A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games

[arXiv:2311.10859]

Francisca Vasconcelos*

UC Berkeley

Quantum Techniques in Machine Learning Conference 2023

November 21st, 2023

Joint work with:

Emmanouil Vlatakis-Gkaragkounis* UC Berkeley

Panayotis Mertikopoulos CNRS Grenoble

Georgios Piliouras SUTD

Michael I. Jordan UC Berkeley

F. Vasconcelos - 1 QTML 2023

• We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.

- We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.
	- To do so we leverage a **gradient-based** view of QZSG.

- We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.
	- To do so we leverage a **gradient-based** view of QZSG.
	- This allows us to easily leverage optimization techniques from the **classical** games literature.

- We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.
	- To do so we leverage a **gradient-based** view of QZSG.
	- This allows us to easily leverage optimization techniques from the **classical** games literature.
- We prove that OMMWU achieves an $O(1/\epsilon)$ iteration complexity.

- We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.
	- To do so we leverage a **gradient-based** view of QZSG.
	- This allows us to easily leverage optimization techniques from the **classical** games literature.
- We prove that OMMWU achieves an $O(1/\epsilon)$ iteration complexity.
	- This is a **quadratic speedup** relative to the best prior algorithm [JW09].

- We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.
	- To do so we leverage a **gradient-based** view of QZSG.
	- This allows us to easily leverage optimization techniques from the **classical** games literature.
- We prove that OMMWU achieves an $O(1/\epsilon)$ iteration complexity.
	- This is a **quadratic speedup** relative to the best prior algorithm [JW09].
	- We leverage the proof technique of [EN20] for **monotone variational inequalities**.

- We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.
	- To do so we leverage a **gradient-based** view of QZSG.
	- This allows us to easily leverage optimization techniques from the **classical** games literature.
- We prove that OMMWU achieves an $O(1/\epsilon)$ iteration complexity.
	- This is a **quadratic speedup** relative to the best prior algorithm [JW09].
	- We leverage the proof technique of [EN20] for **monotone variational inequalities**.
- We further introduce a design framework for QZSG algorithms.

- We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.
	- To do so we leverage a **gradient-based** view of QZSG.
	- This allows us to easily leverage optimization techniques from the **classical** games literature.
- We prove that OMMWU achieves an $O(1/\epsilon)$ iteration complexity.
	- This is a **quadratic speedup** relative to the best prior algorithm [JW09].
	- We leverage the proof technique of [EN20] for **monotone variational inequalities**.
- We further introduce a design framework for QZSG algorithms.
	- We use this to **unify** the QZSG algorithms landscape and **motivate** OMMWU.

A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games

F. Vasconcelos - 3 QTML 2023

• A **two-player** game

Alice

Bob

F. Vasconcelos - 3 QTML 2023

- A **two-player** game
- In each round, players play **unentangled** mixed states (**spectraplex**):

 $\alpha \in \mathcal{A} = \mathbb{C}^{2^n x 2^n}, \qquad \beta \in \mathcal{B} = \mathbb{C}^{2^m x 2^m}$

- A **two-player** game
- In each round, players play **unentangled** mixed states (**spectraplex**): $\alpha \in \mathcal{A} = \mathbb{C}^{2^n x 2^n}, \qquad \beta \in \mathcal{B} = \mathbb{C}^{2^m x 2^m}$
- They send **joint state** $\Psi = (\alpha, \beta)$ to a referee

- A **two-player** game
- In each round, players play **unentangled** mixed states (**spectraplex**):

 $\alpha \in \mathcal{A} = \mathbb{C}^{2^n x 2^n}, \qquad \beta \in \mathcal{B} = \mathbb{C}^{2^m x 2^m}$

- They send **joint state** $\Psi = (\alpha, \beta)$ to a referee
- The referee makes a **joint measurement** w.r.t. payoff observable:

 $U = \sum_{\omega \in \Omega} \mathcal{U}(\omega) P_{\omega}$

- A **two-player** game
- In each round, players play **unentangled** mixed states (**spectraplex**):

 $\alpha \in \mathcal{A} = \mathbb{C}^{2^n x 2^n}, \qquad \beta \in \mathcal{B} = \mathbb{C}^{2^m x 2^m}$

- They send **joint state** $\Psi = (\alpha, \beta)$ to a referee
- The referee makes a **joint measurement** w.r.t. payoff observable:

 $U = \sum_{\omega \in \Omega} \mathcal{U}(\omega) P_{\omega}$

• Based on the measurement outcome, the referee **rewards** the players

- A **two-player** game
- In each round, players play **unentangled** mixed states (**spectraplex**):

 $\alpha \in \mathcal{A} = \mathbb{C}^{2^n x 2^n}, \qquad \beta \in \mathcal{B} = \mathbb{C}^{2^m x 2^m}$

- They send **joint state** $\Psi = (\alpha, \beta)$ to a referee
- The referee makes a **joint measurement** w.r.t. payoff observable:

 $U = \sum_{\omega \in \Omega} \mathcal{U}(\omega) P_{\omega}$

- Based on the measurement outcome, the referee **rewards** the players
	- **zero-sum** ⇒ one player's **win** is the other's **loss**

F. Vasconcelos - 4 QTML 2023

• CZSG are played in the **simplex**

• CZSG are played in the **simplex**:

• CZSG are played in the **simplex**:

- Players play **indeterministic strategies**:
	- Probability vectors: $|\alpha\rangle, |\beta\rangle \in [0,1]^n$

• CZSG are played in the **simplex**:

- Players play **indeterministic strategies**:
	- Probability vectors: $|\alpha\rangle, |\beta\rangle \in [0,1]^n$
- **Expected utility** for specific strategies:

 $u(\alpha, \beta) = \langle \beta | U | \alpha \rangle$

• CZSG are played in the **simplex**:

- Players play **indeterministic strategies**:
	- Probability vectors: $|\alpha\rangle, |\beta\rangle \in [0,1]^n$
- **Expected utility** for specific strategies:

 $u(\alpha, \beta) = \langle \beta | U | \alpha \rangle$

• QZSG are played in the **spectraplex**

• CZSG are played in the **simplex**:

- Players play **indeterministic strategies**:
	- Probability vectors: $|\alpha\rangle, |\beta\rangle \in [0,1]^n$
- **Expected utility** for specific strategies:

 $u(\alpha, \beta) = \langle \beta | U | \alpha \rangle$

• QZSG are played in the **spectraplex**:

F. Vasconcelos - 4 QTML 2023

• CZSG are played in the **simplex**:

- Players play **indeterministic strategies**:
	- Probability vectors: $|\alpha\rangle, |\beta\rangle \in [0,1]^n$
- **Expected utility** for specific strategies:

 $u(\alpha, \beta) = \langle \beta | U | \alpha \rangle$

• QZSG are played in the **spectraplex**:

F. Vasconcelos - 4 QTML 2023

• CZSG are played in the **simplex**:

- Players play **indeterministic strategies**:
	- Probability vectors: $|\alpha\rangle, |\beta\rangle \in [0,1]^n$
- **Expected utility** for specific strategies:

 $u(\alpha, \beta) = \langle \beta | U | \alpha \rangle$

• QZSG are played in the **spectraplex**:

- Players play **mixtures** of indeterministic strategies (**meta-strategies**):
	- Density matrices: $\alpha \in \mathbb{C}^{2^n x 2^n}$, $\beta \in \mathbb{C}^{2^m x 2^m}$

• CZSG are played in the **simplex**:

- Players play **indeterministic strategies**:
	- Probability vectors: $|\alpha\rangle, |\beta\rangle \in [0,1]^n$
- **Expected utility** for specific strategies:

 $u(\alpha, \beta) = \langle \beta | U | \alpha \rangle$

• QZSG are played in the **spectraplex**:

- Players play **mixtures** of indeterministic strategies (**meta-strategies**):
	- Density matrices: $\alpha \in \mathbb{C}^{2^n x 2^n}$, $\beta \in \mathbb{C}^{2^m x 2^m}$
- **Expected utility** for specific strategies: $u(\alpha, \beta) = \text{Tr}[U(\alpha \otimes \beta)]$

F. Vasconcelos - 5 QTML 2023

• If Alice's expected payoff is $u(\alpha, \beta)$, Bob's expected payoff is $-u(\alpha, \beta)$

- If Alice's expected payoff is $u(\alpha, \beta)$, Bob's expected payoff is $-u(\alpha, \beta)$
- In playing the game, each player wants to **maximize** their expected payoff:

- If Alice's expected payoff is $u(\alpha, \beta)$, Bob's expected payoff is $-u(\alpha, \beta)$
- In playing the game, each player wants to **maximize** their expected payoff:
	- Alice wants: max α $u(\alpha, \beta)$

- If Alice's expected payoff is $u(\alpha, \beta)$, Bob's expected payoff is $-u(\alpha, \beta)$
- In playing the game, each player wants to **maximize** their expected payoff:
	- Alice wants: max α $u(\alpha, \beta)$
	- Bob wants: $\max_{\beta} -u(\alpha, \beta) = \min_{\beta}$ $u(\alpha, \beta)$

- If Alice's expected payoff is $u(\alpha, \beta)$, Bob's expected payoff is $-u(\alpha, \beta)$
- In playing the game, each player wants to **maximize** their expected payoff:
	- Alice wants: max α $u(\alpha, \beta)$
	- Bob wants: $\max_{\beta} -u(\alpha, \beta) = \min_{\beta}$ $u(\alpha, \beta)$
- These are **competing** interests, defining a **minimax** optimization problem:

min $\beta \in \mathcal{B}$ max &∈ $u(\alpha, \beta)$

- If Alice's expected payoff is $u(\alpha, \beta)$, Bob's expected payoff is $-u(\alpha, \beta)$
- In playing the game, each player wants to **maximize** their expected payoff:
	- Alice wants: max α $u(\alpha, \beta)$
	- Bob wants: $\max_{\beta} -u(\alpha, \beta) = \min_{\beta}$ $u(\alpha, \beta)$
- These are **competing** interests, defining a **minimax** optimization problem:

min $\beta \in \mathcal{B}$ max &∈

F. Vasconcelos - 5 QTML 2023

Why Study Quantum Games?

F. Vasconcelos - 6 QTML 2023
• General quantum games have emerged in many areas of quantum information:

- General quantum games have emerged in many areas of quantum information:
	- Non-local games (Bell, CSHS, …, MIP*=RE)

- General quantum games have emerged in many areas of quantum information:
	- Non-local games (Bell, CSHS, …, MIP*=RE)
	- Quantum interactive proofs (competitive refereed games)

- General quantum games have emerged in many areas of quantum information:
	- Non-local games (Bell, CSHS, …, MIP*=RE)
	- Quantum interactive proofs (competitive refereed games)
	- Multi-prover quantum interactive proofs (cooperative games)

- General quantum games have emerged in many areas of quantum information:
	- Non-local games (Bell, CSHS, …, MIP*=RE)
	- Quantum interactive proofs (competitive refereed games)
	- Multi-prover quantum interactive proofs (cooperative games)
	- Quantum coin-flipping (two player game)

- General quantum games have emerged in many areas of quantum information:
	- Non-local games (Bell, CSHS, …, MIP*=RE)
	- Quantum interactive proofs (competitive refereed games)
	- Multi-prover quantum interactive proofs (cooperative games)
	- Quantum coin-flipping (two player game)

• However, optimization of general quantum games is **PPAD-complete** [BW22]

F. Vasconcelos - 7 QTML 2023

• Meanwhile, as classically, QZSG optimization is **computationally tractable**

- Meanwhile, as classically, QZSG optimization is **computationally tractable**
	- [JW09] proposed an explicit QZSG algo that converges to an ϵ -approx soln in $O(1/\epsilon^2)$ iterations

- Meanwhile, as classically, QZSG optimization is **computationally tractable**
	- [JW09] proposed an explicit QZSG algo that converges to an ϵ -approx soln in $O(1/\epsilon^2)$ iterations
- Uses of QZSG:

- Meanwhile, as classically, QZSG optimization is **computationally tractable**
	- [JW09] proposed an explicit QZSG algo that converges to an ϵ -approx soln in $O(1/\epsilon^2)$ iterations
- Uses of QZSG:
	- Game theory: proof that quantum strategies ≥ classical strategies [M99]

- Meanwhile, as classically, QZSG optimization is **computationally tractable**
	- [JW09] proposed an explicit QZSG algo that converges to an ϵ -approx soln in $O(1/\epsilon^2)$ iterations
- Uses of QZSG:
	- Game theory: proof that quantum strategies ≥ classical strategies [M99]
	- Complexity theory: proof that QRG(1) ⊆ PSPACE [JW09]

- Meanwhile, as classically, QZSG optimization is **computationally tractable**
	- [JW09] proposed an explicit QZSG algo that converges to an ϵ -approx soln in $O(1/\epsilon^2)$ iterations
- Uses of QZSG:
	- Game theory: proof that quantum strategies ≥ classical strategies [M99]
	- Complexity theory: proof that QRG(1) ⊆ PSPACE [JW09]
	- Machine learning: **Quantum Generative Adversarial Networks** [DK18]

F. Vasconcelos - 7 QTML 2023

A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games

F. Vasconcelos -9
QTML 2023

Image Source: Wikipedia

• The solutions (**fixed points**) of this minimax define the game's value:

 $u(\alpha^*, \beta^*) = \min$ $\overline{\beta}$ max α $u(\alpha, \beta) = \max$ α min $\overline{\beta}$ $u(\alpha, \beta)$

F. Vasconcelos -9 QTML 2023

• The solutions (**fixed points**) of this minimax define the game's value:

$$
u(\alpha^*, \beta^*) = \min_{\beta} \max_{\alpha} u(\alpha, \beta) = \max_{\alpha} \min_{\beta} u(\alpha, \beta)
$$

von Neumann's Minimax Thm

• The solutions (**fixed points**) of this minimax define the game's value:

 $u(\alpha^*, \beta^*) = \min$ $\overline{\beta}$ max α $u(\alpha, \beta) = \max$ α min $\overline{\beta}$ $u(\alpha, \beta)$ von Neumann's Minimax Thm

• **Nash equilibria** are game states (α^{*}, β^{*}) such that neither player has an incentive to change to another state unilaterally:

• The solutions (**fixed points**) of this minimax define the game's value:

 $u(\alpha^*, \beta^*) = \min$ $\overline{\beta}$ max α $u(\alpha, \beta) = \max$ α min $\overline{\beta}$ $u(\alpha, \beta)$ von Neumann's Minimax Thm

• **Nash equilibria** are game states (α^{*}, β^{*}) such that neither player has an incentive to change to another state unilaterally:

 $u(\alpha^*, \beta^*) \geq u(\alpha, \beta^*)$, $\forall \alpha \in \mathcal{A}$

F. Vasconcelos -9 QTML 2023

• The solutions (**fixed points**) of this minimax define the game's value:

 $u(\alpha^*, \beta^*) = \min$ $\overline{\beta}$ max α $u(\alpha, \beta) = \max$ α min $\overline{\beta}$ $u(\alpha, \beta)$ von Neumann's Minimax Thm

• **Nash equilibria** are game states (α^{*}, β^{*}) such that neither player has an incentive to change to another state unilaterally:

$$
u(\alpha^*, \beta^*) \ge u(\alpha, \beta^*), \qquad \forall \alpha \in \mathcal{A}
$$

$$
u(\alpha^*, \beta^*) \le u(\alpha^*, \beta), \qquad \forall \beta \in \mathcal{B}
$$

F. Vasconcelos - 10 QTML 2023

• Algorithmically, we will view the game as an **online** learning problem

- Algorithmically, we will view the game as an **online** learning problem
- In each round, each player **queries** the referee ("oracle") with a state

- Algorithmically, we will view the game as an **online** learning problem
- In each round, each player **queries** the referee ("oracle") with a state
- The ref returns **feedback** to each player

- Algorithmically, we will view the game as an **online** learning problem
- In each round, each player **queries** the referee ("oracle") with a state
- The ref returns **feedback** to each player
- The players use this feedback to update and **improve** their states

- Algorithmically, we will view the game as an **online** learning problem
- In each round, each player **queries** the referee ("oracle") with a state
- The ref returns **feedback** to each player
- The players use this feedback to update and **improve** their states
- **Goal**: minimize the number of rounds until the players reach an ϵ -approx Nash equilibrium

F. Vasconcelos - 10 QTML 2023

F. Vasconcelos - 11 QTML 2023

• Previous work on QZSG characterized the game's feedback via **superoperators**:

- Previous work on QZSG characterized the game's feedback via **superoperators**:
	- Alice's Feedback: $E(\beta) = Tr_B[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^T)]$

- Previous work on QZSG characterized the game's feedback via **superoperators**:
	- Alice's Feedback: $E(\beta) = Tr_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
	- Bob's Feedback: $\mathbb{E}^*(\alpha) = \text{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_{\mathcal{B}})]$

- Previous work on QZSG characterized the game's feedback via **superoperators**:
	- Alice's Feedback: $\Xi(\beta) = \mathrm{Tr}_{\mathcal{B}}[U(\mathbb{I}_{A} \otimes \beta^{T})]$
	- Bob's Feedback: $\mathbb{E}^*(\alpha) = \text{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_R)]$
- We instead characterize the game's feedback via **gradient-based** operators:

- Previous work on QZSG characterized the game's feedback via **superoperators**:
	- Alice's Feedback: $E(\beta) = Tr_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
	- Bob's Feedback: $\mathbb{E}^*(\alpha) = \text{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_R)]$
- We instead characterize the game's feedback via **gradient-based** operators:
	- Alice's Feedback: $\mathcal{F}_{\alpha}(\beta) = \nabla_{\alpha} \mathbf{r} u(\alpha, \beta) = \operatorname{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$

- Previous work on QZSG characterized the game's feedback via **superoperators**:
	- Alice's Feedback: $E(\beta) = Tr_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
	- Bob's Feedback: $\mathbb{E}^*(\alpha) = \text{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_{\mathcal{B}})]$
- We instead characterize the game's feedback via **gradient-based** operators:
	- Alice's Feedback: $\mathcal{F}_{\alpha}(\beta) = \nabla_{\alpha} \mathbf{r} u(\alpha, \beta) = \operatorname{Tr}_{\beta} [U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
	- Bob's Feedback: $\mathcal{F}_{\beta}(\alpha) = -\nabla_{\beta} \mathbf{r} u(\alpha, \beta) = -\mathrm{Tr}_{\mathcal{A}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$

- Previous work on QZSG characterized the game's feedback via **superoperators**:
	- Alice's Feedback: $\Xi(\beta) = \mathrm{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
	- Bob's Feedback: $\mathbb{E}^*(\alpha) = \text{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_R)]$
- We instead characterize the game's feedback via **gradient-based** operators:
	- Alice's Feedback: $\mathcal{F}_{\alpha}(\beta) = \nabla_{\alpha} \mathbf{r} u(\alpha, \beta) = \operatorname{Tr}_{\beta} [U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
	- Bob's Feedback: $\mathcal{F}_{\beta}(\alpha) = -\nabla_{\beta} \mathbf{r} u(\alpha, \beta) = -\mathrm{Tr}_{\mathcal{A}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
- The two characterizations are **equivalent**:

- Previous work on QZSG characterized the game's feedback via **superoperators**:
	- Alice's Feedback: $\Xi(\beta) = \mathrm{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
	- Bob's Feedback: $\Xi^*(\alpha) = \text{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_R)]$
- We instead characterize the game's feedback via **gradient-based** operators:
	- Alice's Feedback: $\mathcal{F}_{\alpha}(\beta) = \nabla_{\alpha} \mathbf{r} u(\alpha, \beta) = \operatorname{Tr}_{\beta} [U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
	- Bob's Feedback: $\mathcal{F}_{\beta}(\alpha) = -\nabla_{\beta} \mathbf{r} u(\alpha, \beta) = -\mathrm{Tr}_{\mathcal{A}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
- The two characterizations are **equivalent**:
	- Feedback: $\mathcal{F}_{\alpha}(\beta) = \Xi(\beta^{T}), \ \mathcal{F}_{\beta}(\alpha) = -\Xi^{*}(\alpha^{T})$

- Previous work on QZSG characterized the game's feedback via **superoperators**:
	- Alice's Feedback: $\Xi(\beta) = \mathrm{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
	- Bob's Feedback: $\mathbb{E}^*(\alpha) = \text{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_R)]$
- We instead characterize the game's feedback via **gradient-based** operators:
	- Alice's Feedback: $\mathcal{F}_{\alpha}(\beta) = \nabla_{\alpha} \mathbf{r} u(\alpha, \beta) = \operatorname{Tr}_{\beta} [U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
	- Bob's Feedback: $\mathcal{F}_{\beta}(\alpha) = -\nabla_{\beta} \mathbf{r} u(\alpha, \beta) = -\mathrm{Tr}_{\mathcal{A}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
- The two characterizations are **equivalent**:
	- Feedback: $\mathcal{F}_{\alpha}(\beta) = \Xi(\beta^{T}), \ \mathcal{F}_{\beta}(\alpha) = -\Xi^{*}(\alpha^{T})$
	- Alice's expected payoff : $u(\alpha, \beta) = Tr[\alpha \mathcal{F}_{\alpha}(\beta)] = Tr[\alpha \mathbb{E}(\beta^{T})]$
Superoperator vs Gradient-Based Feedback

- Previous work on QZSG characterized the game's feedback via **superoperators**:
	- Alice's Feedback: $\Xi(\beta) = \mathrm{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
	- Bob's Feedback: $\Xi^*(\alpha) = \text{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_R)]$
- We instead characterize the game's feedback via **gradient-based** operators:
	- Alice's Feedback: $\mathcal{F}_{\alpha}(\beta) = \nabla_{\alpha} \mathbf{r} u(\alpha, \beta) = \operatorname{Tr}_{\beta} [U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
	- Bob's Feedback: $\mathcal{F}_{\beta}(\alpha) = -\nabla_{\beta} \mathbf{r} u(\alpha, \beta) = -\mathrm{Tr}_{\mathcal{A}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
- The two characterizations are **equivalent**:
	- Feedback: $\mathcal{F}_{\alpha}(\beta) = \Xi(\beta^{T}), \ \mathcal{F}_{\beta}(\alpha) = -\Xi^{*}(\alpha^{T})$ – Alice's expected payoff : $u(\alpha, \beta) = Tr[\alpha \mathcal{F}_{\alpha}(\beta)] = Tr[\alpha E(\beta^T)]$ – Bob's expected payoff: $-u(\alpha, \beta) = Tr[\beta \mathcal{F}_{\beta}(\alpha)] = -Tr[\beta \Xi^*(\alpha^{\mathrm{T}})]$

F. Vasconcelos - 11 QTML 2023

F. Vasconcelos - 12 QTML 2023

• With gradient-based feedback, the expected payoff is a **directional derivative**:

- With gradient-based feedback, the expected payoff is a **directional derivative**:
	- In Alice's direction: $u(\alpha, \beta) = \text{Tr}[\alpha \mathcal{F}_{\alpha}(\beta)] = \text{Tr}[\alpha \nabla_{\alpha} \mathbf{r} u(\alpha, \beta)]$

- With gradient-based feedback, the expected payoff is a **directional derivative**:
	- In Alice's direction: $u(\alpha, \beta) = \text{Tr}[\alpha \mathcal{F}_{\alpha}(\beta)] = \text{Tr}[\alpha \nabla_{\alpha} u(\alpha, \beta)]$
	- In Bob's direction: $u(\alpha, \beta) = -\text{Tr}[\beta \mathcal{F}_{\beta}(\alpha)] = \text{Tr}[\beta \nabla_{\beta} u(\alpha, \beta)]$

- With gradient-based feedback, the expected payoff is a **directional derivative**:
	- In Alice's direction: $u(\alpha, \beta) = \text{Tr}[\alpha \mathcal{F}_{\alpha}(\beta)] = \text{Tr}[\alpha \nabla_{\alpha} \mathbf{r} u(\alpha, \beta)]$

$$
u(\Psi) = \text{Tr}[\Psi \mathcal{F}(\Psi)] = \text{Tr}[\Psi \nabla_{\Psi} \tau u(\Psi)]
$$

– In Bob's direction: $u(\alpha, \beta) = -\text{Tr}[\beta \mathcal{F}_{\beta}(\alpha)] = \text{Tr}[\beta \nabla_{\beta} \tau u(\alpha, \beta)]$

 $u(\Psi) = \text{Tr}[\Psi \, \mathcal{F}(\Psi)] = \text{Tr}[\Psi \, \nabla_{\Psi} \text{Tr}(\Psi \Psi)]$

- With gradient-based feedback, the expected payoff is a **directional derivative**:
	- In Alice's direction: $u(\alpha, \beta) = \text{Tr}[\alpha \mathcal{F}_{\alpha}(\beta)] = \text{Tr}[\alpha \nabla_{\alpha} \tau u(\alpha, \beta)]$
	- In Bob's direction: $u(\alpha, \beta) = -\text{Tr}[\beta \mathcal{F}_{\beta}(\alpha)] = \text{Tr}[\beta \nabla_{\beta} \pi u(\alpha, \beta)]$
- With a directional derivative, we can characterize the game's equilibria as solutions of the **variational inequality (VI)**: $Tr[(\Psi - \Psi^*) \mathcal{F}(\Psi^*)] \leq 0$, $\forall \Psi \in \mathcal{A} \oplus \mathcal{B}$

- With gradient-based feedback, the expected payoff is a **directional derivative**:
	- In Alice's direction: $u(\alpha, \beta) = \text{Tr}[\alpha \mathcal{F}_{\alpha}(\beta)] = \text{Tr}[\alpha \nabla_{\alpha} \tau u(\alpha, \beta)]$
	- In Bob's direction: $u(\alpha, \beta) = -\text{Tr}[\beta \mathcal{F}_{\beta}(\alpha)] = \text{Tr}[\beta \nabla_{\beta} \pi u(\alpha, \beta)]$
- With a directional derivative, we can characterize the game's equilibria as solutions of the **variational inequality (VI)**: $Tr[(\Psi - \Psi^*) \mathcal{F}(\Psi^*)] \leq 0$, $\forall \Psi \in \mathcal{A} \oplus \mathcal{B}$

 $u(\Psi) = \text{Tr}[\Psi \, \mathcal{F}(\Psi)] = \text{Tr}[\Psi \, \nabla_{\Psi} \text{Tr}(\Psi \Psi)]$

- With gradient-based feedback, the expected payoff is a **directional derivative**:
	- In Alice's direction: $u(\alpha, \beta) = \text{Tr}[\alpha \mathcal{F}_{\alpha}(\beta)] = \text{Tr}[\alpha \nabla_{\alpha} \tau u(\alpha, \beta)]$
	- In Bob's direction: $u(\alpha, \beta) = -\text{Tr}[\beta \mathcal{F}_{\beta}(\alpha)] = \text{Tr}[\beta \nabla_{\beta} \pi u(\alpha, \beta)]$
- With a directional derivative, we can characterize the game's equilibria as solutions of the **variational inequality (VI)**: $Tr[(\Psi - \Psi^*) \mathcal{F}(\Psi^*)] \leq 0$, $\forall \Psi \in \mathcal{A} \oplus \mathcal{B}$
- We further prove that ℱ(Ψ) is **monotone** and **Lipschitz**, which offers additional structure about the game that we can use to **leverage efficient classical algorithms** for solving such VIs.

 $u(\Psi) = \text{Tr}[\Psi \, \mathcal{F}(\Psi)] = \text{Tr}[\Psi \, \nabla_{\Psi} \text{Tr}(\Psi \Psi)]$

A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games

F. Vasconcelos - 14 QTML 2023

• Classical **gradient descent (GD)**: $x_{t+1} = x_t - \eta \nabla F(x_t)$

- Classical **gradient descent (GD)**: $x_{t+1} = x_t \eta \nabla F(x_t)$
- Equivalently, GD minimizes the 1st-order approx of F with **Euclidean regularizer** :

$$
x_{t+1} = \underset{x}{\text{argmin}} \left(F(x_t) + \nabla F(x_t)^T (x - x_t) + \frac{1}{2\eta} ||x - x_t||^2 \right)
$$

- Classical **gradient descent (GD)**: $x_{t+1} = x_t \eta \nabla F(x_t)$
- Equivalently, GD minimizes the 1st-order approx of F with **Euclidean regularizer** :

$$
x_{t+1} = \underset{x}{\text{argmin}} \left(F(x_t) + \nabla F(x_t)^T (x - x_t) + \frac{1}{2\eta} ||x - x_t||^2 \right)
$$

• To generalize GD to other regularizers h, perform **mirror descent (MD)**:

$$
x_{t+1} = (\nabla h)^{-1} [\nabla h(x_t) - \eta \nabla F(x_t)]
$$

- Classical **gradient descent (GD)**: $x_{t+1} = x_t \eta \nabla F(x_t) +$
- Equivalently, GD minimizes the 1st-order approx of F with **Euclidean regularizer**: $x_{t+1} = \text{argmin}$ \mathcal{X} $F(x_t) + \nabla F(x_t)^T (x - x_t) +$ 1 $rac{1}{2\eta}$ $||x - x_t||^2$ For $h(y) = \frac{1}{2} ||y||^2$, $\nabla h(y) = y$
- To generalize GD to other regularizers h, perform **mirror descent (MD)**:

 $x_{t+1} = (\nabla h)^{-1} [\nabla h(x_t) - \eta \nabla F(x_t)]$

• To generalize GD to other regularizers h, perform **mirror descent (MD)**:

 $x_{t+1} = (\nabla h)^{-1} [\nabla h(x_t) - \eta \nabla F(x_t)]$

• To generalize GD to other regularizers h, perform **mirror descent (MD)**:

$$
x_{t+1} = (\nabla h)^{-1} [\nabla h(x_t) - \eta \nabla F(x_t)]
$$

F. Vasconcelos - 14 QTML 2023

• To generalize GD to other regularizers h, perform **mirror descent (MD)**:

$$
x_{t+1} = (\nabla h)^{-1} [\nabla h(x_t) - \eta \nabla F(x_t)]
$$

• To generalize GD to other regularizers h, perform **mirror descent (MD)**:

$$
x_{t+1} = (\nabla h)^{-1} [\nabla h(x_t) - \eta \nabla F(x_t)]
$$

F. Vasconcelos - 14 QTML 2023

• To generalize GD to other regularizers h, perform **mirror descent (MD)**:

$$
x_{t+1} = (\nabla h)^{-1} [\nabla h(x_t) - \eta \nabla F(x_t)]
$$

F. Vasconcelos - 14 QTML 2023

F. Vasconcelos - 15 QTML 2023

• In 2009, Jain and Watrous proposed the **Matrix Multiplicative Weight Updates (MMWU)** algorithm, with the following update in each round t :

$$
\alpha_t = \Lambda \left(\eta \sum_{i=0}^{t-1} \Xi(\beta_i^{\mathrm{T}}) \right), \qquad \beta_t = \Lambda \left(-\eta \sum_{i=0}^{t-1} \Xi^*(\alpha_i^{\mathrm{T}}) \right), \qquad \text{where } \Lambda(x) = \frac{\exp(x)}{\mathrm{Tr}(\exp(x))}
$$

• In 2009, Jain and Watrous proposed the **Matrix Multiplicative Weight Updates (MMWU)** algorithm, with the following update in each round t :

$$
\alpha_t = \Lambda \left(\eta \sum_{i=0}^{t-1} \Xi(\beta_i^{\mathrm{T}}) \right), \qquad \beta_t = \Lambda \left(-\eta \sum_{i=0}^{t-1} \Xi^*(\alpha_i^{\mathrm{T}}) \right), \qquad \text{where } \Lambda(x) = \frac{\exp(x)}{\mathrm{Tr}(\exp(x))}
$$

• We show MMWU is **"Lazy" Mirror Descent**, with a von Neumann **entropy** regularizer:

 $h(\psi) = Tr[\psi \log \psi]$

• In 2009, Jain and Watrous proposed the **Matrix Multiplicative Weight Updates (MMWU)** algorithm, with the following update in each round t :

$$
\alpha_t = \Lambda \left(\eta \sum_{i=0}^{t-1} \Xi(\beta_i^{\mathrm{T}}) \right), \qquad \beta_t = \Lambda \left(-\eta \sum_{i=0}^{t-1} \Xi^*(\alpha_i^{\mathrm{T}}) \right), \qquad \text{where } \Lambda(x) = \frac{\exp(x)}{\mathrm{Tr}(\exp(x))}
$$

• We show MMWU is **"Lazy" Mirror Descent**, with a von Neumann **entropy** regularizer:

 $h(\psi) = Tr[\psi \log \psi]$

• Like classical MWU, they prove an $O(1/\epsilon^2)$ convergence.

• In 2009, Jain and Watrous proposed the **Matrix Multiplicative Weight Updates (MMWU)** algorithm, with the following update in each round t :

$$
\alpha_t = \Lambda \left(\eta \sum_{i=0}^{t-1} \Xi(\beta_i^{\mathrm{T}}) \right), \qquad \beta_t = \Lambda \left(-\eta \sum_{i=0}^{t-1} \Xi^*(\alpha_i^{\mathrm{T}}) \right), \qquad \text{where } \Lambda(x) = \frac{\exp(x)}{\mathrm{Tr}(\exp(x))}
$$

• We show MMWU is **"Lazy" Mirror Descent**, with a von Neumann **entropy** regularizer:

 $h(\psi) = Tr[\psi \log \psi]$

- Like classical MWU, they prove an $O(1/\epsilon^2)$ convergence.
	- However, in classical games, while this is optimal for classical **black-box** optimization, Nemirovski [N04] showed that $O(1/\epsilon)$ can be achieved for monotone VIs.

F. Vasconcelos - 16 QTML 2023

• To improve upon the MMWU, we leverage **proximal** instead of mirror steps

- To improve upon the MMWU, we leverage **proximal** instead of mirror steps
	- Proximal steps introduce "**momentum**"

- To improve upon the MMWU, we leverage **proximal** instead of mirror steps
	- Proximal steps introduce "**momentum**"

- To improve upon the MMWU, we leverage **proximal** instead of mirror steps
	- Proximal steps introduce "**momentum**"

- To improve upon the MMWU, we leverage **proximal** instead of mirror steps
	- Proximal steps introduce "**momentum**"

• We further leverage **"optimism"** to reduce the total number of oracle calls from 2 to 1

F. Vasconcelos - 17 QTML 2023

• We leverage proximal maps and optimism in our proposal of

Optimistic Matrix Multiplicative Weight Updates (OMMWU) :

• We leverage proximal maps and optimism in our proposal of

Optimistic Matrix Multiplicative Weight Updates (OMMWU) :

OMMWU $\Phi_{t+1} = \Lambda(\log \Phi_t + \eta \mathcal{F}(\Psi_t))$
 $\Psi_{t+1} = \Lambda(\log \Phi_t + \eta \mathcal{F}(\Psi_{t+1}))$

• We leverage proximal maps and optimism in our proposal of

Optimistic Matrix Multiplicative Weight Updates (OMMWU) :

OMMWU $\begin{aligned} \Phi_{t+1} &= \Lambda \big(\log \Phi_t + \eta \, \mathcal{F}(\Psi_t)\big) \\ \Psi_{t+1} &= \Lambda \big(\log \Phi_t + \eta \, \mathcal{F}(\Psi_{t+1})\big)\end{aligned}$

$$
\boxed{\Psi_{t+1} = \Lambda \left(\eta \Sigma_{i=0}^{t} \mathcal{F}(\Psi_{i}) \right)}
$$

• We leverage proximal maps and optimism in our proposal of

Optimistic Matrix Multiplicative Weight Updates (OMMWU) :

OMMWU $\Phi_{t+1} = \Lambda(\log \Phi_t + \eta \mathcal{F}(\Psi_t))$
 $\Psi_{t+1} = \Lambda(\log \Phi_t + \eta \mathcal{F}(\Psi_{t+1}))$

$$
\boxed{\Psi_{t+1} = \Lambda \left(\eta \Sigma_{i=0}^{t} \mathcal{F}(\Psi_{i}) \right)}
$$

• Like classical OMWU, we prove an $O(1/\epsilon)$ convergence.
Our Proposal: Optimistic Matrix Multiplicative Weight Updates

• We leverage proximal maps and optimism in our proposal of

Optimistic Matrix Multiplicative Weight Updates (OMMWU) :

$$
\mathbf{0} \mathbf{M} \mathbf{M} \mathbf{W} \mathbf{U}
$$
\n
$$
\Phi_{t+1} = \Lambda \left(\log \Phi_t + \eta \mathcal{F}(\Psi_t) \right)
$$
\n
$$
\Psi_{t+1} = \Lambda \left(\log \Phi_t + \eta \mathcal{F}(\Psi_{t+1}) \right)
$$

$$
\boxed{\Psi_{t+1} = \Lambda \left(\eta \Sigma_{i=0}^{t} \mathcal{F}(\Psi_{i}) \right)}
$$

- Like classical OMWU, we prove an $O(1/\epsilon)$ convergence.
	- The proof follows the proof structure of [EN20] for monotone VIs.

Our Proposal: Optimistic Matrix Multiplicative Weight Updates

• We leverage proximal maps and optimism in our proposal of

Optimistic Matrix Multiplicative Weight Updates (OMMWU) :

$$
\mathbf{0} \mathbf{M} \mathbf{M} \mathbf{W} \mathbf{U}
$$
\n
$$
\Phi_{t+1} = \Lambda \left(\log \Phi_t + \eta \mathcal{F}(\Psi_t) \right)
$$
\n
$$
\Psi_{t+1} = \Lambda \left(\log \Phi_t + \eta \mathcal{F}(\Psi_{t+1}) \right)
$$

$$
\boxed{\Psi_{t+1} = \Lambda \left(\eta \Sigma_{i=0}^{t} \mathcal{F}(\Psi_{i}) \right)}
$$

- Like classical OMWU, we prove an $O(1/\epsilon)$ convergence.
	- The proof follows the proof structure of [EN20] for monotone VIs.
	- We leverage notions of strong convexity, smoothness, and Fenchel conjugacy.

F. Vasconcelos - 18 QTML 2023

Matrix Multiplicative Weights Update (MMWU) $\Psi_{t+1} = \Lambda \big(\, \eta \, \Sigma_{i=0}^t \, \mathcal{F}(\Psi_i) \, \big)$ 3 Jain & Watrous 2009 Proposal

F. Vasconcelos - 18 QTML 2023

F. Vasconcelos - 18 QTML 2023

A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games

[arXiv:2311.10859]

Thank you! Questions?

 \Box

References

[BW22] John Bostanci and John Watrous. "Quantum game theory and the complexity of approximating quantum Nash equilibria". Quantum 6, 882 (2022).

- **[DK18]** Pierre-Luc Dallaire-Demers and Nathan Killoran. "Quantum generative adversarial networks". Phys. Rev. A 98, 012324 (2018).
- **[EN20]** Alina Ene and Huy Lê Nguyên. "Adaptive and Universal Algorithms for Variational Inequalities with Optimal Convergence". Proceedings of the AAAI Conference on Artificial Intelligence 36, 6559–6567 (2022).
- **[JW09]** Rahul Jain and John Watrous. "Parallel Approximation of Non-interactive Zerosum Quantum Games". In 2009 24th Annual IEEE Conference on Computational Complexity. Pages 243–253. (2009).
- **[M99]** David A. Meyer. "Quantum Strategies". Phys. Rev. Lett. 82, 1052–1055 (1999).