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TL;DR
We show constant-depth circuits for 

UCG: 

Boolean functions: 

QRAM and QRAG gates
Bonus: formal definition of quantum computer with access to
quantum memory

∣x⟩∣ψ⟩ ↦ ∣x⟩U ∣ψ⟩x

∣x⟩∣0⟩ ↦ ∣x⟩∣f(x)⟩
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For the experimentalist: we can reduce the depth of many circuits:

log (n) ↦2 log (n)k

For the complexity theorist: we work in .QNCf
0
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Importance of quantum
memory

Data loading in non-variational QML algorithms
Most of HHL-type speedups (with non-sparse matrices)
State preparation (Grover-Rudolph algorithm)
Space-time tradeoffs (cryptography)
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Importance of quantum
memory

Data loading in non-variational QML algorithms
Most of HHL-type speedups (with non-sparse matrices)
State preparation (Grover-Rudolph algorithm)
Space-time tradeoffs (cryptography)

What is a quantum computer with (quantum) access to a memory?

3.1



What is a quantum computer?

Definition: A QPU of size  is defined as a tuple  consisting of

An input register ;
A workspace  ;
A constant-size universal gate set 

 

m (I, W,G)

I

W

G ⊂ U(C )4×4

An input to the QPU is a tuple  where:(T , ∣ψ ⟩,C ,… ,C )I 1 T
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The size is the sum of the sizes of the instructions .C ,… ,C1 T
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What is a quantum computer with quantum memory?

Definition: A  of size  and a Quantum Memory Device (
) of  memory registers, where each register is of -qubit size are

collectively defined by a tuple  consisting of

QPU poly log(n)
QMD n ℓ

(I, W, A, T, Aux, M,G,R)

Input register, workspace, and gateset (like before, )
Address register   ( -qubits) shared by  and ;
A target register   ( -qubits)  shared by both  and ;

I, W,G

A log n QPU QMD

T ℓ QPU QMD
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A function , where  is a -size
subset of -qubit gates.

R : [n] → V V ⊂ U(C )2 ×22ℓ 2ℓ
O(1)

2ℓ

5.3



What is a quantum computer with quantum memory?

The instruction set:
 

I(G,R) = I(G) ∪ {R}.  

∣i⟩ ∣b⟩ ∣x ⟩ ∣0⟩ ↦A T i Mi Aux
⊗poly(n) ∣i⟩ (R(i)∣b⟩ ∣x ⟩ )∣0⟩ ,A T i Mi Aux

⊗poly(n)

where:
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In practice?

where:
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What we build: Uniformly Controlled Gates

Definition: f-UCG gates:
 
Consider a function f : {0, 1} →n U(C )2×2

  f -UCG = ∣x⟩⟨x∣ ⊗
x∈{0,1}n

∑ f(x) = ∣x⟩⟨x∣ ⊗
x∈{0,1}n

∑ U ,x
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What we build: Uniformly Controlled Gates

Equivalently, its matrix representation is

 f -UCG =[n]→n

(n) ∈

    U0
    
    
    

U1
⋱

 
 
 

U   2 −1n

C .2 ×2(n+1) (n+1)
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What we build: Uniformly Controlled Gates

Equivalently, its matrix representation is
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(n) ∈
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⋱

 
 
 

U   2 −1n
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Definition: f-UCG gates:
 
Consider a function f : {0, 1} →n U(C )2×2

  f -UCG = ∣x⟩⟨x∣ ⊗
x∈{0,1}n

∑ f(x) = ∣x⟩⟨x∣ ⊗
x∈{0,1}n

∑ U ,x

EXAMPLE: HHL
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Definition: -FIN gates:

 

f

What we build: -FIN gatesf

Consider f : {0, 1} ↦∣S∣ {0, 1}

    f -FIN ∣x ⟩ ∣x ⟩… ∣x ⟩ =S→i 0 1 m−1 ∣x ⟩… ∣x ⟩ ∣x ⊕ f(x )⟩ ∣x ⟩… ∣x ⟩ ,  0 i−1 i S i+1 m−1
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EXAMPLE:
many things :)

9.2



Let  be a power of .n ∈ N 2

Definition: [ ]  A quantum random access memory  of size  is a
 with ,

QRAM n

QMD R(i) = CNOTM →Ti

    ∣i⟩ ∣b⟩ ∣x ,… ,x ⟩ ↦A T 0 n−1 M ∣i⟩ ∣b⊕A x ⟩ ∣x ,… ,x ⟩i T 0 n−1 M

  where  L = [x ,… ,x ]1 n
T x ∈i {0, 1}ℓ

What we build: QRAM gate
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Definition:[ ] A quantum random access gate  of memory size  is
a  with ,

QRAG n

QMD R(i) = SWAPM ↔Ti

    ∣i⟩ ∣b⟩ ∣x ,… ,x ⟩ ↦A T 0 n−1 M ∣i⟩ ∣x ⟩ ∣x ,… ,x , b,x ,… ,x ⟩A i T 0 i−1 i+1 n−1 M

Let  be a power of .n ∈ N 2

What we build: QRAG gate

  where  L = [x ,… ,x ]1 n
T x ∈i {0, 1}ℓ
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Some known circuits

Images from https://arxiv.org/pdf/2202.11302.pdf and https://arxiv.org/pdf/1502.03450.pdf

Multiplexer

Bucket-brigade

Giovannetti, Vittorio, et al. "Architectures for a quantum random access memory." PRA

Liu, Junyu., et al. "Quantum Data Center: Theories and Applications" - https://arxiv.org/pdf/2207.14336.pdf
12
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Tools and assumptions (1)

memo: with GT gates we can build Fan-Out gates

Fan-Out gate: It is a sequence of  gates sharing a single control
qubit.
 

 

CNOT

∣b⟩∣x ,… ,x ⟩ ↦0 n−1 ∣b⟩∣x ⊕0 b,… ,x ⊕n−1 b⟩.

Global-Tunable gate: It is a sequence of CZ gates that can share
control or target registers. 
Let . The -arity Global Tunable gate  is the
unitary operator
   

Θ ∈ [−1, 1]n×n n GTΘ
(n)

GT =Θ
(n)

C Z(Θ ) .
1≤i<j≤n

∏ i ij →j

14



Tools and assumptions (2)

Fact: [ -decomposition of single qubit gates]: for a single-qubit
gate  there are angles  such that

Z

U α,β, γ, δ ∈ [−1, 1]

 

U = e Z(β) H Z(γ) H Z(δ),iπα

Fact: [Equivalence Fan-Out and Parity]: The Fan-Out gate is
equivalent to the  up to a Hadamard conjugation.PARITY

(i.e. Fan-Out  )⟺ PARITY

15



Tools and assumptions (3)

Theorem:     The  gate can be implemented in -depth using

 ancillae and  Fan-Out gates with
arity at most .

 ancillae and   gates with arity at most 
.

AND(n) O(1)

2n log n+O(n) 6n+O(log n)
2n

2n+O(log n) 4 GT n+
O(log n)

Claim: A number  of pair-wise commuting Fan-Out gates 
 can be performed in depth-  using one  gate.
l

FO ,… ,FO(n )0 (n )l−1 3 GT

T., Yasuhiro, and S. Tani. "Collapse of the hierarchy of constant-depth exact quantum circuits."

B., Sergey, D. Maslov, and Y. Nam. "Constant-Cost Implementations of Clifford Operations and Multiply-Controlled Gates Using Global Interactions."16



First construction!

#Fan-Out Ancilla #GT Ancilla
f-UCG
f-FIN

QRAM

O(n2 )n O(n2 log n)n O(n2 )n9

O(n2 )n O(n2 log n)n 7 O(n2 )n

Technique Number 1: convert the input into a
one-hot-encoding

O(n log n log log n) 6O(n log n) O(n log n)

Fan-Out Gates GT  Gates
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First construction!

#Fan-Out Ancilla #GT Ancilla
f-UCG
f-FIN

QRAM

O(n2 )n O(n2 log n)n O(n2 )n9

O(n2 )n O(n2 log n)n 7 O(n2 )n

Technique Number 1: convert the input into a
one-hot-encoding

O(n log n log log n) 6O(n log n) O(n log n)

Here,  is a -junta with .f (J , r) ∣ ∣ =J t, t+ r ≤ n

Fan-Out Gates GT  Gates
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How to build a QRAM in constant depth?

Input
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How many GT gates?
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How many GT gates?

1

24.1



How many GT gates?

1 3
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How many GT gates?

1 43

24.3



How many GT gates?

1 43 6

24.4



How many GT gates?

1 43 6 7

24.5



General idea for -juntas(J , r)

Compute the one-hot encoding of  and  separately

Create copies of the target register 
Apply the Z gates for the Z decomposition of  in parallel

Undo the copies of the target register
Undo the computation of the one-hot encoding

J J

U

25



General idea for -juntas(J , r)
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General idea for -juntas(J , r)
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General idea for -juntas(J , r)

Z(δ )x
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Parallel computation using Fan-Out gates

Moore C. et al. "Parallel quantum computation and quantum codes."

Høyer, P., et al. "Quantum fan-out is powerful."

Green, F., et al. "Counting, fanout and the complexity of quantum ACC."
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Second construction!

Technique Number 2: use good ideas from [1] on the functions
obtained by the -decomposition of 

 

 

Z Ux

U   =x e Z(β ) H Z(γ ) H Z(δ ),iπαx
x x x

[1] T., Yasuhiro, and S. Tani. "Collapse of the hierarchy of constant-depth exact quantum circuits."30
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Boolean analysis
First representation is the Fourier expansion (over the reals).
For 

, for ,
 is  

g : {0, 1} ↦n R
g(x) = (S)χ (x)

S⊆[n]

∑ g S

(S) =g g(x)χ (x)2n
1 ∑x∈{0,1}n S S ⊆ [n]

χ (x) :=S (−1) x∑i∈S i PARITY (x)S
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Boolean analysis
First representation is the Fourier expansion (over the reals).
For 

, for ,
 is  

g : {0, 1} ↦n R
g(x) = (S)χ (x)

S⊆[n]

∑ g S

(S) =g g(x)χ (x)2n
1 ∑x∈{0,1}n S S ⊆ [n]

χ (x) :=S (−1) x∑i∈S i PARITY (x)S

The Fourier support of  is

while its sparsity is 

g

supp(g) := {S ⊆ [n] : (S) =g  0},
∣ supp(f)∣

We can build similar definitions for the -decomposition of a
unitary: .

Z

α,β, γ, δ : {0, 1} →n [−1, 1]

supp(f) := supp(α) ∪ supp(β) ∪ supp(γ) ∪ supp(δ)
, , supp (f)>k supp (f)≤k supp (f),…=k

31.2



More Fourier ideas..

The second representation is based on the existence of a function 
 with a (potentially) sparse Fourier expansion that

approximates : ,

.

p : {0, 1} →n R
g ϵ > 0

∣p(x) −
x∈{0,1}n
max g(x)∣ ≤ ϵ

32



More Fourier ideas..

The third representation is using  functions instead. The
(unique) real-polynomial -representation is

where  and the coefficients  are given
by .
For functions over  we can further change the representation

AND

{0, 1}
  g(x) = (S)x ,    

S⊆[n]

∑ g S

x :=S x∏i∈S i :f 2 →[n] R
(S) =f (−1) f(T )∑T⊆S

∣S∣−∣T ∣

{0, 1}

The second representation is based on the existence of a function 
 with a (potentially) sparse Fourier expansion that

approximates : ,

.

p : {0, 1} →n R
g ϵ > 0

∣p(x) −
x∈{0,1}n
max g(x)∣ ≤ ϵ

32.1



-FIN gates with Boolean analysisf
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-FIN gates with Boolean analysisf

34



-FIN gates with Boolean analysisf
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(copy input) Attach an ancillary register .
For each  in parallel, copy the qubit  using a Fan-
Out gate.  

(compute parity) Attach an ancillary register 
. For each  in parallel, apply a 

 gate

∣0⟩⨂S∈supp (f)>1 RS

⊗∣S∣

i ∈ [n] ∣x ⟩i I

∣x⟩ ∣b⟩ ↦I T  ∣x⟩ ∣b⟩ ∣x ⟩ . I T

S∈supp (f)>1

⨂ S RS

∣0⟩ =P
⊗∣ supp (f)∣>1

∣0⟩⨂S∈supp (f)>1 PS S ∈ supp (f)>1

PARITYR →PS S

(∣S∣)

∣x⟩ ∣b⟩ ∣x ⟩ ↦I T

S∈supp (f)>1

⨂ S RS ∣x⟩ ∣b⟩ ∣x ⟩ x ⟩ .I T

S∈supp (f)>1

⨂ S RS ⨁
i∈S

i PS

-UCG: Fourier constructionf

36



Fourier construction

(copy target) Copy  for  times in . 
(apply phase) For each  in parallel, apply a 

 gate controlled on register  onto the -th qubit in
register 
(un-copy target) Undo the copy.
Observe that the relative phase is summing up, composing 

T supp (f)>0 T′

S ∈ supp (δ)>0

Z( (S))δ PS S

T′

δ

 ∣x⟩ ∣b⟩ ↦I T      ∣x⟩ Z (S)χ (x) ∣b⟩     ↦I

S⊆[n]

∑ δ S T,T′
⊗m ∣x⟩ Z(δ(x))∣b⟩ .I T

37



-UCG: Fourier constructionf

!

Idea: apply  onto a target qubit by simply applying to it a
sequence of phases  controlled on , for .

Z(δ(x)) = Z( (S)χ (x))∑S∈supp(δ) δ S

Z(δ(x))
Z( (S))δ χ (x)S S ∈ supp(δ)

Observe:

38



-UCG: Fourier constructionf

!

Idea: apply  onto a target qubit by simply applying to it a
sequence of phases  controlled on , for .

Z(δ(x)) = Z( (S)χ (x))∑S∈supp(δ) δ S

Z(δ(x))
Z( (S))δ χ (x)S S ∈ supp(δ)

Observe:

How?

1. First compute  from the target qubit using one
Fan-Out, where ,

2. Apply the controlled phases  onto different copies.

3. Uncompute the copies with another Fan-Out.

(∣0⟩ +⊗m ∣1⟩ )/⊗m 2

m := ∣ supp(δ)∣

Z( (S))δ

(∣0⟩ +⊗m (−1) ∣1⟩ )/ =(S)χ (x)∑S δ S ⊗m 2 Z(δ(x))(∣0⟩ +⊗m ∣1⟩ )/⊗m 2
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QRAM as a function

Let .

The QRAM function is defined as .

f : {0, 1} ×n {0, 1} ↦log n {0, 1}

f(x, i) = xi
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QRAM as a function

Let .

The QRAM function is defined as .

f : {0, 1} ×n {0, 1} ↦log n {0, 1}

f(x, i) = xi

We can do Fourier analysis on this function! 
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QRAM as a function

Let .

The QRAM function is defined as .

f : {0, 1} ×n {0, 1} ↦log n {0, 1}

f(x, i) = xi

We can do Fourier analysis on this function! 

Theorem: Let  be a power of . A  of memory size 
 can be implemented in constant-depth using

either  ancillae and  Fan-Out gates,
or  ancillae and   gates.
 

n ∈ N 2 QRAM

n

n log n2
1 2 2n2

2n2 2 GT
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Bonus slide: QRAG vs QRAM

Theorem: A query to a QRAM of memory size  can be
simulated using  queries to a QRAG of memory size ,

n

2 n
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Bonus slide: QRAG vs QRAM

Theorem: A query to a QRAM of memory size  can be
simulated using  queries to a QRAG of memory size ,

n

2 n

Theorem: In our computational model, a query to a
QRAG cannot be simulated by any number of queries
to a QRAM.
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Bonus slide: QRAG vs QRAM

Theorem: A query to a QRAM of memory size  can be
simulated using  queries to a QRAG of memory size ,

n

2 n

Theorem: In our computational model, a query to a
QRAG cannot be simulated by any number of queries
to a QRAM.
Theorem: ... but suppose that single-qubit gates can
be freely applied onto the memory register  of any
QRAM. Then a QRAG of memory size  can be
simulated using  queries to a QRAM of memory size 
and  Hadamard gates.

M

n

3 n

2(n+ 1)
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Conclusions
We show constant-depth circuits:

UCGs
Boolean functions
quantum memory gates

We can improve the depth of many circuits:

Bonus: formal definition of quantum computer with access to
quantum memory
Future work? Moral of the story?

log (n) ↦2 log (n)k

PhDs/postdocs:
cs@quantumlah.org

Open Source lecture notes:
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