Constant-depth circuits for Uniformly Controlled Gates and Boolean functions with application to quantum memory circuits

https://arxiv.org/abs/2308.08539

Jonathan Allcock¹ Jinge Bao² João F. Doriguello² Alessandro Luongo² Miklos Santha²

- We show *constant-depth* circuits for
 - UCG: $|x
 angle|\psi
 angle\mapsto |x
 angle U_x|\psi
 angle$
 - Boolean functions: $|x
 angle|0
 angle\mapsto |x
 angle|f(x)
 angle$
 - QRAM and QRAG gates
- Bonus: formal definition of quantum computer with access to quantum memory

- We show *constant-depth* circuits for
 - UCG: $|x
 angle|\psi
 angle\mapsto |x
 angle U_x|\psi
 angle$
 - Boolean functions: $|x
 angle|0
 angle\mapsto |x
 angle|f(x)
 angle$
 - QRAM and QRAG gates
- Bonus: formal definition of quantum computer with access to quantum memory

WE CHEAT!

- We show *constant-depth* circuits for
 - UCG: $|x
 angle|\psi
 angle\mapsto |x
 angle U_x|\psi
 angle$
 - Boolean functions: $|x
 angle|0
 angle\mapsto |x
 angle|f(x)
 angle$
 - QRAM and QRAG gates
- Bonus: formal definition of quantum computer with access to quantum memory

WE CHEAT!

For the complexity theorist: we work in QNC_f^0 .

- We show *constant-depth* circuits for
 - UCG: $|x
 angle|\psi
 angle\mapsto |x
 angle U_x|\psi
 angle$
 - Boolean functions: $|x
 angle|0
 angle\mapsto |x
 angle|f(x)
 angle$
 - QRAM and QRAG gates
- Bonus: formal definition of quantum computer with access to quantum memory

WE CHEAT!

For the complexity theorist: we work in QNC_f^0 .

For the experimentalist: we can reduce the depth of many circuits: $\log_2(n) \mapsto \log_k(n)$

Importance of quantum memory

- Data loading in *non-variational* QML algorithms
- Most of HHL-type speedups (with non-sparse matrices)
- State preparation (Grover-Rudolph algorithm)
- Space-time tradeoffs (cryptography)

Importance of quantum memory

- Data loading in *non-variational* QML algorithms
- Most of HHL-type speedups (with non-sparse matrices)
- State preparation (Grover-Rudolph algorithm)
- Space-time tradeoffs (cryptography)

What is a quantum computer with (quantum) access to a memory?

Definition: A QPU of size m is defined as a tuple (I, W, G) consisting of

- An *input register* I;
- A workspace W;
- A constant-size universal gate set $\mathcal{G} \subset \mathcal{U}(\mathbb{C}^{4 \times 4})$

An input to the QPU is a tuple $(T, |\psi_I\rangle, C_1, \ldots, C_T)$ where:

Definition: A QPU of size m is defined as a tuple (I, W, G) consisting of

- An *input register* I;
- A workspace W;
- A constant-size universal gate set $\mathcal{G} \subset \mathcal{U}(\mathbb{C}^{4 \times 4})$

An input to the QPU is a tuple $(T, |\psi_I\rangle, C_1, \ldots, C_T)$ where:

- $T \in \mathbb{N}$ is the *depth* of the input to the QPU,
- $|\psi_{\mathtt{I}}
 angle\in\mathtt{I}$,

Definition: A QPU of size m is defined as a tuple (I, W, G) consisting of

- An *input register* I;
- A workspace W;
- A constant-size universal gate set $\mathcal{G} \subset \mathcal{U}(\mathbb{C}^{4 \times 4})$

An input to the QPU is a tuple $(T, |\psi_{I}\rangle, C_{1}, \ldots, C_{T})$ where:

- $T \in \mathbb{N}$ is the *depth* of the input to the QPU,
- $|\psi_{ extsf{I}}
 angle\in extsf{I}$,
- $\bullet \ \ C_t \in \mathcal{I}(\mathcal{G})$

Definition: A QPU of size m is defined as a tuple (I, W, G) consisting of

- An *input register* I;
- A workspace W;
- A constant-size universal gate set $\mathcal{G} \subset \mathcal{U}(\mathbb{C}^{4 \times 4})$

An input to the QPU is a tuple $(T, |\psi_I\rangle, C_1, \ldots, C_T)$ where:

- $T \in \mathbb{N}$ is the *depth* of the input to the QPU,
- $|\psi_{ t I}
 angle\in t I$,
- $C_t \in \mathcal{I}(\mathcal{G})$

$$\bullet \hspace{0.1 in} |\psi_0\rangle := |\psi_{\mathtt{I}}\rangle |0\rangle_{\mathtt{W}} \mapsto |\psi_1\rangle = C_1 |\psi_0\rangle \in \mathtt{I} \otimes \mathtt{W}.$$

Definition: A QPU of size m is defined as a tuple (I, W, G) consisting of

- An *input register* I;
- A workspace W;
- A constant-size universal gate set $\mathcal{G} \subset \mathcal{U}(\mathbb{C}^{4 \times 4})$

An input to the QPU is a tuple $(T, |\psi_{I}\rangle, C_{1}, \ldots, C_{T})$ where:

- $T \in \mathbb{N}$ is the *depth* of the input to the QPU,
- $|\psi_{ t I}
 angle\in { t I}$,
- $C_t \in \mathcal{I}(\mathcal{G})$
 - $\bullet \ |\psi_0\rangle:=|\psi_{\tt I}\rangle|0\rangle_{\tt W}\mapsto |\psi_1\rangle=C_1|\psi_0\rangle\in {\tt I}\otimes {\tt W}.$
 - $\mathcal{I}(\mathcal{G}) = all \text{ unitaries on } I \otimes W \text{ from } \mathcal{G}$

Definition: A QPU of size m is defined as a tuple (I, W, G) consisting of

- An *input register* I;
- A workspace W;
- A constant-size universal gate set $\mathcal{G} \subset \mathcal{U}(\mathbb{C}^{4 \times 4})$

An input to the QPU is a tuple $(T, |\psi_I\rangle, C_1, \ldots, C_T)$ where:

- $T \in \mathbb{N}$ is the *depth* of the input to the QPU,
- $|\psi_{ t I}
 angle\in { t I}$,
- $C_t \in \mathcal{I}(\mathcal{G})$
 - $\bullet \ |\psi_0\rangle:=|\psi_{\tt I}\rangle|0\rangle_{\tt W}\mapsto |\psi_1\rangle=C_1|\psi_0\rangle\in {\tt I}\otimes {\tt W}.$
 - $\mathcal{I}(\mathcal{G}) = all \text{ unitaries on } I \otimes W \text{ from } \mathcal{G}$
- The *size* is the sum of the sizes of the instructions C_1, \ldots, C_T .

- Input register, workspace, and gateset (like before, I, W, G)
- Address register A ($\log n$ -qubits) shared by QPU and QMD;
- A target register T (ℓ -qubits) shared by both QPU and QMD;

- Input register, workspace, and gateset (like before, I, W, G)
- Address register A ($\log n$ -qubits) shared by QPU and QMD;
- A target register T (ℓ -qubits) shared by both QPU and QMD;
- Auxiliary register Aux (poly(n)-qubit) owned by the QMD;

- Input register, workspace, and gateset (like before, I, W, G)
- Address register A ($\log n$ -qubits) shared by QPU and QMD;
- A target register T (ℓ -qubits) shared by both QPU and QMD;
- Auxiliary register Aux (poly(n)-qubit) owned by the QMD;
- Memory M ($n\ell$ -qubit) comprising n registers M_0, \ldots, M_{n-1} , each containing ℓ qubits, owned solely by the QMD;

- Input register, workspace, and gateset (like before, I, W, G)
- Address register A ($\log n$ -qubits) shared by QPU and QMD;
- A target register T (ℓ -qubits) shared by both QPU and QMD;
- Auxiliary register Aux (poly(n)-qubit) owned by the QMD;
- Memory M ($n\ell$ -qubit) comprising n registers M_0, \ldots, M_{n-1} , each containing ℓ qubits, owned solely by the QMD;
- A function $\mathsf{R} : [n] \to \mathcal{V}$, where $\mathcal{V} \subset \mathcal{U}(\mathbb{C}^{2^{2\ell} \times 2^{2\ell}})$ is a O(1)-size subset of 2ℓ -qubit gates.

The instruction set:

$$\mathcal{I}(\mathcal{G},\mathsf{R}) = \mathcal{I}(\mathcal{G}) \cup \{\mathsf{R}\}.$$

where:

 $|i
angle_{\mathtt{A}}|b
angle_{\mathtt{T}}|x_{i}
angle_{\mathtt{M}_{i}}|0
angle_{\mathtt{Aux}}^{\otimes \mathrm{poly}(n)}\mapsto |i
angle_{\mathtt{A}}ig(\mathsf{R}(i)|b
angle_{\mathtt{T}}|x_{i}
angle_{\mathtt{M}_{i}}ig)|0
angle_{\mathtt{Aux}}^{\otimes \mathrm{poly}(n)},$

The instruction set:

$$\mathcal{I}(\mathcal{G},\mathsf{R})=\mathcal{I}(\mathcal{G})\cup\{\mathsf{R}\}.$$

where:

$$|i
angle_{\mathtt{A}}|b
angle_{\mathtt{T}}|x_{i}
angle_{\mathtt{M}_{i}}|0
angle_{\mathtt{Aux}}^{\otimes \mathrm{poly}(n)}\mapsto |i
angle_{\mathtt{A}}ig(\mathsf{R}(i)|b
angle_{\mathtt{T}}|x_{i}
angle_{\mathtt{M}_{i}}ig)|0
angle_{\mathtt{Aux}}^{\otimes \mathrm{poly}(n)},$$

In practice?

	In	put	$ \psi_{I}\rangle_{I}$	8	
W	orkspa	ace	$0\rangle_{W}^{\otimes pq}$	oly log 1	n
	Ac	ldres	is $ i\rangle_i$		
	Т	arget	$ b\rangle_{\mathrm{T}}$	2	
	Ancil	lae	0) ^{⊗ ps} Aux	oly n	
Men	nory	x_0, x	1,	$, x_{n-1}$	1 /m

What we build: Uniformly Controlled Gates

Definition: f-UCG gates:

Consider a function $f: \{0,1\}^n \to \mathcal{U}(\mathbb{C}^{2 \times 2})$

$$f ext{-UCG} = \sum_{x\in\{0,1\}^n} |x
angle \langle x|\otimes f(x) = \sum_{x\in\{0,1\}^n} |x
angle \langle x|\otimes \mathsf{U}_x,$$

Definition: f-UCG gates:

Consider a function $f: \{0,1\}^n
ightarrow \mathcal{U}(\mathbb{C}^{2 imes 2})$

$$f ext{-UCG} = \sum_{x\in\{0,1\}^n} |x
angle \langle x|\otimes f(x) = \sum_{x\in\{0,1\}^n} |x
angle \langle x|\otimes \mathsf{U}_x,$$

Equivalently, its matrix representation is

$$f extsf{-}\mathsf{UCG}_{[n] o n}^{(n)} = \left(egin{array}{ccc} U_0 & & & \ & U_1 & & \ & & \ddots & \ & & & U_{2^n-1} \end{array}
ight) \in \mathbb{C}^{2^{(n+1)} imes 2^{(n+1)}}$$

What we build: Uniformly Controlled Gates

Definition: f-UCG gates:

EXAMPLE: HHL

Consider a function $f: \{0,1\}^n
ightarrow \mathcal{U}(\mathbb{C}^{2 imes 2})$

$$f ext{-UCG} = \sum_{x\in\{0,1\}^n} |x
angle \langle x|\otimes f(x) = \sum_{x\in\{0,1\}^n} |x
angle \langle x|\otimes \mathsf{U}_x,$$

Equivalently, its matrix representation is

$$f extsf{-}\mathsf{UCG}_{[n] o n}^{(n)} = \left(egin{array}{ccc} U_0 & & & \ & U_1 & & \ & & \ddots & \ & & & U_{2^n-1} \end{array}
ight) \in \mathbb{C}^{2^{(n+1)} imes 2^{(n+1)}}$$

What we build: *f*-FIN gates

Definition: *f***-FIN gates:**

Consider $f: \{0,1\}^{|S|} \mapsto \{0,1\}$

 $f ext{-FIN}_{S o i}\ket{x_0}\ket{x_1}\dots\ket{x_{m-1}}=\ket{x_0}\dots\ket{x_{i-1}}\ket{x_i\oplus f(x_S)}\ket{x_{i+1}}\dots\ket{x_{m-1}},$

What we build: *f*-FIN gates

Definition: *f***-FIN gates:**

Consider $f: \{0,1\}^{|S|} \mapsto \{0,1\}$

 $f ext{-FIN}_{S o i}\ket{x_0}\ket{x_1}\dots\ket{x_{m-1}}=\ket{x_0}\dots\ket{x_{i-1}}\ket{x_i\oplus f(x_S)}\ket{x_{i+1}}\dots\ket{x_{m-1}},$

Equivalently, its matrix representation is

$$f extsf{-FIN}_{[n] o n}^{(n)} = \left(egin{array}{ccc} X^{f(0)} & & & \ & f(1) & & \ & & \ddots & \ & & & \ddots & \ & & & & X^{f(2^n-1)} \end{array}
ight) \in \mathbb{C}^{2^{(n+1)} imes 2^{(n+1)}}$$

What we build: *f*-FIN gates

Definition: *f***-FIN gates:**

many things :)

EXAMPLE:

Consider $f: \{0,1\}^{|S|} \mapsto \{0,1\}$

 $f ext{-FIN}_{S o i}\ket{x_0}\ket{x_1}\dots\ket{x_{m-1}}=\ket{x_0}\dots\ket{x_{i-1}}\ket{x_i\oplus f(x_S)}\ket{x_{i+1}}\dots\ket{x_{m-1}},$

Equivalently, its matrix representation is

$$f extsf{-FIN}_{[n] o n}^{(n)} = \left(egin{array}{ccc} X^{f(0)} & & & \ & f(1) & & \ & & \ddots & \ & & & \ddots & \ & & & & X^{f(2^n-1)} \end{array}
ight) \in \mathbb{C}^{2^{(n+1)} imes 2^{(n+1)}}$$

What we build: QRAM gate

Let $n \in \mathbb{N}$ be a power of 2.

 $L = [x_1, \dots, x_n]^T$ where $x_i \in \{0, 1\}^\ell$

Definition: [QRAM] A quantum random access memory of size n is a QMD with $R(i) = CNOT_{M_i \to T}$,

 $|i
angle_{\mathtt{A}}|b
angle_{\mathtt{T}}|x_{0},\ldots,x_{n-1}
angle_{\mathtt{M}}\mapsto |i
angle_{\mathtt{A}}|b\oplus x_{i}
angle_{\mathtt{T}}|x_{0},\ldots,x_{n-1}
angle_{\mathtt{M}}$

What we build: QRAM gate

Let $n \in \mathbb{N}$ be a power of 2.

$$L = [x_1, \dots, x_n]^T$$
 where $x_i \in \{0, 1\}^\ell$

Definition: [QRAM] A quantum random access memory of size n is a QMD with $R(i) = CNOT_{M_i \rightarrow T}$,

$$|i
angle_{\mathtt{A}}|b
angle_{\mathtt{T}}|x_{0},\ldots,x_{n-1}
angle_{\mathtt{M}}\mapsto |i
angle_{\mathtt{A}}|b\oplus x_{i}
angle_{\mathtt{T}}|x_{0},\ldots,x_{n-1}
angle_{\mathtt{M}}$$

Memo:

 $|i
angle_{\mathtt{A}}|b
angle_{\mathtt{T}}|x_{i}
angle_{\mathtt{M}_{i}}|0
angle_{\mathtt{Aux}}^{\otimes \mathrm{poly}(n)}\mapsto |i
angle_{\mathtt{A}}ig(\mathsf{R}(i)|b
angle_{\mathtt{T}}|x_{i}
angle_{\mathtt{M}_{i}}ig)|0
angle_{\mathtt{Aux}}^{\otimes \mathrm{poly}(n)},$

What we build: QRAG gate

Let $n \in \mathbb{N}$ be a power of 2. $L = [x_1, \dots, x_n]^T$ where $x_i \in \{0, 1\}^\ell$

Definition:[QRAG] A quantum random access gate of memory size n is a QMD with $R(i) = SWAP_{M_i \leftrightarrow T}$,

$$|i
angle_{\mathtt{A}}|b
angle_{\mathtt{T}}|x_{0},\ldots,x_{n-1}
angle_{\mathtt{M}}\mapsto |i
angle_{\mathtt{A}}|x_{i}
angle_{\mathtt{T}}|x_{0},\ldots,x_{i-1},b,x_{i+1},\ldots,x_{n-1}
angle_{\mathtt{M}}$$

Some known circuits

Multiplexer

Giovannetti, Vittorio, et al. "Architectures for a quantum random access memory." PRA

Liu, Junyu., et al. "Quantum Data Center: Theories and Applications" - https://arxiv.org/pdf/2207.14336.pdf Images from https://arxiv.org/pdf/2202.11302.pdf and https://arxiv.org/pdf/1502.03450.pdf

Fan-Out gate: It is a sequence of CNOT gates sharing a single control qubit.

$$|b
angle |x_0,\ldots,x_{n-1}
angle\mapsto |b
angle |x_0\oplus b,\ldots,x_{n-1}\oplus b
angle.$$

Global-Tunable gate: It is a sequence of CZ gates that can share control or target registers.

Let $\Theta \in [-1, 1]^{n \times n}$. The *n*-arity Global Tunable gate $\mathsf{GT}_{\Theta}^{(n)}$ is the unitary operator

$$\mathsf{GT}^{(n)}_{\Theta} = \prod_{1 \leq i < j \leq n} \mathsf{C}_i \mathsf{Z}(\Theta_{ij})_{
ightarrow j}.$$

memo: with GT gates we can build Fan-Out gates

Fact: [Z-decomposition of single qubit gates]: for a single-qubit gate U there are angles $\alpha, \beta, \gamma, \delta \in [-1, 1]$ such that

$$\mathsf{U}=e^{i\pilpha}\,\mathsf{Z}(eta)\,\mathsf{H}\,\mathsf{Z}(\gamma)\,\mathsf{H}\,\mathsf{Z}(\delta),$$

Fact: [Equivalence Fan-Out and Parity]: The Fan-Out gate is equivalent to the PARITY up to a Hadamard conjugation.

(i.e. Fan-Out \iff **PARITY**)

Tools and assumptions (3)

Theorem: The AND⁽ⁿ⁾ gate can be implemented in O(1)-depth using

- $2n \log n + O(n)$ ancillae and $6n + O(\log n)$ Fan-Out gates with arity at most 2n.
- $2n + O(\log n)$ ancillae and 4 GT gates with arity at most $n + O(\log n)$.

Claim: A number l of pair-wise commuting Fan-Out gates $FO^{(n_0)}, \ldots, FO^{(n_{l-1})}$ can be performed in depth-3 using one GT gate.

T., Yasuhiro, and S. Tani. "Collapse of the hierarchy of constant-depth exact quantum circuits."

B., Sergey, D. Maslov, and Y. Nam. "Constant-Cost Implementations of Clifford Operations and Multiply-Controlled Gates Using Global Interactions."

First construction!

Technique Number 1: convert the input into a *one-hot-encoding*

	Fan-Out Gates		GT Gates	
	#Fan-Out	Ancilla	#GT	Ancilla
f-UCG	$O(n2^n)$	$O(n2^n\log n)$	9	$O(n2^n)$
f-FIN	$O(n2^n)$	$O(n2^n\log n)$	7	$O(n2^n)$
QRAM	$O(n \log n)$	$O(n\log n\log\log n)$	6	$O(n \log n)$

First construction!

Technique Number 1: convert the input into a *one-hot-encoding*

	Fan-Out Gates		GT Gates	
	#Fan-Out	Ancilla	#GT	Ancilla
f-UCG	$O(n2^n)$	$O(n2^n\log n)$	9	$O(n2^n)$
f-FIN	$O(n2^n)$	$O(n2^n\log n)$	7	$O(n2^n)$
QRAM	$O(n \log n)$	$O(n\log n\log\log n)$	6	$O(n \log n)$

Result	Fan-Out co	GT construction		
	#Fan-Out	#Ancillae	#GT	#Ancillae
f-UCG (*) [Thm. 26]	$O(n+2^{t+r}(t+r))$	$O(2^{t+r}(t+r)\log(t+r))$	9	$O(2^{t+r}(t+r))$

Here, f is a (J, r)-junta with $|\overline{J}| = t, t + r \leq n$.

17.1
How to build a QRAM in constant depth?

3

1

- Compute the one-hot encoding of J and \overline{J} separately
- Create copies of the target register
- Apply the Z gates for the Z decomposition of U in parallel
- Undo the copies of the target register
- Undo the computation of the one-hot encoding

Parallel computation using Fan-Out gates

Figure 3: A serial circuit with interpolated basis changes

Figure 4: A parallelised circuit performing $U = T^{\dagger} (\prod_{i=1}^{n} V_{i}^{x_{i}}) T = \prod_{i=1}^{n} U_{i}^{x_{i}}$

Green, F., et al. "Counting, fanout and the complexity of quantum ACC."

Høyer, P., et al. "Quantum fan-out is powerful."

Moore C. et al. "Parallel quantum computation and quantum codes."

Second construction!

Technique Number 2: use good ideas from [1] on the functions obtained by the Z-decomposition of U_x

$$\mathsf{U}_x \; = e^{i\pilpha_x} \; \mathsf{Z}(eta_x) \, \mathsf{H} \, \mathsf{Z}(\gamma_x) \, \mathsf{H} \, \mathsf{Z}(\delta_x),$$

Second construction!

Technique Number 2: use good ideas from [1] on the functions obtained by the Z-decomposition of U_x

$$\mathsf{U}_x \; = e^{i\pilpha_x} \; \mathsf{Z}(eta_x) \, \mathsf{H} \, \mathsf{Z}(\gamma_x) \, \mathsf{H} \, \mathsf{Z}(\delta_x),$$

For *f*-UCG:

[1] T., Yasuhiro, and S. Tani. "Collapse of the hierarchy of constant-depth exact quantum circ30tst"

Second construction!

Technique Number 2: use good ideas from [1] on the functions obtained by the Z-decomposition of U_x

$$\mathsf{U}_x \; = e^{i\pilpha_x} \; \mathsf{Z}(eta_x) \, \mathsf{H} \, \mathsf{Z}(\gamma_x) \, \mathsf{H} \, \mathsf{Z}(\delta_x),$$

For *f*-UCG:

Result	Fan-Out construction		GT construction	
	#Fan-Out	#Ancillae	#GT	#Ancillae
Exact	$ \operatorname{supp}^{>1}(f) + \left \bigcup_{S \in \operatorname{supp}^{>1}(f)} S\right $	$\sum_{S \in \mathrm{supp}(f)} S $	5	$ \operatorname{supp}^{>1}(f) $
ϵ -Approximate	$s + \left \bigcup_{S \in \text{supp}^{>1}(f)} S \right $	$s \deg(f) + \operatorname{supp}^{=1}(f) $	5	S
Field \mathbb{F}_2	$\sum_{S\in ext{supp}^{>1}_{\{0,1\}}(f)} S $	$\sum_{S \in \text{supp}_{\{0,1\}}(f)} S \log(1 + S)$	9	$\sum_{S\in ext{supp}^{>1}_{\{0,1\}}(f)} S $

Table 2: Main results for f-UCG for $f : \{0,1\}^n \to \mathcal{U}(\mathbb{C}^{2\times 2})$ Here, $s := (n/\epsilon^2) \sum_{\nu \in \{\alpha,\beta,\gamma,\delta\}} \|\nu^{>1}\|_1^2$, where $\|\nu^{>k}\|_1 := \sum_{S \subseteq [n]:|S|>k} |\widehat{\nu}(S)|$, and $\alpha, \beta, \gamma, \delta$ are defined by the Z-decomposition of f; $\operatorname{supp}^{>k}(f) := \{S \subseteq [n]:|S|>k, \widehat{f}(S) \neq 0\}$ is the Fourier support of f with degree greater than k (similarly for $\operatorname{supp}^{=k}(f)$). Big-oh notation is assumed for all entries.

[1] T., Yasuhiro, and S. Tani. "Collapse of the hierarchy of constant-depth exact quantum circ30t2"

Boolean analysis

First representation is the Fourier expansion (over the reals). For $g: \{0,1\}^n \mapsto \mathbb{R}$

$$g(x) = \sum_{S \subseteq [n]} \widehat{g}(S) \chi_S(x)$$

- $\widehat{g}(S)=rac{1}{2^n}\sum_{x\in\{0,1\}^n}g(x)\chi_S(x)$, for $S\subseteq[n]$,
- $\chi_S(x):=(-1)^{\sum_{i\in S} x_i}$ is $\mathsf{PARITY}_S(x)$

Boolean analysis

First representation is the Fourier expansion (over the reals). For $g: \{0,1\}^n \mapsto \mathbb{R}$

$$g(x) = \sum_{S \subseteq [n]} \widehat{g}(S) \chi_S(x)$$

•
$$\widehat{g}(S)=rac{1}{2^n}\sum_{x\in\{0,1\}^n}g(x)\chi_S(x)$$
, for $S\subseteq[n]$,

- $\chi_S(x) := (-1)^{\sum_{i \in S} x_i}$ is $\mathsf{PARITY}_S(x)$
- The Fourier support of g is

$$\mathrm{supp}(g):=\{S\subseteq [n]:\widehat{g}(S)
eq 0\},$$

while its sparsity is $|\operatorname{supp}(f)|$

Boolean analysis

First representation is the Fourier expansion (over the reals). For $g : \{0, 1\}^n \mapsto \mathbb{R}$

$$g(x) = \sum_{S \subseteq [n]} \widehat{g}(S) \chi_S(x)$$

•
$$\widehat{g}(S)=rac{1}{2^n}\sum_{x\in\{0,1\}^n}g(x)\chi_S(x)$$
, for $S\subseteq[n]$,

- $\chi_S(x):=(-1)^{\sum_{i\in S} x_i}$ is $\mathsf{PARITY}_S(x)$
- The Fourier support of g is

$$\mathrm{supp}(g):=\{S\subseteq [n]:\widehat{g}(S)
eq 0\},$$

while its sparsity is $|\operatorname{supp}(f)|$

- We can build similar definitions for the Z-decomposition of a unitary: $\alpha, \beta, \gamma, \delta : \{0, 1\}^n \rightarrow [-1, 1]$.
 - $\operatorname{supp}(f) := \operatorname{supp}(\alpha) \cup \operatorname{supp}(\beta) \cup \operatorname{supp}(\gamma) \cup \operatorname{supp}(\delta)$
 - $\mathrm{supp}^{>k}(f)$, $\mathrm{supp}^{\leq k}(f)$, $\mathrm{supp}^{=k}(f),\ldots$

More Fourier ideas..

The second representation is based on the existence of a function $p: \{0,1\}^n \to \mathbb{R}$ with a (potentially) sparse Fourier expansion that approximates $g: \epsilon > 0$,

$$\max_{x\in\{0,1\}^n} |p(x)-g(x)| \leq \epsilon$$

More Fourier ideas..

The second representation is based on the existence of a function $p: \{0,1\}^n \to \mathbb{R}$ with a (potentially) sparse Fourier expansion that approximates $g: \epsilon > 0$,

$$\max_{x\in\{0,1\}^n} |p(x)-g(x)| \leq \epsilon$$

The third representation is using AND functions instead. The (unique) real-polynomial $\{0, 1\}$ -representation is

٠

$$g(x) = \sum_{S \subseteq [n]} \widetilde{g}(S) x^S,$$

where $x^S := \prod_{i \in S} x_i$ and the coefficients $\tilde{f} : 2^{[n]} \to \mathbb{R}$ are given by $\tilde{f}(S) = \sum_{T \subseteq S} (-1)^{|S| - |T|} f(T)$.

For functions over $\{0, 1\}$ we can further change the representation

f-FIN gates with Boolean analysis

f-FIN gates with Boolean analysis

f-FIN gates with Boolean analysis

• (copy input) Attach an ancillary register $\bigotimes_{S \in \text{supp}^{>1}(f)} |0\rangle_{R_S}^{\otimes |S|}$. For each $i \in [n]$ in parallel, copy the qubit $|x_i\rangle_{I}$ using a Fan-Out gate.

$$x
angle_{\mathtt{I}}|b
angle_{\mathtt{T}}\mapsto |x
angle_{\mathtt{I}}|b
angle_{\mathtt{T}}\bigotimes_{S\in\mathrm{supp}^{>1}(f)}|x_S
angle_{\mathtt{R}_S}.$$

• (compute parity) Attach an ancillary register $|0\rangle_{P}^{\otimes|\operatorname{supp}^{>1}(f)|} = \bigotimes_{S \in \operatorname{supp}^{>1}(f)} |0\rangle_{P_{S}}$. For each $S \in \operatorname{supp}^{>1}(f)$ in parallel, apply a $\operatorname{PARITY}_{R_{S} \to P_{S}}^{(|S|)}$ gate $|x\rangle_{I}|b\rangle_{T} \bigotimes_{S \in \operatorname{supp}^{>1}(f)} |x_{S}\rangle_{R_{S}} \mapsto |x\rangle_{I}|b\rangle_{T} \bigotimes_{S \in \operatorname{supp}^{>1}(f)} |x_{S}\rangle_{R_{S}} |\bigoplus_{i \in S} x_{i}\rangle_{P_{S}}.$ Fourier construction

- (copy target) Copy T for $supp^{>0}(f)$ times in T'.
- (apply phase) For each $S \in \operatorname{supp}^{>0}(\delta)$ in parallel, apply a $Z(\widetilde{\delta}(S))$ gate controlled on register P_S onto the S-th qubit in register T'
- (un-copy target) Undo the copy.
- Observe that the relative phase is summing up, composing δ

$$|x
angle_{\mathtt{I}}|b
angle_{\mathtt{T}}\mapsto |x
angle_{\mathtt{I}}{\mathsf{Z}}\left(\sum_{S\subseteq [n]}\widehat{\delta}(S)\chi_{S}(x)
ight)|b
angle_{\mathtt{T},\mathtt{T}'}\quad\mapsto |x
angle_{\mathtt{I}}{\mathsf{Z}}(\delta(x))|b
angle_{\mathtt{T}}.$$

Observe:

$\mathsf{Z}(\delta(x)) = \mathsf{Z}(\sum_{S \in \mathrm{supp}(\delta)} \widehat{\delta}(S) \chi_S(x))!$

Idea: apply $\mathsf{Z}(\delta(x))$ onto a target qubit by simply applying to it a sequence of phases $\mathsf{Z}(\hat{\delta}(S))$ controlled on $\chi_S(x)$, for $S \in \operatorname{supp}(\delta)$.

Observe:

$$\mathsf{Z}(\delta(x)) = \mathsf{Z}(\sum_{S \in \mathrm{supp}(\delta)} \widehat{\delta}(S) \chi_S(x))!$$

Idea: apply $\mathsf{Z}(\delta(x))$ onto a target qubit by simply applying to it a sequence of phases $\mathsf{Z}(\hat{\delta}(S))$ controlled on $\chi_S(x)$, for $S \in \operatorname{supp}(\delta)$.

How?

- 1. First compute $(|0\rangle^{\otimes m} + |1\rangle^{\otimes m})/\sqrt{2}$ from the target qubit using one Fan-Out, where $m := |\operatorname{supp}(\delta)|$,
- 2. Apply the controlled phases $Z(\hat{\delta}(S))$ onto *different* copies. $(|0\rangle^{\otimes m} + (-1)^{\sum_{S} \hat{\delta}(S)\chi_{S}(x)} |1\rangle^{\otimes m})/\sqrt{2} = Z(\delta(x))(|0\rangle^{\otimes m} + |1\rangle^{\otimes m})/\sqrt{2}$
- 3. Uncompute the copies with another Fan-Out.

QRAM as a function

Let $f: \{0,1\}^n imes \{0,1\}^{\log n} \mapsto \{0,1\}.$ The QRAM function is defined as $f(x,i) = x_i.$

QRAM as a function

Let $f: \{0,1\}^n imes \{0,1\}^{\log n} \mapsto \{0,1\}.$ The QRAM function is defined as $f(x,i) = x_i.$

We can do Fourier analysis on this function!

QRAM as a function

Let $f: \{0,1\}^n imes \{0,1\}^{\log n} \mapsto \{0,1\}.$ The QRAM function is defined as $f(x,i) = x_i.$

We can do Fourier analysis on this function!

Theorem: Let $n \in \mathbb{N}$ be a power of 2. A QRAM of memory size n can be implemented in constant-depth using

- either $\frac{1}{2}n^2 \log n$ ancillae and $2n^2$ Fan-Out gates,
- or $2n^2$ ancillae and 2 GT gates.

Bonus slide: QRAG vs QRAM

• **Theorem:** A query to a QRAM of memory size *n* can be simulated using 2 queries to a QRAG of memory size *n*,
Bonus slide: QRAG vs QRAM

- **Theorem:** A query to a QRAM of memory size *n* can be simulated using 2 queries to a QRAG of memory size *n*,
- **Theorem:** In our computational model, a query to a QRAG **cannot** be simulated by any number of queries to a QRAM.

Bonus slide: QRAG vs QRAM

- **Theorem:** A query to a QRAM of memory size *n* can be simulated using 2 queries to a QRAG of memory size *n*,
- **Theorem:** In our computational model, a query to a QRAG **cannot** be simulated by any number of queries to a QRAM.
- Theorem: ... but suppose that single-qubit gates can be freely applied onto the memory register M of any QRAM. Then a QRAG of memory size n can be simulated using 3 queries to a QRAM of memory size n and 2(n+1) Hadamard gates.

Conclusions

- We show *constant-depth* circuits:
 - UCGs
 - Boolean functions
 - quantum memory gates
- We can improve the depth of many circuits: $\log_2(n)\mapsto \log_k(n)$
- Bonus: formal definition of quantum computer with access to quantum memory
- Future work? Moral of the story?

PhDs/postdocs:

cs@quantumlah.org41

