# A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games

[arXiv:2311.10859]

Francisca Vasconcelos\*

**UC Berkeley** 

#### Quantum Techniques in Machine Learning Conference 2023

November 21<sup>st</sup>, 2023

Joint work with:



Emmanouil Vlatakis-Gkaragkounis\* UC Berkeley



Panayotis Mertikopoulos CNRS Grenoble



Georgios Piliouras SUTD



Michael I. Jordan UC Berkeley

F. Vasconcelos - 1 QTML 2023

• We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.

- We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.
  - To do so we leverage a **gradient-based** view of QZSG.

- We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.
  - To do so we leverage a **gradient-based** view of QZSG.
  - This allows us to easily leverage optimization techniques from the **classical** games literature.

- We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.
  - To do so we leverage a **gradient-based** view of QZSG.
  - This allows us to easily leverage optimization techniques from the **classical** games literature.
- We prove that OMMWU achieves an  $\mathcal{O}(1/\epsilon)$  iteration complexity.

- We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.
  - To do so we leverage a **gradient-based** view of QZSG.
  - This allows us to easily leverage optimization techniques from the **classical** games literature.
- We prove that OMMWU achieves an  $\mathcal{O}(1/\epsilon)$  iteration complexity.
  - This is a **quadratic speedup** relative to the best prior algorithm [JW09].

- We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.
  - To do so we leverage a **gradient-based** view of QZSG.
  - This allows us to easily leverage optimization techniques from the **classical** games literature.
- We prove that OMMWU achieves an  $\mathcal{O}(1/\epsilon)$  iteration complexity.
  - This is a **quadratic speedup** relative to the best prior algorithm [JW09].
  - We leverage the proof technique of [EN20] for **monotone variational inequalities**.

- We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.
  - To do so we leverage a **gradient-based** view of QZSG.
  - This allows us to easily leverage optimization techniques from the **classical** games literature.
- We prove that OMMWU achieves an  $\mathcal{O}(1/\epsilon)$  iteration complexity.
  - This is a **quadratic speedup** relative to the best prior algorithm [JW09].
  - We leverage the proof technique of [EN20] for **monotone variational inequalities**.
- We further introduce a design framework for QZSG algorithms.

- We propose a new algorithm (**Optimistic Matrix Multiplicative Weight Updates**) for finding approximate Nash equilibria of quantum zero-sum games.
  - To do so we leverage a **gradient-based** view of QZSG.
  - This allows us to easily leverage optimization techniques from the **classical** games literature.
- We prove that OMMWU achieves an  $\mathcal{O}(1/\epsilon)$  iteration complexity.
  - This is a **quadratic speedup** relative to the best prior algorithm [JW09].
  - We leverage the proof technique of [EN20] for **monotone variational inequalities**.
- We further introduce a design framework for QZSG algorithms.
  - We use this to **unify** the QZSG algorithms landscape and **motivate** OMMWU.

A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games

F. Vasconcelos - 3 QTML 2023

• A two-player game



Alice



Bob

F. Vasconcelos - 3 QTML 2023

- A **two-player** game
- In each round, players play unentangled mixed states (spectraplex):

 $\alpha \in \mathcal{A} = \mathbb{C}^{2^n x 2^n}, \qquad \beta \in \mathcal{B} = \mathbb{C}^{2^m x 2^m}$ 







- A two-player game
- In each round, players play **unentangled** mixed states (**spectraplex**):  $\alpha \in \mathcal{A} = \mathbb{C}^{2^n x 2^n}, \qquad \beta \in \mathcal{B} = \mathbb{C}^{2^m x 2^m}$
- They send joint state  $\Psi = (\alpha, \beta)$  to a referee



- A two-player game
- In each round, players play unentangled mixed states (spectraplex):

 $\alpha \in \mathcal{A} = \mathbb{C}^{2^n x 2^n}, \qquad \beta \in \mathcal{B} = \mathbb{C}^{2^m x 2^m}$ 

- They send **joint state**  $\Psi = (\alpha, \beta)$  to a referee
- The referee makes a joint measurement w.r.t. payoff observable:

 $U = \sum_{\omega \in \Omega} \mathcal{U}(\omega) P_{\omega}$ 



- A two-player game
- In each round, players play unentangled mixed states (spectraplex):

 $\alpha \in \mathcal{A} = \mathbb{C}^{2^n x 2^n}, \qquad \beta \in \mathcal{B} = \mathbb{C}^{2^m x 2^m}$ 

- They send **joint state**  $\Psi = (\alpha, \beta)$  to a referee
- The referee makes a joint measurement w.r.t. payoff observable:

 $U = \sum_{\omega \in \Omega} \mathcal{U}(\omega) P_{\omega}$ 

• Based on the measurement outcome, the referee **rewards** the players



- A **two-player** game
- In each round, players play unentangled mixed states (spectraplex):

 $\alpha \in \mathcal{A} = \mathbb{C}^{2^n x 2^n}, \qquad \beta \in \mathcal{B} = \mathbb{C}^{2^m x 2^m}$ 

- They send **joint state**  $\Psi = (\alpha, \beta)$  to a referee
- The referee makes a joint measurement w.r.t. payoff observable:

 $U = \sum_{\omega \in \Omega} \mathcal{U}(\omega) P_{\omega}$ 

- Based on the measurement outcome, the referee **rewards** the players
  - **zero-sum**  $\Rightarrow$  one player's **win** is the other's **loss**

F. Vasconcelos - 4 QTML 2023

• CZSG are played in the **simplex** 

• CZSG are played in the **simplex**:



• CZSG are played in the **simplex**:



- Players play indeterministic strategies:
  - Probability vectors:  $|\alpha\rangle$ ,  $|\beta\rangle \in [0,1]^n$

• CZSG are played in the **simplex**:



- Players play indeterministic strategies:
  - Probability vectors:  $|\alpha\rangle$ ,  $|\beta\rangle \in [0,1]^n$
- **Expected utility** for specific strategies:

 $u(\alpha,\beta) = \langle \beta | U | \alpha \rangle$ 

• CZSG are played in the **simplex**:



- Players play indeterministic strategies:
  - Probability vectors:  $|\alpha\rangle$ ,  $|\beta\rangle \in [0,1]^n$
- **Expected utility** for specific strategies:

 $u(\alpha,\beta) = \langle \beta | U | \alpha \rangle$ 

• QZSG are played in the **spectraplex** 

• CZSG are played in the **simplex**:



- Players play indeterministic strategies:
  - Probability vectors:  $|\alpha\rangle$ ,  $|\beta\rangle \in [0,1]^n$
- **Expected utility** for specific strategies:

 $u(\alpha,\beta) = \langle \beta | U | \alpha \rangle$ 

• QZSG are played in the **spectraplex**:





• CZSG are played in the **simplex**:



- Players play indeterministic strategies:
  - Probability vectors:  $|\alpha\rangle$ ,  $|\beta\rangle \in [0,1]^n$
- **Expected utility** for specific strategies:

 $u(\alpha,\beta) = \langle \beta | U | \alpha \rangle$ 

• QZSG are played in the **spectraplex**:



F. Vasconcelos - 4 QTML 2023

• CZSG are played in the **simplex**:



- Players play indeterministic strategies:
  - Probability vectors:  $|\alpha\rangle$ ,  $|\beta\rangle \in [0,1]^n$
- **Expected utility** for specific strategies:

 $u(\alpha,\beta) = \langle \beta | U | \alpha \rangle$ 

• QZSG are played in the **spectraplex**:



- Players play mixtures of indeterministic strategies (meta-strategies):
  - Density matrices:  $\alpha \in \mathbb{C}^{2^n x 2^n}$ ,  $\beta \in \mathbb{C}^{2^m x 2^m}$

• CZSG are played in the **simplex**:



- Players play indeterministic strategies:
  - Probability vectors:  $|\alpha\rangle$ ,  $|\beta\rangle \in [0,1]^n$
- **Expected utility** for specific strategies:

 $u(\alpha,\beta) = \langle \beta | U | \alpha \rangle$ 

• QZSG are played in the **spectraplex**:



- Players play mixtures of indeterministic strategies (meta-strategies):
  - Density matrices:  $\alpha \in \mathbb{C}^{2^n x 2^n}$ ,  $\beta \in \mathbb{C}^{2^m x 2^m}$
- **Expected utility** for specific strategies:  $u(\alpha, \beta) = \operatorname{Tr}[U(\alpha \otimes \beta)]$

F. Vasconcelos - 5 QTML 2023

• If Alice's expected payoff is  $u(\alpha, \beta)$ , Bob's expected payoff is  $-u(\alpha, \beta)$ 

- If Alice's expected payoff is  $u(\alpha, \beta)$ , Bob's expected payoff is  $-u(\alpha, \beta)$
- In playing the game, each player wants to maximize their expected payoff:

- If Alice's expected payoff is  $u(\alpha, \beta)$ , Bob's expected payoff is  $-u(\alpha, \beta)$
- In playing the game, each player wants to maximize their expected payoff:
  - Alice wants:  $\max_{\alpha} u(\alpha, \beta)$

- If Alice's expected payoff is  $u(\alpha, \beta)$ , Bob's expected payoff is  $-u(\alpha, \beta)$
- In playing the game, each player wants to maximize their expected payoff:
  - Alice wants:  $\max_{\alpha} u(\alpha, \beta)$

- Bob wants: 
$$\max_{\beta} - u(\alpha, \beta) = \min_{\beta} u(\alpha, \beta)$$

- If Alice's expected payoff is  $u(\alpha, \beta)$ , Bob's expected payoff is  $-u(\alpha, \beta)$
- In playing the game, each player wants to maximize their expected payoff:
  - Alice wants:  $\max_{\alpha} u(\alpha, \beta)$
  - Bob wants:  $\max_{\beta} u(\alpha, \beta) = \min_{\beta} u(\alpha, \beta)$
- These are **competing** interests, defining a **minimax** optimization problem:

 $\min_{\beta \in \mathcal{B}} \max_{\alpha \in \mathcal{A}} u(\alpha, \beta)$ 

F. Vasconcelos - 5 QTML 2023

- If Alice's expected payoff is  $u(\alpha, \beta)$ , Bob's expected payoff is  $-u(\alpha, \beta)$
- In playing the game, each player wants to maximize their expected payoff:
  - Alice wants:  $\max_{\alpha} u(\alpha, \beta)$
  - Bob wants:  $\max_{\beta} u(\alpha, \beta) = \min_{\beta} u(\alpha, \beta)$
- These are competing interests, defining a minimax optimization problem:

 $\min_{\beta \in \mathcal{B}} \max_{\alpha \in \mathcal{A}} u(\alpha, \beta)$ 



F. Vasconcelos - 5 QTML 2023

# Why Study Quantum Games?

F. Vasconcelos - 6 QTML 2023

• General quantum games have emerged in many areas of quantum information:

- General quantum games have emerged in many areas of quantum information:
  - Non-local games (Bell, CSHS, ..., MIP\*=RE)

- General quantum games have emerged in many areas of quantum information:
  - Non-local games (Bell, CSHS, ..., MIP\*=RE)
  - Quantum interactive proofs (competitive refereed games)

- General quantum games have emerged in many areas of quantum information:
  - Non-local games (Bell, CSHS, ..., MIP\*=RE)
  - Quantum interactive proofs (competitive refereed games)
  - Multi-prover quantum interactive proofs (cooperative games)

- General quantum games have emerged in many areas of quantum information:
  - Non-local games (Bell, CSHS, ..., MIP\*=RE)
  - Quantum interactive proofs (competitive refereed games)
  - Multi-prover quantum interactive proofs (cooperative games)
  - Quantum coin-flipping (two player game)

- General quantum games have emerged in many areas of quantum information:
  - Non-local games (Bell, CSHS, ..., MIP\*=RE)
  - Quantum interactive proofs (competitive refereed games)
  - Multi-prover quantum interactive proofs (cooperative games)
  - Quantum coin-flipping (two player game)

• However, optimization of general quantum games is **PPAD-complete** [BW22]

• Meanwhile, as classically, QZSG optimization is **computationally tractable** 

- Meanwhile, as classically, QZSG optimization is **computationally tractable** 
  - [JW09] proposed an explicit QZSG algo that converges to an  $\epsilon$ -approx soln in  $\mathcal{O}(1/\epsilon^2)$  iterations

- Meanwhile, as classically, QZSG optimization is **computationally tractable** 
  - [JW09] proposed an explicit QZSG algo that converges to an  $\epsilon$ -approx soln in  $\mathcal{O}(1/\epsilon^2)$  iterations
- Uses of QZSG:

- Meanwhile, as classically, QZSG optimization is **computationally tractable** 
  - [JW09] proposed an explicit QZSG algo that converges to an  $\epsilon$ -approx soln in  $\mathcal{O}(1/\epsilon^2)$  iterations
- Uses of QZSG:
  - Game theory: proof that quantum strategies  $\geq$  classical strategies [M99]

- Meanwhile, as classically, QZSG optimization is **computationally tractable** 
  - [JW09] proposed an explicit QZSG algo that converges to an  $\epsilon$ -approx soln in  $\mathcal{O}(1/\epsilon^2)$  iterations
- Uses of QZSG:
  - Game theory: proof that quantum strategies  $\geq$  classical strategies [M99]
  - Complexity theory: proof that  $QRG(1) \subseteq PSPACE[JW09]$

- Meanwhile, as classically, QZSG optimization is **computationally tractable** 
  - [JW09] proposed an explicit QZSG algo that converges to an  $\epsilon$ -approx soln in  $\mathcal{O}(1/\epsilon^2)$  iterations
- Uses of QZSG:
  - Game theory: proof that quantum strategies  $\geq$  classical strategies [M99]
  - Complexity theory: proof that  $QRG(1) \subseteq PSPACE[JW09]$
  - Machine learning: **Quantum Generative Adversarial Networks** [DK18]



A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games



F. Vasconcelos -9 QTML 2023

Image Source: Wikipedia

• The solutions (**fixed points**) of this minimax define the game's value:

 $u(\alpha^*,\beta^*) = \min_{\beta} \max_{\alpha} u(\alpha,\beta) = \max_{\alpha} \min_{\beta} u(\alpha,\beta)$ 



• The solutions (**fixed points**) of this minimax define the game's value:

$$u(\alpha^*, \beta^*) = \min_{\beta} \max_{\alpha} u(\alpha, \beta) = \max_{\alpha} \min_{\beta} u(\alpha, \beta)$$
von Neumann's Minimax Thm



• The solutions (**fixed points**) of this minimax define the game's value:

 $u(\alpha^*, \beta^*) = \min_{\beta} \max_{\alpha} u(\alpha, \beta) = \max_{\alpha} \min_{\beta} u(\alpha, \beta)$ von Neumann's Minimax Thm

 Nash equilibria are game states (α\*, β\*) such that neither player has an incentive to change to another state unilaterally:



• The solutions (**fixed points**) of this minimax define the game's value:

 $u(\alpha^*, \beta^*) = \min_{\beta} \max_{\alpha} u(\alpha, \beta) = \max_{\alpha} \min_{\beta} u(\alpha, \beta)$ von Neumann's Minimax Thm

 Nash equilibria are game states (α\*, β\*) such that neither player has an incentive to change to another state unilaterally:

 $u(\alpha^*, \beta^*) \ge u(\alpha, \beta^*), \quad \forall \alpha \in \mathcal{A}$ 



• The solutions (**fixed points**) of this minimax define the game's value:

 $u(\alpha^*, \beta^*) = \min_{\beta} \max_{\alpha} u(\alpha, \beta) = \max_{\alpha} \min_{\beta} u(\alpha, \beta)$ von Neumann's Minimax Thm

 Nash equilibria are game states (α\*, β\*) such that neither player has an incentive to change to another state unilaterally:

$$\begin{split} u(\alpha^*, \beta^*) &\geq u(\alpha, \beta^*), \qquad \forall \alpha \in \mathcal{A} \\ u(\alpha^*, \beta^*) &\leq u(\alpha^*, \beta), \qquad \forall \beta \in \mathcal{B} \end{split}$$



• Algorithmically, we will view the game as an **online** learning problem

- Algorithmically, we will view the game as an **online** learning problem
- In each round, each player **queries** the referee ("oracle") with a state



- Algorithmically, we will view the game as an **online** learning problem
- In each round, each player **queries** the referee ("oracle") with a state
- The ref returns **feedback** to each player



- Algorithmically, we will view the game as an **online** learning problem
- In each round, each player **queries** the referee ("oracle") with a state
- The ref returns **feedback** to each player
- The players use this feedback to update and improve their states



- Algorithmically, we will view the game as an **online** learning problem
- In each round, each player **queries** the referee ("oracle") with a state
- The ref returns **feedback** to each player
- The players use this feedback to update and improve their states
- Goal: minimize the number of rounds until the players reach an *e*-approx
   Nash equilibrium



• Previous work on QZSG characterized the game's feedback via **superoperators**:

- Previous work on QZSG characterized the game's feedback via **superoperators**:
  - Alice's Feedback:  $\Xi(\beta) = \operatorname{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$

- Previous work on QZSG characterized the game's feedback via **superoperators**:
  - Alice's Feedback:  $\Xi(\beta) = \operatorname{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
  - Bob's Feedback:  $\Xi^*(\alpha) = \operatorname{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_{\mathcal{B}})]$

- Previous work on QZSG characterized the game's feedback via **superoperators**:
  - Alice's Feedback:  $\Xi(\beta) = \operatorname{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
  - Bob's Feedback:  $\Xi^*(\alpha) = \operatorname{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_{\mathcal{B}})]$
- We instead characterize the game's feedback via **gradient-based** operators:

- Previous work on QZSG characterized the game's feedback via **superoperators**:
  - Alice's Feedback:  $\Xi(\beta) = \operatorname{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
  - Bob's Feedback:  $\Xi^*(\alpha) = \operatorname{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_{\mathcal{B}})]$
- We instead characterize the game's feedback via **gradient-based** operators:
  - Alice's Feedback:  $\mathcal{F}_{\alpha}(\beta) = \nabla_{\alpha^{\mathrm{T}}} u(\alpha, \beta) = \mathrm{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$

- Previous work on QZSG characterized the game's feedback via **superoperators**:
  - Alice's Feedback:  $\Xi(\beta) = \operatorname{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
  - Bob's Feedback:  $\Xi^*(\alpha) = \operatorname{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_{\mathcal{B}})]$
- We instead characterize the game's feedback via **gradient-based** operators:
  - Alice's Feedback:  $\mathcal{F}_{\alpha}(\beta) = \nabla_{\alpha^{\mathrm{T}}} u(\alpha, \beta) = \mathrm{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
  - Bob's Feedback:  $\mathcal{F}_{\beta}(\alpha) = -\nabla_{\beta^{\mathrm{T}}} u(\alpha, \beta) = -\mathrm{Tr}_{\mathcal{A}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$

- Previous work on QZSG characterized the game's feedback via **superoperators**:
  - Alice's Feedback:  $\Xi(\beta) = \operatorname{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
  - Bob's Feedback:  $\Xi^*(\alpha) = \operatorname{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_{\mathcal{B}})]$
- We instead characterize the game's feedback via **gradient-based** operators:
  - Alice's Feedback:  $\mathcal{F}_{\alpha}(\beta) = \nabla_{\alpha^{\mathrm{T}}} u(\alpha, \beta) = \mathrm{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
  - Bob's Feedback:  $\mathcal{F}_{\beta}(\alpha) = -\nabla_{\beta^{\mathrm{T}}} u(\alpha, \beta) = -\mathrm{Tr}_{\mathcal{A}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
- The two characterizations are **equivalent**:

- Previous work on QZSG characterized the game's feedback via **superoperators**:
  - Alice's Feedback:  $\Xi(\beta) = \operatorname{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
  - Bob's Feedback:  $\Xi^*(\alpha) = \operatorname{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_{\mathcal{B}})]$
- We instead characterize the game's feedback via **gradient-based** operators:
  - Alice's Feedback:  $\mathcal{F}_{\alpha}(\beta) = \nabla_{\alpha^{\mathrm{T}}} u(\alpha, \beta) = \mathrm{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
  - Bob's Feedback:  $\mathcal{F}_{\beta}(\alpha) = -\nabla_{\beta^{\mathrm{T}}} u(\alpha, \beta) = -\mathrm{Tr}_{\mathcal{A}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
- The two characterizations are **equivalent**:
  - Feedback:  $\mathcal{F}_{\alpha}(\beta) = \Xi(\beta^{T}), \quad \mathcal{F}_{\beta}(\alpha) = -\Xi^{*}(\alpha^{T})$

- Previous work on QZSG characterized the game's feedback via **superoperators**:
  - Alice's Feedback:  $\Xi(\beta) = \operatorname{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
  - Bob's Feedback:  $\Xi^*(\alpha) = \operatorname{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_{\mathcal{B}})]$
- We instead characterize the game's feedback via **gradient-based** operators:
  - Alice's Feedback:  $\mathcal{F}_{\alpha}(\beta) = \nabla_{\alpha^{\mathrm{T}}} u(\alpha, \beta) = \mathrm{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
  - Bob's Feedback:  $\mathcal{F}_{\beta}(\alpha) = -\nabla_{\beta^{\mathrm{T}}} u(\alpha, \beta) = -\mathrm{Tr}_{\mathcal{A}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
- The two characterizations are **equivalent**:
  - Feedback:  $\mathcal{F}_{\alpha}(\beta) = \Xi(\beta^{T}), \quad \mathcal{F}_{\beta}(\alpha) = -\Xi^{*}(\alpha^{T})$
  - Alice's expected payoff:  $u(\alpha,\beta) = \operatorname{Tr}[\alpha \mathcal{F}_{\alpha}(\beta)] = \operatorname{Tr}[\alpha \Xi(\beta^{T})]$

## Superoperator vs Gradient-Based Feedback

- Previous work on QZSG characterized the game's feedback via **superoperators**:
  - Alice's Feedback:  $\Xi(\beta) = \operatorname{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta^{\mathrm{T}})]$
  - Bob's Feedback:  $\Xi^*(\alpha) = \operatorname{Tr}_{\mathcal{A}}[U(\alpha^T \otimes \mathbb{I}_{\mathcal{B}})]$
- We instead characterize the game's feedback via **gradient-based** operators:
  - Alice's Feedback:  $\mathcal{F}_{\alpha}(\beta) = \nabla_{\alpha^{\mathrm{T}}} u(\alpha, \beta) = \mathrm{Tr}_{\mathcal{B}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
  - Bob's Feedback:  $\mathcal{F}_{\beta}(\alpha) = -\nabla_{\beta^{\mathrm{T}}} u(\alpha, \beta) = -\mathrm{Tr}_{\mathcal{A}}[U(\mathbb{I}_{\mathcal{A}} \otimes \beta)]$
- The two characterizations are **equivalent**:
  - Feedback: - Alice's expected payoff: - Bob's expected payoff:  $\mathcal{F}_{\alpha}(\beta) = \Xi(\beta^{T}), \quad \mathcal{F}_{\beta}(\alpha) = -\Xi^{*}(\alpha^{T})$   $u(\alpha, \beta) = \operatorname{Tr}[\alpha \mathcal{F}_{\alpha}(\beta)] = \operatorname{Tr}[\alpha \Xi(\beta^{T})]$   $-u(\alpha, \beta) = \operatorname{Tr}[\beta \mathcal{F}_{\beta}(\alpha)] = -\operatorname{Tr}[\beta \Xi^{*}(\alpha^{T})]$

F. Vasconcelos - 11 QTML 2023

F. Vasconcelos - 12 QTML 2023

• With gradient-based feedback, the expected payoff is a **directional derivative**:

- With gradient-based feedback, the expected payoff is a **directional derivative**:
  - In Alice's direction:  $u(\alpha, \beta) = \operatorname{Tr}[\alpha \mathcal{F}_{\alpha}(\beta)] = \operatorname{Tr}[\alpha \nabla_{\alpha^{\mathrm{T}}} u(\alpha, \beta)]$

- With gradient-based feedback, the expected payoff is a **directional derivative**:
  - In Alice's direction:  $u(\alpha, \beta) = \operatorname{Tr}[\alpha \mathcal{F}_{\alpha}(\beta)] = \operatorname{Tr}[\alpha \nabla_{\alpha^{\mathrm{T}}} u(\alpha, \beta)]$
  - In Bob's direction:  $u(\alpha,\beta) = -\mathrm{Tr}[\beta \mathcal{F}_{\beta}(\alpha)] = \mathrm{Tr}[\beta \nabla_{\beta^{\mathrm{T}}} u(\alpha,\beta)]$

- With gradient-based feedback, the expected payoff is a **directional derivative**:
  - In Alice's direction:  $u(\alpha,\beta) = \operatorname{Tr}[\alpha \mathcal{F}_{\alpha}(\beta)] = \operatorname{Tr}[\alpha \nabla_{\alpha^{\mathrm{T}}} u(\alpha,\beta)]$

$$u(\Psi) = \operatorname{Tr}[\Psi \mathcal{F}(\Psi)] = \operatorname{Tr}[\Psi \nabla_{\Psi^{\mathrm{T}}} u(\Psi)]$$

- In Bob's direction:  $u(\alpha,\beta) = -\mathrm{Tr}[\beta \mathcal{F}_{\beta}(\alpha)] = \mathrm{Tr}[\beta \nabla_{\beta^{\mathrm{T}}} u(\alpha,\beta)]$ 

- With gradient-based feedback, the expected payoff is a **directional derivative**:

  - $\ln \text{Alice's direction:} \quad u(\alpha, \beta) = \operatorname{Tr}[\alpha \mathcal{F}_{\alpha}(\beta)] = \operatorname{Tr}[\alpha \nabla_{\alpha^{\mathrm{T}}} u(\alpha, \beta)] \\ \ln \text{Bob's direction:} \quad u(\alpha, \beta) = -\operatorname{Tr}[\beta \mathcal{F}_{\beta}(\alpha)] = \operatorname{Tr}[\beta \nabla_{\beta^{\mathrm{T}}} u(\alpha, \beta)] \right\} \quad u(\Psi) = \operatorname{Tr}[\Psi \mathcal{F}(\Psi)] = \operatorname{Tr}[\Psi \nabla_{\Psi^{\mathrm{T}}} u(\Psi)]$
- With a directional derivative, we can characterize the game's equilibria as solutions of the **variational inequality (VI)**:  $Tr[(\Psi - \Psi^*) \mathcal{F}(\Psi^*)] \le 0, \quad \forall \Psi \in \mathcal{A} \bigoplus \mathcal{B}$

- With gradient-based feedback, the expected payoff is a **directional derivative**:

  - $\text{ In Alice's direction: } u(\alpha,\beta) = \operatorname{Tr}[\alpha \mathcal{F}_{\alpha}(\beta)] = \operatorname{Tr}[\alpha \nabla_{\alpha^{\mathrm{T}}} u(\alpha,\beta)] \\ \text{ In Bob's direction: } u(\alpha,\beta) = -\operatorname{Tr}[\beta \mathcal{F}_{\beta}(\alpha)] = \operatorname{Tr}[\beta \nabla_{\beta^{\mathrm{T}}} u(\alpha,\beta)] \end{array} \right\} \quad u(\Psi) = \operatorname{Tr}[\Psi \mathcal{F}(\Psi)] = \operatorname{Tr}[\Psi \nabla_{\Psi^{\mathrm{T}}} u(\Psi)]$
- With a directional derivative, we can characterize the game's equilibria as solutions of the **variational inequality (VI)**:  $Tr[(\Psi - \Psi^*) \mathcal{F}(\Psi^*)] \le 0, \quad \forall \Psi \in \mathcal{A} \bigoplus \mathcal{B}$



- With gradient-based feedback, the expected payoff is a **directional derivative**:

  - $\text{ In Alice's direction: } u(\alpha,\beta) = \operatorname{Tr}[\alpha \mathcal{F}_{\alpha}(\beta)] = \operatorname{Tr}[\alpha \nabla_{\alpha^{\mathrm{T}}} u(\alpha,\beta)] \\ \text{ In Bob's direction: } u(\alpha,\beta) = -\operatorname{Tr}[\beta \mathcal{F}_{\beta}(\alpha)] = \operatorname{Tr}[\beta \nabla_{\beta^{\mathrm{T}}} u(\alpha,\beta)] \end{array} \right\} \quad u(\Psi) = \operatorname{Tr}[\Psi \mathcal{F}(\Psi)] = \operatorname{Tr}[\Psi \nabla_{\Psi^{\mathrm{T}}} u(\Psi)]$
- With a directional derivative, we can characterize the game's equilibria as solutions of the **variational inequality (VI)**:  $Tr[(\Psi - \Psi^*) \mathcal{F}(\Psi^*)] \le 0, \quad \forall \Psi \in \mathcal{A} \bigoplus \mathcal{B}$
- We further prove that  $\mathcal{F}(\Psi)$  is **monotone** and **Lipschitz**, which offers additional structure about the game that we can use to leverage efficient classical algorithms for solving such VIs.



A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games

F. Vasconcelos - 14 QTML 2023

• Classical gradient descent (GD):  $x_{t+1} = x_t - \eta \nabla F(x_t)$ 

- Classical gradient descent (GD):  $x_{t+1} = x_t \eta \nabla F(x_t)$
- Equivalently, GD minimizes the 1<sup>st</sup>-order approx of *F* with **Euclidean regularizer** :

$$x_{t+1} = \underset{x}{\operatorname{argmin}} \left( F(x_t) + \nabla F(x_t)^T (x - x_t) + \frac{1}{2\eta} \|x - x_t\|^2 \right)$$

- Classical gradient descent (GD):  $x_{t+1} = x_t \eta \nabla F(x_t)$
- Equivalently, GD minimizes the 1<sup>st</sup>-order approx of *F* with **Euclidean regularizer** :

$$x_{t+1} = \underset{x}{\operatorname{argmin}} \left( F(x_t) + \nabla F(x_t)^T (x - x_t) + \frac{1}{2\eta} \|x - x_t\|^2 \right)$$

• To generalize GD to other regularizers *h*, perform **mirror descent (MD)**:

 $x_{t+1} = (\nabla h)^{-1} [\nabla h(x_t) - \eta \nabla F(x_t)]$ 

- Classical gradient descent (GD):
- Equivalently, GD minimizes the  $1^{st}$ -order approx of F with Euclidean regularizer :

 $x_{t+1} = x_t - \eta \nabla F(x_t) \leftarrow$ 

For  $h(y) = \frac{1}{2} ||y||^2$ ,  $\nabla h(y) = y$ 

$$x_{t+1} = \underset{x}{\operatorname{argmin}} \left( F(x_t) + \nabla F(x_t)^T (x - x_t) + \frac{1}{2\eta} \|x - x_t\|^2 \right)$$

• To generalize GD to other regularizers *h*, perform **mirror descent (MD)**:

 $x_{t+1} = (\nabla h)^{-1} [\nabla h(x_t) - \eta \nabla F(x_t)] -$ 

• To generalize GD to other regularizers *h*, perform **mirror descent (MD)**:

 $x_{t+1} = (\nabla h)^{-1} [\nabla h(x_t) - \eta \nabla F(x_t)]$ 

• To generalize GD to other regularizers *h*, perform **mirror descent (MD)**:

$$x_{t+1} = (\nabla h)^{-1} [\nabla h(x_t) - \eta \nabla F(x_t)]$$



F. Vasconcelos - 14 QTML 2023

• To generalize GD to other regularizers *h*, perform **mirror descent (MD)**:

$$x_{t+1} = (\nabla h)^{-1} [\nabla h(x_t) - \eta \nabla F(x_t)]$$



F. Vasconcelos - 14 QTML 2023

• To generalize GD to other regularizers *h*, perform **mirror descent (MD)**:

$$x_{t+1} = (\nabla h)^{-1} [\nabla h(x_t) - \eta \nabla F(x_t)]$$



• To generalize GD to other regularizers *h*, perform **mirror descent (MD)**:

$$x_{t+1} = (\nabla h)^{-1} [\nabla h(x_t) - \eta \nabla F(x_t)]$$



F. Vasconcelos - 14 QTML 2023

F. Vasconcelos - 15 QTML 2023

 In 2009, Jain and Watrous proposed the Matrix Multiplicative Weight Updates (MMWU) algorithm, with the following update in each round t:

$$\alpha_t = \Lambda\left(\eta \sum_{i=0}^{t-1} \Xi(\beta_i^{\mathrm{T}})\right), \qquad \beta_t = \Lambda\left(-\eta \sum_{i=0}^{t-1} \Xi^*(\alpha_i^{\mathrm{T}})\right), \qquad \text{where } \Lambda(x) = \frac{\exp(x)}{\operatorname{Tr}(\exp(x))}$$

 In 2009, Jain and Watrous proposed the Matrix Multiplicative Weight Updates (MMWU) algorithm, with the following update in each round t:

$$\alpha_t = \Lambda\left(\eta \sum_{i=0}^{t-1} \Xi(\beta_i^{\mathrm{T}})\right), \qquad \beta_t = \Lambda\left(-\eta \sum_{i=0}^{t-1} \Xi^*(\alpha_i^{\mathrm{T}})\right), \qquad \text{where } \Lambda(x) = \frac{\exp(x)}{\operatorname{Tr}(\exp(x))}$$

• We show MMWU is **"Lazy" Mirror Descent**, with a von Neumann **entropy** regularizer:

 $h(\psi) = Tr[\psi \log \psi]$ 

 In 2009, Jain and Watrous proposed the Matrix Multiplicative Weight Updates (MMWU) algorithm, with the following update in each round t:

$$\alpha_t = \Lambda\left(\eta \sum_{i=0}^{t-1} \Xi(\beta_i^{\mathrm{T}})\right), \qquad \beta_t = \Lambda\left(-\eta \sum_{i=0}^{t-1} \Xi^*(\alpha_i^{\mathrm{T}})\right), \qquad \text{where } \Lambda(x) = \frac{\exp(x)}{\operatorname{Tr}(\exp(x))}$$

• We show MMWU is **"Lazy" Mirror Descent**, with a von Neumann **entropy** regularizer:

 $h(\psi) = Tr[\psi \log \psi]$ 

• Like classical MWU, they prove an  $\mathcal{O}(1/\epsilon^2)$  convergence.

 In 2009, Jain and Watrous proposed the Matrix Multiplicative Weight Updates (MMWU) algorithm, with the following update in each round t:

$$\alpha_t = \Lambda\left(\eta \sum_{i=0}^{t-1} \Xi(\beta_i^{\mathrm{T}})\right), \qquad \beta_t = \Lambda\left(-\eta \sum_{i=0}^{t-1} \Xi^*(\alpha_i^{\mathrm{T}})\right), \qquad \text{where } \Lambda(x) = \frac{\exp(x)}{\operatorname{Tr}(\exp(x))}$$

• We show MMWU is **"Lazy" Mirror Descent**, with a von Neumann **entropy** regularizer:

 $h(\psi) = Tr[\psi \log \psi]$ 

- Like classical MWU, they prove an  $\mathcal{O}(1/\epsilon^2)$  convergence.
  - However, in classical games, while this is optimal for classical **black-box** optimization, Nemirovski [N04] showed that  $O(1/\epsilon)$  can be achieved for monotone VIs.

F. Vasconcelos - 16 QTML 2023

• To improve upon the MMWU, we leverage **proximal** instead of mirror steps

- To improve upon the MMWU, we leverage **proximal** instead of mirror steps
  - Proximal steps introduce "momentum"

- To improve upon the MMWU, we leverage **proximal** instead of mirror steps
  - Proximal steps introduce "momentum"



- To improve upon the MMWU, we leverage **proximal** instead of mirror steps
  - Proximal steps introduce "momentum"



- To improve upon the MMWU, we leverage **proximal** instead of mirror steps
  - Proximal steps introduce "momentum"



• We further leverage "optimism" to reduce the total number of oracle calls from 2 to 1

F. Vasconcelos - 17 QTML 2023

• We leverage proximal maps and optimism in our proposal of

**Optimistic Matrix Multiplicative Weight Updates (OMMWU)** :

• We leverage proximal maps and optimism in our proposal of

**Optimistic Matrix Multiplicative Weight Updates (OMMWU)** :

**OMMWU**  $\Phi_{t+1} = \Lambda(\log \Phi_t + \eta \mathcal{F}(\Psi_t))$   $\Psi_{t+1} = \Lambda(\log \Phi_t + \eta \mathcal{F}(\Psi_{t+1}))$ 

• We leverage proximal maps and optimism in our proposal of

**Optimistic Matrix Multiplicative Weight Updates (OMMWU)** :

 $\begin{aligned} \mathbf{OMMWU} \\ \Phi_{t+1} &= \Lambda(\log \Phi_t + \eta \,\mathcal{F}(\Psi_t)) \\ \Psi_{t+1} &= \Lambda(\log \Phi_t + \eta \,\mathcal{F}(\Psi_{t+1})) \end{aligned}$ 

$$\mathbf{MMWU} \\ \Psi_{t+1} = \Lambda \Big( \eta \Sigma_{i=0}^{t} \mathcal{F}(\Psi_{i}) \Big)$$

• We leverage proximal maps and optimism in our proposal of

**Optimistic Matrix Multiplicative Weight Updates (OMMWU)** :

OMMWU  $\Phi_{t+1} = \Lambda(\log \Phi_t + \eta \mathcal{F}(\Psi_t))$  $\Psi_{t+1} = \Lambda(\log \Phi_t + \eta \mathcal{F}(\Psi_{t+1}))$ 

$$\mathbf{MMWU} \\ \Psi_{t+1} = \Lambda \Big( \eta \Sigma_{i=0}^{t} \mathcal{F}(\Psi_{i}) \Big)$$

• Like classical OMWU, we prove an  $\mathcal{O}(1/\epsilon)$  convergence.

## **Our Proposal: Optimistic Matrix Multiplicative Weight Updates**

• We leverage proximal maps and optimism in our proposal of

**Optimistic Matrix Multiplicative Weight Updates (OMMWU)** :

$$OMMWU$$
  

$$\Phi_{t+1} = \Lambda(\log \Phi_t + \eta \mathcal{F}(\Psi_t))$$
  

$$\Psi_{t+1} = \Lambda(\log \Phi_t + \eta \mathcal{F}(\Psi_{t+1}))$$

$$\mathbf{MMWU} \\ \Psi_{t+1} = \Lambda \Big( \eta \Sigma_{i=0}^{t} \mathcal{F}(\Psi_{i}) \Big)$$

- Like classical OMWU, we prove an  $\mathcal{O}(1/\epsilon)$  convergence.
  - The proof follows the proof structure of [EN20] for monotone VIs.

# **Our Proposal: Optimistic Matrix Multiplicative Weight Updates**

• We leverage proximal maps and optimism in our proposal of

**Optimistic Matrix Multiplicative Weight Updates (OMMWU)** :

OMMWU  $\Phi_{t+1} = \Lambda(\log \Phi_t + \eta \mathcal{F}(\Psi_t))$  $\Psi_{t+1} = \Lambda(\log \Phi_t + \eta \mathcal{F}(\Psi_{t+1}))$ 

$$\mathbf{MMWU} \\ \Psi_{t+1} = \Lambda \Big( \eta \Sigma_{i=0}^{t} \mathcal{F}(\Psi_{i}) \Big)$$

- Like classical OMWU, we prove an  $\mathcal{O}(1/\epsilon)$  convergence.
  - The proof follows the proof structure of [EN20] for monotone VIs.
  - We leverage notions of strong convexity, smoothness, and Fenchel conjugacy.

Matrix Multiplicative Weights Update (MMWU)  $\Psi_{t+1} = \Lambda \Big( \eta \Sigma_{i=0}^{t} \mathcal{F}(\Psi_{i}) \Big)$   $\swarrow$ Jain & Watrous 2009 Proposal













A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games

[arXiv:2311.10859]

# **Thank you! Questions?**

## References

**[BW22]** John Bostanci and John Watrous. "Quantum game theory and the complexity of approximating quantum Nash equilibria". Quantum 6, 882 (2022).

- **[DK18]** Pierre-Luc Dallaire-Demers and Nathan Killoran. "Quantum generative adversarial networks". Phys. Rev. A 98, 012324 (2018).
- **[EN20]** Alina Ene and Huy Lê Nguyên. "Adaptive and Universal Algorithms for Variational Inequalities with Optimal Convergence". Proceedings of the AAAI Conference on Artificial Intelligence 36, 6559-6567 (2022).
- [JW09] Rahul Jain and John Watrous. "Parallel Approximation of Non-interactive Zerosum Quantum Games". In 2009 24th Annual IEEE Conference on Computational Complexity. Pages 243–253. (2009).
- [M99] David A. Meyer. "Quantum Strategies". Phys. Rev. Lett. 82, 1052–1055 (1999).