text{Bob's direction:} \quad u(\alpha, \beta) = -\operatorname{Tr}[\beta \mathcal{F}_{\beta}(\alpha)] = \operatorname{Tr}[\beta \nabla_{\beta^{\mathrm{T}}} u(\alpha, \beta)] \right\} \quad u(\Psi) = \operatorname{Tr}[\Psi \mathcal{F}(\Psi)] = \operatorname{Tr}[\Psi \nabla_{\Psi^{\mathrm{T}}} u(\Psi)]$
- With a directional derivative, we can characterize the game's equilibria as solutions of the **variational inequality (VI)**: $Tr[(\Psi - \Psi^*) \mathcal{F}(\Psi^*)] \le 0, \quad \forall \Psi \in \mathcal{A} \bigoplus \mathcal{B}$

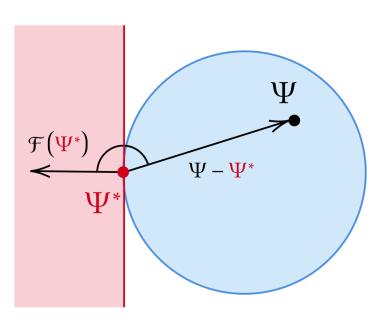
- With gradient-based feedback, the expected payoff is a **directional derivative**:

 - $\text{ In Alice's direction: } u(\alpha,\beta) = \operatorname{Tr}[\alpha \mathcal{F}_{\alpha}(\beta)] = \operatorname{Tr}[\alpha \nabla_{\alpha^{\mathrm{T}}} u(\alpha,\beta)] \\ \text{ In Bob's direction: } u(\alpha,\beta) = -\operatorname{Tr}[\beta \mathcal{F}_{\beta}(\alpha)] = \operatorname{Tr}[\beta \nabla_{\beta^{\mathrm{T}}} u(\alpha,\beta)] \end{array} \right\} \quad u(\Psi) = \operatorname{Tr}[\Psi \mathcal{F}(\Psi)] = \operatorname{Tr}[\Psi \nabla_{\Psi^{\mathrm{T}}} u(\Psi)]$
- With a directional derivative, we can characterize the game's equilibria as solutions of the **variational inequality (VI)**: $Tr[(\Psi - \Psi^*) \mathcal{F}(\Psi^*)] \le 0, \quad \forall \Psi \in \mathcal{A} \bigoplus \mathcal{B}$



- With gradient-based feedback, the expected payoff is a **directional derivative**:

 - $\text{ In Alice's direction: } u(\alpha,\beta) = \operatorname{Tr}[\alpha \mathcal{F}_{\alpha}(\beta)] = \operatorname{Tr}[\alpha \nabla_{\alpha^{\mathrm{T}}} u(\alpha,\beta)] \\ \text{ In Bob's direction: } u(\alpha,\beta) = -\operatorname{Tr}[\beta \mathcal{F}_{\beta}(\alpha)] = \operatorname{Tr}[\beta \nabla_{\beta^{\mathrm{T}}} u(\alpha,\beta)] \end{array} \right\} \quad u(\Psi) = \operatorname{Tr}[\Psi \mathcal{F}(\Psi)] = \operatorname{Tr}[\Psi \nabla_{\Psi^{\mathrm{T}}} u(\Psi)]$
- With a directional derivative, we can characterize the game's equilibria as solutions of the **variational inequality (VI)**: $Tr[(\Psi - \Psi^*) \mathcal{F}(\Psi^*)] \le 0, \quad \forall \Psi \in \mathcal{A} \bigoplus \mathcal{B}$
- We further prove that $\mathcal{F}(\Psi)$ is **monotone** and **Lipschitz**, which offers additional structure about the game that we can use to leverage efficient classical algorithms for solving such VIs.



A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games

F. Vasconcelos - 14 QTML 2023

• Classical gradient descent (GD): $x_{t+1} = x_t - \eta \nabla F(x_t)$

- Classical gradient descent (GD): $x_{t+1} = x_t \eta \nabla F(x_t)$
- Equivalently, GD minimizes the 1st-order approx of *F* with **Euclidean regularizer** :

$$x_{t+1} = \underset{x}{\operatorname{argmin}} \left(F(x_t) + \nabla F(x_t)^T (x - x_t) + \frac{1}{2\eta} \|x - x_t\|^2 \right)$$

- Classical gradient descent (GD): $x_{t+1} = x_t \eta \nabla F(x_t)$
- Equivalently, GD minimizes the 1st-order approx of *F* with **Euclidean regularizer** :

$$x_{t+1} = \underset{x}{\operatorname{argmin}} \left(F(x_t) + \nabla F(x_t)^T (x - x_t) + \frac{1}{2\eta} \|x - x_t\|^2 \right)$$

• To generalize GD to other regularizers *h*, perform **mirror descent (MD)**:

 $x_{t+1} = (\nabla h)^{-1} [\nabla h(x_t) - \eta \nabla F(x_t)]$

- Classical gradient descent (GD):
- Equivalently, GD minimizes the 1^{st} -order approx of F with Euclidean regularizer :

 $x_{t+1} = x_t - \eta \nabla F(x_t) \leftarrow$

For $h(y) = \frac{1}{2} ||y||^2$, $\nabla h(y) = y$

$$x_{t+1} = \underset{x}{\operatorname{argmin}} \left(F(x_t) + \nabla F(x_t)^T (x - x_t) + \frac{1}{2\eta} \|x - x_t\|^2 \right)$$

• To generalize GD to other regularizers *h*, perform **mirror descent (MD)**:

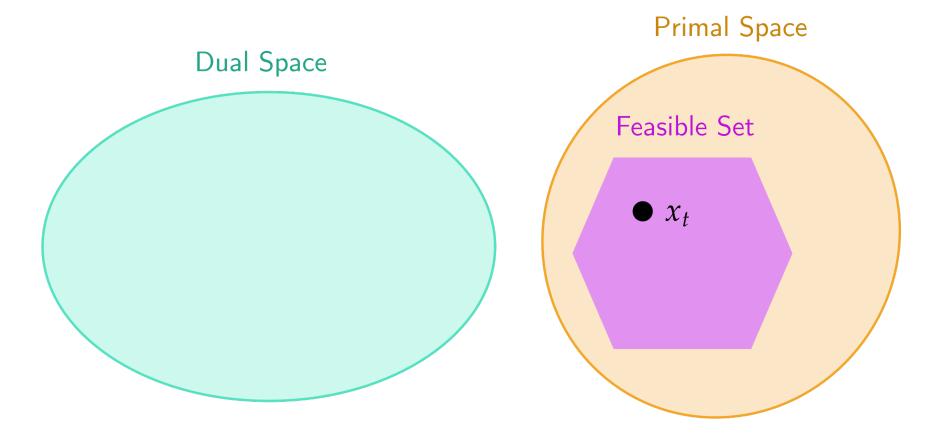
 $x_{t+1} = (\nabla h)^{-1} [\nabla h(x_t) - \eta \nabla F(x_t)] -$

• To generalize GD to other regularizers *h*, perform **mirror descent (MD)**:

 $x_{t+1} = (\nabla h)^{-1} [\nabla h(x_t) - \eta \nabla F(x_t)]$

• To generalize GD to other regularizers *h*, perform **mirror descent (MD)**:

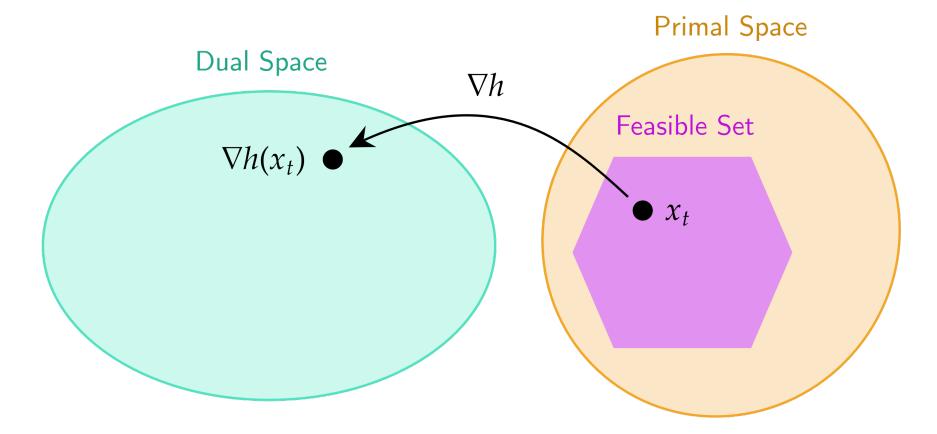
$$x_{t+1} = (\nabla h)^{-1} [\nabla h(x_t) - \eta \nabla F(x_t)]$$



F. Vasconcelos - 14 QTML 2023

• To generalize GD to other regularizers *h*, perform **mirror descent (MD)**:

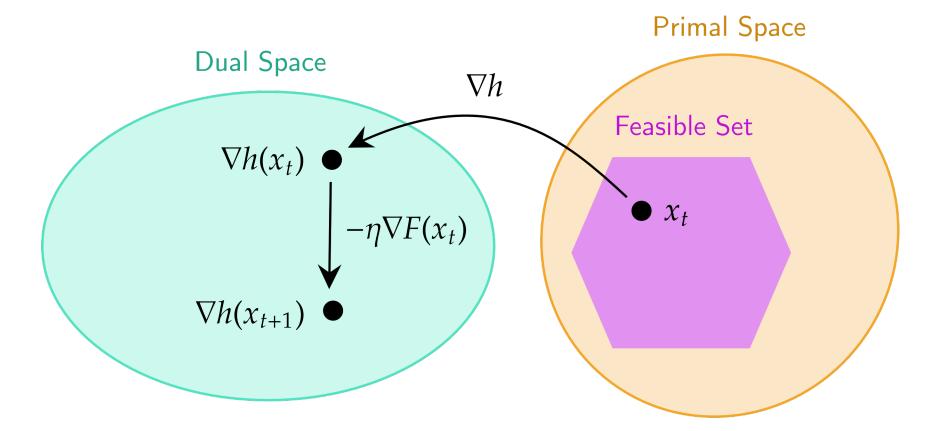
$$x_{t+1} = (\nabla h)^{-1} [\nabla h(x_t) - \eta \nabla F(x_t)]$$



F. Vasconcelos - 14 QTML 2023

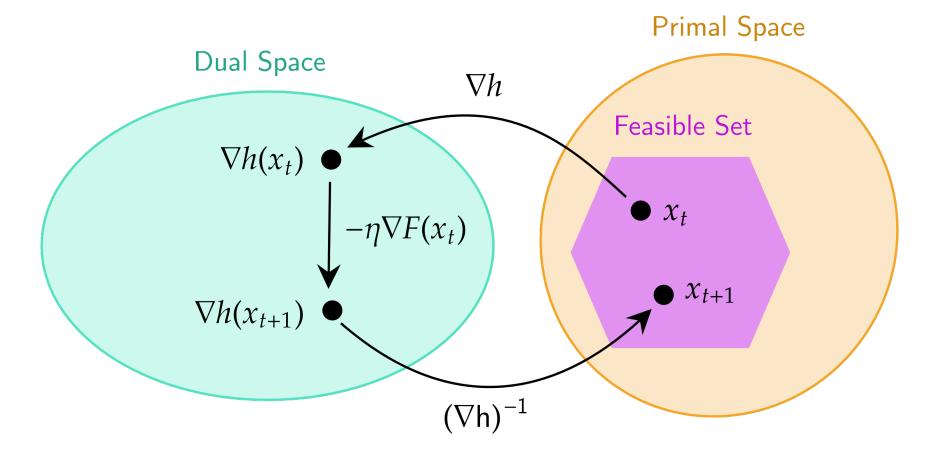
• To generalize GD to other regularizers *h*, perform **mirror descent (MD)**:

$$x_{t+1} = (\nabla h)^{-1} [\nabla h(x_t) - \eta \nabla F(x_t)]$$



• To generalize GD to other regularizers *h*, perform **mirror descent (MD)**:

$$x_{t+1} = (\nabla h)^{-1} [\nabla h(x_t) - \eta \nabla F(x_t)]$$



F. Vasconcelos - 14 QTML 2023

F. Vasconcelos - 15 QTML 2023

 In 2009, Jain and Watrous proposed the Matrix Multiplicative Weight Updates (MMWU) algorithm, with the following update in each round t:

$$\alpha_t = \Lambda\left(\eta \sum_{i=0}^{t-1} \Xi(\beta_i^{\mathrm{T}})\right), \qquad \beta_t = \Lambda\left(-\eta \sum_{i=0}^{t-1} \Xi^*(\alpha_i^{\mathrm{T}})\right), \qquad \text{where } \Lambda(x) = \frac{\exp(x)}{\operatorname{Tr}(\exp(x))}$$

 In 2009, Jain and Watrous proposed the Matrix Multiplicative Weight Updates (MMWU) algorithm, with the following update in each round t:

$$\alpha_t = \Lambda\left(\eta \sum_{i=0}^{t-1} \Xi(\beta_i^{\mathrm{T}})\right), \qquad \beta_t = \Lambda\left(-\eta \sum_{i=0}^{t-1} \Xi^*(\alpha_i^{\mathrm{T}})\right), \qquad \text{where } \Lambda(x) = \frac{\exp(x)}{\operatorname{Tr}(\exp(x))}$$

• We show MMWU is **"Lazy" Mirror Descent**, with a von Neumann **entropy** regularizer:

 $h(\psi) = Tr[\psi \log \psi]$

 In 2009, Jain and Watrous proposed the Matrix Multiplicative Weight Updates (MMWU) algorithm, with the following update in each round t:

$$\alpha_t = \Lambda\left(\eta \sum_{i=0}^{t-1} \Xi(\beta_i^{\mathrm{T}})\right), \qquad \beta_t = \Lambda\left(-\eta \sum_{i=0}^{t-1} \Xi^*(\alpha_i^{\mathrm{T}})\right), \qquad \text{where } \Lambda(x) = \frac{\exp(x)}{\operatorname{Tr}(\exp(x))}$$

• We show MMWU is **"Lazy" Mirror Descent**, with a von Neumann **entropy** regularizer:

 $h(\psi) = Tr[\psi \log \psi]$

• Like classical MWU, they prove an $\mathcal{O}(1/\epsilon^2)$ convergence.

 In 2009, Jain and Watrous proposed the Matrix Multiplicative Weight Updates (MMWU) algorithm, with the following update in each round t:

$$\alpha_t = \Lambda\left(\eta \sum_{i=0}^{t-1} \Xi(\beta_i^{\mathrm{T}})\right), \qquad \beta_t = \Lambda\left(-\eta \sum_{i=0}^{t-1} \Xi^*(\alpha_i^{\mathrm{T}})\right), \qquad \text{where } \Lambda(x) = \frac{\exp(x)}{\operatorname{Tr}(\exp(x))}$$

• We show MMWU is **"Lazy" Mirror Descent**, with a von Neumann **entropy** regularizer:

 $h(\psi) = Tr[\psi \log \psi]$

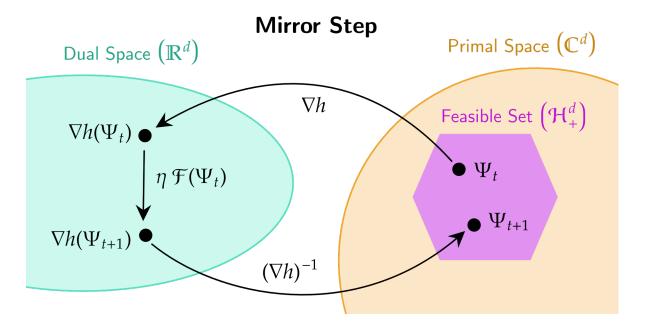
- Like classical MWU, they prove an $\mathcal{O}(1/\epsilon^2)$ convergence.
 - However, in classical games, while this is optimal for classical **black-box** optimization, Nemirovski [N04] showed that $O(1/\epsilon)$ can be achieved for monotone VIs.

F. Vasconcelos - 16 QTML 2023

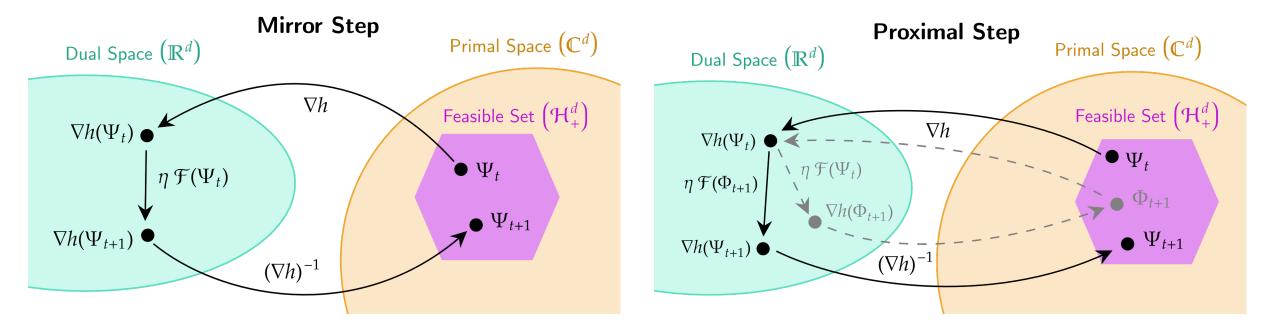
• To improve upon the MMWU, we leverage **proximal** instead of mirror steps

- To improve upon the MMWU, we leverage **proximal** instead of mirror steps
 - Proximal steps introduce "momentum"

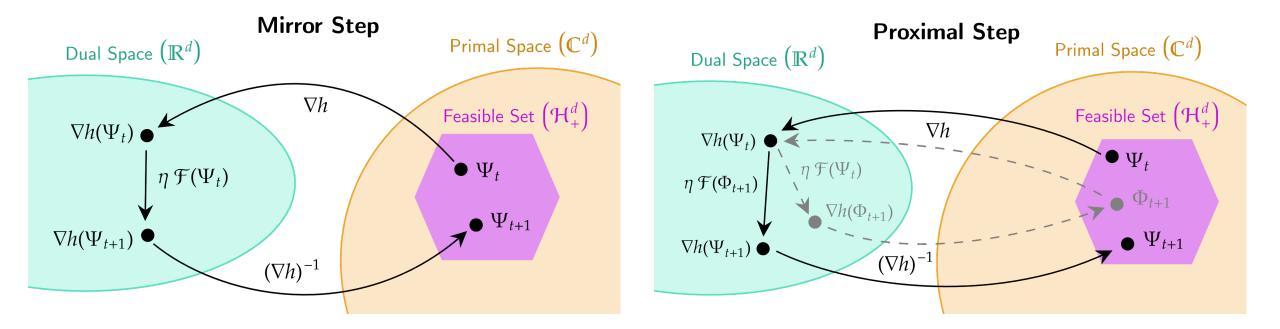
- To improve upon the MMWU, we leverage **proximal** instead of mirror steps
 - Proximal steps introduce "momentum"



- To improve upon the MMWU, we leverage **proximal** instead of mirror steps
 - Proximal steps introduce "momentum"



- To improve upon the MMWU, we leverage **proximal** instead of mirror steps
 - Proximal steps introduce "momentum"



• We further leverage "optimism" to reduce the total number of oracle calls from 2 to 1

F. Vasconcelos - 17 QTML 2023

• We leverage proximal maps and optimism in our proposal of

Optimistic Matrix Multiplicative Weight Updates (OMMWU) :

• We leverage proximal maps and optimism in our proposal of

Optimistic Matrix Multiplicative Weight Updates (OMMWU) :

OMMWU $\Phi_{t+1} = \Lambda(\log \Phi_t + \eta \mathcal{F}(\Psi_t))$ $\Psi_{t+1} = \Lambda(\log \Phi_t + \eta \mathcal{F}(\Psi_{t+1}))$

• We leverage proximal maps and optimism in our proposal of

Optimistic Matrix Multiplicative Weight Updates (OMMWU) :

 $\begin{aligned} \mathbf{OMMWU} \\ \Phi_{t+1} &= \Lambda(\log \Phi_t + \eta \,\mathcal{F}(\Psi_t)) \\ \Psi_{t+1} &= \Lambda(\log \Phi_t + \eta \,\mathcal{F}(\Psi_{t+1})) \end{aligned}$

$$\mathbf{MMWU} \\ \Psi_{t+1} = \Lambda \Big(\eta \Sigma_{i=0}^{t} \mathcal{F}(\Psi_{i}) \Big)$$

• We leverage proximal maps and optimism in our proposal of

Optimistic Matrix Multiplicative Weight Updates (OMMWU) :

OMMWU $\Phi_{t+1} = \Lambda(\log \Phi_t + \eta \mathcal{F}(\Psi_t))$ $\Psi_{t+1} = \Lambda(\log \Phi_t + \eta \mathcal{F}(\Psi_{t+1}))$

$$\mathbf{MMWU} \\ \Psi_{t+1} = \Lambda \Big(\eta \Sigma_{i=0}^{t} \mathcal{F}(\Psi_{i}) \Big)$$

• Like classical OMWU, we prove an $\mathcal{O}(1/\epsilon)$ convergence.

Our Proposal: Optimistic Matrix Multiplicative Weight Updates

• We leverage proximal maps and optimism in our proposal of

Optimistic Matrix Multiplicative Weight Updates (OMMWU) :

$$OMMWU$$

$$\Phi_{t+1} = \Lambda(\log \Phi_t + \eta \mathcal{F}(\Psi_t))$$

$$\Psi_{t+1} = \Lambda(\log \Phi_t + \eta \mathcal{F}(\Psi_{t+1}))$$

$$\mathbf{MMWU} \\ \Psi_{t+1} = \Lambda \Big(\eta \Sigma_{i=0}^{t} \mathcal{F}(\Psi_{i}) \Big)$$

- Like classical OMWU, we prove an $\mathcal{O}(1/\epsilon)$ convergence.
 - The proof follows the proof structure of [EN20] for monotone VIs.

Our Proposal: Optimistic Matrix Multiplicative Weight Updates

• We leverage proximal maps and optimism in our proposal of

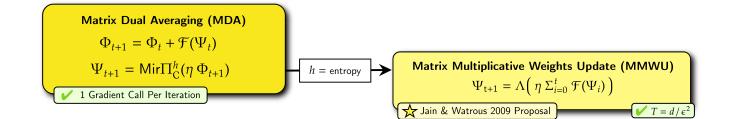
Optimistic Matrix Multiplicative Weight Updates (OMMWU) :

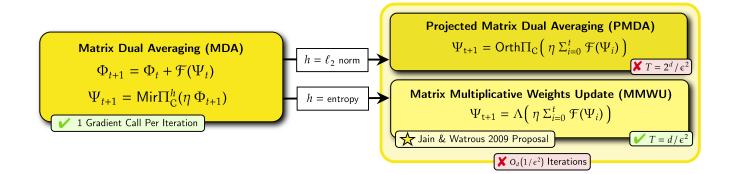
OMMWU $\Phi_{t+1} = \Lambda(\log \Phi_t + \eta \mathcal{F}(\Psi_t))$ $\Psi_{t+1} = \Lambda(\log \Phi_t + \eta \mathcal{F}(\Psi_{t+1}))$

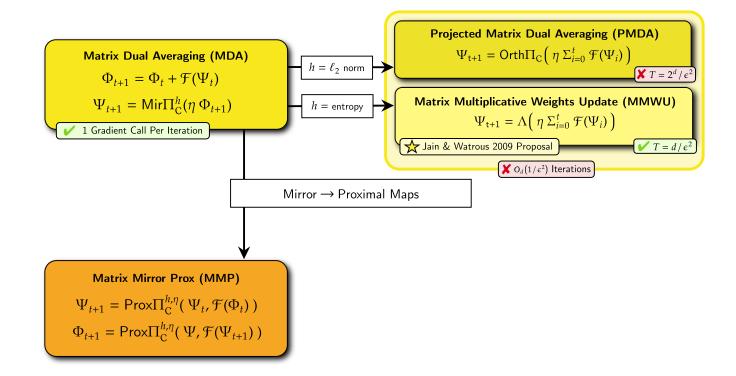
$$\mathbf{MMWU} \\ \Psi_{t+1} = \Lambda \Big(\eta \Sigma_{i=0}^{t} \mathcal{F}(\Psi_{i}) \Big)$$

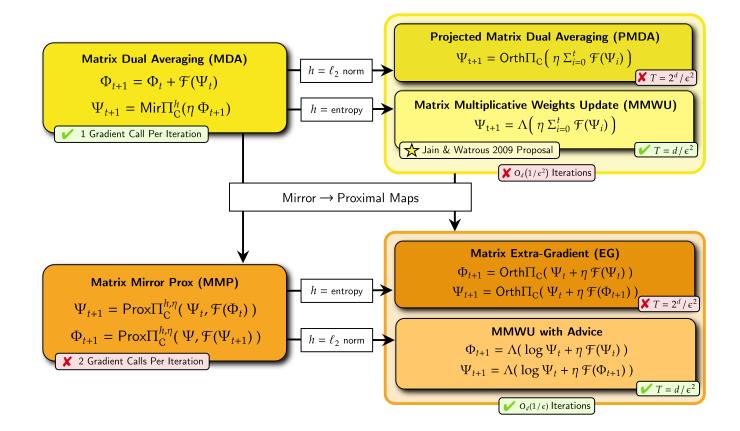
- Like classical OMWU, we prove an $\mathcal{O}(1/\epsilon)$ convergence.
 - The proof follows the proof structure of [EN20] for monotone VIs.
 - We leverage notions of strong convexity, smoothness, and Fenchel conjugacy.

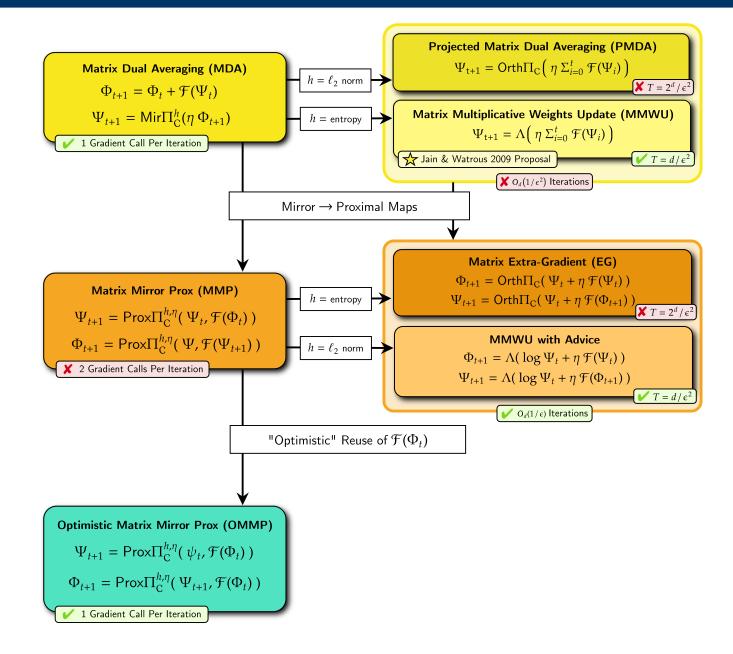
Matrix Multiplicative Weights Update (MMWU) $\Psi_{t+1} = \Lambda \Big(\eta \Sigma_{i=0}^{t} \mathcal{F}(\Psi_{i}) \Big)$ \swarrow Jain & Watrous 2009 Proposal

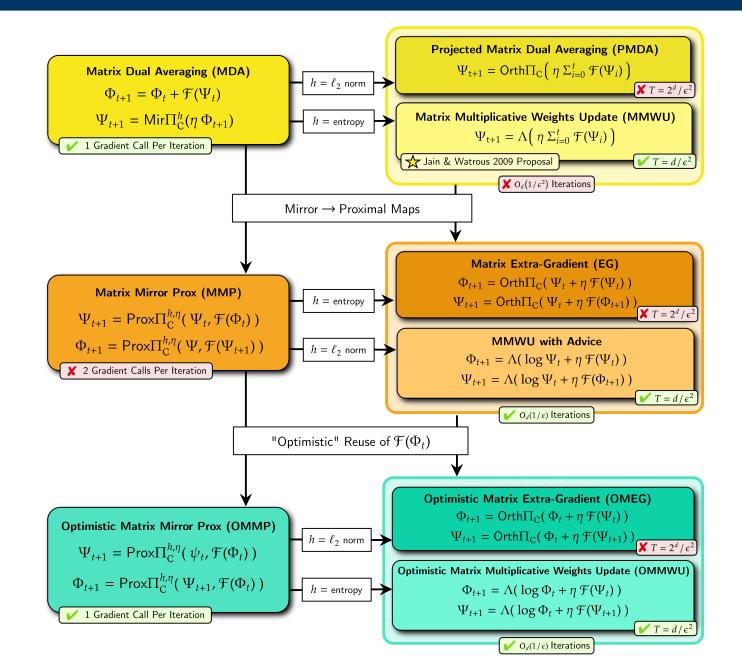












A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games

[arXiv:2311.10859]

Thank you! Questions?

References

[BW22] John Bostanci and John Watrous. "Quantum game theory and the complexity of approximating quantum Nash equilibria". Quantum 6, 882 (2022).

- **[DK18]** Pierre-Luc Dallaire-Demers and Nathan Killoran. "Quantum generative adversarial networks". Phys. Rev. A 98, 012324 (2018).
- **[EN20]** Alina Ene and Huy Lê Nguyên. "Adaptive and Universal Algorithms for Variational Inequalities with Optimal Convergence". Proceedings of the AAAI Conference on Artificial Intelligence 36, 6559-6567 (2022).
- [JW09] Rahul Jain and John Watrous. "Parallel Approximation of Non-interactive Zerosum Quantum Games". In 2009 24th Annual IEEE Conference on Computational Complexity. Pages 243–253. (2009).
- [M99] David A. Meyer. "Quantum Strategies". Phys. Rev. Lett. 82, 1052–1055 (1999).