
Constant-depth circuits for Uniformly Controlled
Gates and Boolean functions with application to

quantum memory circuits

Jonathan Jinge João F. Alessandro Miklos Allcock1 Bao2 Doriguello2 Luongo2 Santha2

 1 2

https://arxiv.org/abs/2308.08539

1

https://arxiv.org/abs/2308.08539

TL;DR
We show constant-depth circuits for

UCG:

Boolean functions:

QRAM and QRAG gates
Bonus: formal definition of quantum computer with access to
quantum memory

∣x⟩∣ψ⟩ ↦ ∣x⟩U ∣ψ⟩x

∣x⟩∣0⟩ ↦ ∣x⟩∣f(x)⟩

2

TL;DR
We show constant-depth circuits for

UCG:

Boolean functions:

QRAM and QRAG gates
Bonus: formal definition of quantum computer with access to
quantum memory

∣x⟩∣ψ⟩ ↦ ∣x⟩U ∣ψ⟩x

∣x⟩∣0⟩ ↦ ∣x⟩∣f(x)⟩

WE CHEAT!

2.1

TL;DR
We show constant-depth circuits for

UCG:

Boolean functions:

QRAM and QRAG gates
Bonus: formal definition of quantum computer with access to
quantum memory

∣x⟩∣ψ⟩ ↦ ∣x⟩U ∣ψ⟩x

∣x⟩∣0⟩ ↦ ∣x⟩∣f(x)⟩

WE CHEAT!

For the complexity theorist: we work in .QNCf
0

2.2

TL;DR
We show constant-depth circuits for

UCG:

Boolean functions:

QRAM and QRAG gates
Bonus: formal definition of quantum computer with access to
quantum memory

∣x⟩∣ψ⟩ ↦ ∣x⟩U ∣ψ⟩x

∣x⟩∣0⟩ ↦ ∣x⟩∣f(x)⟩

WE CHEAT!

For the experimentalist: we can reduce the depth of many circuits:

log (n) ↦2 log (n)k

For the complexity theorist: we work in .QNCf
0

2.3

Importance of quantum
memory

Data loading in non-variational QML algorithms
Most of HHL-type speedups (with non-sparse matrices)
State preparation (Grover-Rudolph algorithm)
Space-time tradeoffs (cryptography)

3

Importance of quantum
memory

Data loading in non-variational QML algorithms
Most of HHL-type speedups (with non-sparse matrices)
State preparation (Grover-Rudolph algorithm)
Space-time tradeoffs (cryptography)

What is a quantum computer with (quantum) access to a memory?

3.1

What is a quantum computer?

Definition: A QPU of size is defined as a tuple consisting of

An input register ;
A workspace ;
A constant-size universal gate set

m (I, W,G)

I

W

G ⊂ U(C)4×4

An input to the QPU is a tuple where:(T , ∣ψ ⟩,C ,… ,C)I 1 T

4

What is a quantum computer?

Definition: A QPU of size is defined as a tuple consisting of

An input register ;
A workspace ;
A constant-size universal gate set

m (I, W,G)

I

W

G ⊂ U(C)4×4

An input to the QPU is a tuple where:(T , ∣ψ ⟩,C ,… ,C)I 1 T

 is the depth of the input to the QPU,T ∈ N
,∣ψ ⟩ ∈I I

4.1

What is a quantum computer?

Definition: A QPU of size is defined as a tuple consisting of

An input register ;
A workspace ;
A constant-size universal gate set

m (I, W,G)

I

W

G ⊂ U(C)4×4

An input to the QPU is a tuple where:(T , ∣ψ ⟩,C ,… ,C)I 1 T

 is the depth of the input to the QPU,T ∈ N
,∣ψ ⟩ ∈I I

C ∈t I(G)

4.2

What is a quantum computer?

Definition: A QPU of size is defined as a tuple consisting of

An input register ;
A workspace ;
A constant-size universal gate set

m (I, W,G)

I

W

G ⊂ U(C)4×4

An input to the QPU is a tuple where:(T , ∣ψ ⟩,C ,… ,C)I 1 T

 is the depth of the input to the QPU,T ∈ N
,∣ψ ⟩ ∈I I

C ∈t I(G)

.∣ψ ⟩ :=0 ∣ψ ⟩∣0⟩ ↦I W ∣ψ ⟩ =1 C ∣ψ ⟩ ∈1 0 I⊗ W

4.3

What is a quantum computer?

Definition: A QPU of size is defined as a tuple consisting of

An input register ;
A workspace ;
A constant-size universal gate set

m (I, W,G)

I

W

G ⊂ U(C)4×4

An input to the QPU is a tuple where:(T , ∣ψ ⟩,C ,… ,C)I 1 T

 is the depth of the input to the QPU,T ∈ N
,∣ψ ⟩ ∈I I

C ∈t I(G)

.∣ψ ⟩ :=0 ∣ψ ⟩∣0⟩ ↦I W ∣ψ ⟩ =1 C ∣ψ ⟩ ∈1 0 I⊗ W

 all unitaries on from I(G) = I⊗ W G

4.4

What is a quantum computer?

Definition: A QPU of size is defined as a tuple consisting of

An input register ;
A workspace ;
A constant-size universal gate set

m (I, W,G)

I

W

G ⊂ U(C)4×4

An input to the QPU is a tuple where:(T , ∣ψ ⟩,C ,… ,C)I 1 T

 is the depth of the input to the QPU,T ∈ N
,∣ψ ⟩ ∈I I

C ∈t I(G)

.∣ψ ⟩ :=0 ∣ψ ⟩∣0⟩ ↦I W ∣ψ ⟩ =1 C ∣ψ ⟩ ∈1 0 I⊗ W

 all unitaries on from I(G) = I⊗ W G

The size is the sum of the sizes of the instructions .C ,… ,C1 T
4.5

What is a quantum computer with quantum memory?

Definition: A of size and a Quantum Memory Device (
) of memory registers, where each register is of -qubit size are

collectively defined by a tuple consisting of

QPU poly log(n)
QMD n ℓ

(I, W, A, T, Aux, M,G,R)

Input register, workspace, and gateset (like before,)
Address register (-qubits) shared by and ;
A target register (-qubits) shared by both and ;

I, W,G

A log n QPU QMD

T ℓ QPU QMD

5

What is a quantum computer with quantum memory?

Definition: A of size and a Quantum Memory Device (
) of memory registers, where each register is of -qubit size are

collectively defined by a tuple consisting of

QPU poly log(n)
QMD n ℓ

(I, W, A, T, Aux, M,G,R)

Input register, workspace, and gateset (like before,)
Address register (-qubits) shared by and ;
A target register (-qubits) shared by both and ;

I, W,G

A log n QPU QMD

T ℓ QPU QMD

Auxiliary register (-qubit) owned by the ;Aux poly(n) QMD

5.1

What is a quantum computer with quantum memory?

Definition: A of size and a Quantum Memory Device (
) of memory registers, where each register is of -qubit size are

collectively defined by a tuple consisting of

QPU poly log(n)
QMD n ℓ

(I, W, A, T, Aux, M,G,R)

Input register, workspace, and gateset (like before,)
Address register (-qubits) shared by and ;
A target register (-qubits) shared by both and ;

I, W,G

A log n QPU QMD

T ℓ QPU QMD

Auxiliary register (-qubit) owned by the ;Aux poly(n) QMD

Memory (-qubit) comprising registers ,
each containing qubits, owned solely by the ;

M nℓ n M ,… , M0 n−1

ℓ QMD

5.2

What is a quantum computer with quantum memory?

Definition: A of size and a Quantum Memory Device (
) of memory registers, where each register is of -qubit size are

collectively defined by a tuple consisting of

QPU poly log(n)
QMD n ℓ

(I, W, A, T, Aux, M,G,R)

Input register, workspace, and gateset (like before,)
Address register (-qubits) shared by and ;
A target register (-qubits) shared by both and ;

I, W,G

A log n QPU QMD

T ℓ QPU QMD

Auxiliary register (-qubit) owned by the ;Aux poly(n) QMD

Memory (-qubit) comprising registers ,
each containing qubits, owned solely by the ;

M nℓ n M ,… , M0 n−1

ℓ QMD

A function , where is a -size
subset of -qubit gates.

R : [n] → V V ⊂ U(C)2 ×22ℓ 2ℓ
O(1)

2ℓ

5.3

What is a quantum computer with quantum memory?

The instruction set:

I(G,R) = I(G) ∪ {R}.

∣i⟩ ∣b⟩ ∣x ⟩ ∣0⟩ ↦A T i Mi Aux
⊗poly(n) ∣i⟩ (R(i)∣b⟩ ∣x ⟩)∣0⟩ ,A T i Mi Aux

⊗poly(n)

where:

6

What is a quantum computer with quantum memory?

The instruction set:

I(G,R) = I(G) ∪ {R}.

∣i⟩ ∣b⟩ ∣x ⟩ ∣0⟩ ↦A T i Mi Aux
⊗poly(n) ∣i⟩ (R(i)∣b⟩ ∣x ⟩)∣0⟩ ,A T i Mi Aux

⊗poly(n)

In practice?

where:

6.1

7

What we build: Uniformly Controlled Gates

Definition: f-UCG gates:

Consider a function f : {0, 1} →n U(C)2×2

 f -UCG = ∣x⟩⟨x∣ ⊗
x∈{0,1}n

∑ f(x) = ∣x⟩⟨x∣ ⊗
x∈{0,1}n

∑ U ,x

8

What we build: Uniformly Controlled Gates

Equivalently, its matrix representation is

 f -UCG =[n]→n

(n) ∈

 U0

U1
⋱

U 2 −1n

C .2 ×2(n+1) (n+1)

Definition: f-UCG gates:

Consider a function f : {0, 1} →n U(C)2×2

 f -UCG = ∣x⟩⟨x∣ ⊗
x∈{0,1}n

∑ f(x) = ∣x⟩⟨x∣ ⊗
x∈{0,1}n

∑ U ,x

8.1

What we build: Uniformly Controlled Gates

Equivalently, its matrix representation is

 f -UCG =[n]→n

(n) ∈

 U0

U1
⋱

U 2 −1n

C .2 ×2(n+1) (n+1)

Definition: f-UCG gates:

Consider a function f : {0, 1} →n U(C)2×2

 f -UCG = ∣x⟩⟨x∣ ⊗
x∈{0,1}n

∑ f(x) = ∣x⟩⟨x∣ ⊗
x∈{0,1}n

∑ U ,x

EXAMPLE: HHL

8.2

Definition: -FIN gates:

f

What we build: -FIN gatesf

Consider f : {0, 1} ↦∣S∣ {0, 1}

 f -FIN ∣x ⟩ ∣x ⟩… ∣x ⟩ =S→i 0 1 m−1 ∣x ⟩… ∣x ⟩ ∣x ⊕ f(x)⟩ ∣x ⟩… ∣x ⟩ , 0 i−1 i S i+1 m−1

9

Definition: -FIN gates:

f

What we build: -FIN gatesf

Consider f : {0, 1} ↦∣S∣ {0, 1}

 f -FIN ∣x ⟩ ∣x ⟩… ∣x ⟩ =S→i 0 1 m−1 ∣x ⟩… ∣x ⟩ ∣x ⊕ f(x)⟩ ∣x ⟩… ∣x ⟩ , 0 i−1 i S i+1 m−1

Equivalently, its matrix representation is

 f -FIN =[n]→n

(n) ∈

 Xf(0)

f(1)

⋱

X f(2 −1)n

C .2 ×2(n+1) (n+1)

9.1

Definition: -FIN gates:

f

What we build: -FIN gatesf

Consider f : {0, 1} ↦∣S∣ {0, 1}

 f -FIN ∣x ⟩ ∣x ⟩… ∣x ⟩ =S→i 0 1 m−1 ∣x ⟩… ∣x ⟩ ∣x ⊕ f(x)⟩ ∣x ⟩… ∣x ⟩ , 0 i−1 i S i+1 m−1

Equivalently, its matrix representation is

 f -FIN =[n]→n

(n) ∈

 Xf(0)

f(1)

⋱

X f(2 −1)n

C .2 ×2(n+1) (n+1)

EXAMPLE:
many things :)

9.2

Let be a power of .n ∈ N 2

Definition: [] A quantum random access memory of size is a
 with ,

QRAM n

QMD R(i) = CNOTM →Ti

 ∣i⟩ ∣b⟩ ∣x ,… ,x ⟩ ↦A T 0 n−1 M ∣i⟩ ∣b⊕A x ⟩ ∣x ,… ,x ⟩i T 0 n−1 M

 where L = [x ,… ,x]1 n
T x ∈i {0, 1}ℓ

What we build: QRAM gate

10

Let be a power of .n ∈ N 2

Definition: [] A quantum random access memory of size is a
 with ,

QRAM n

QMD R(i) = CNOTM →Ti

 ∣i⟩ ∣b⟩ ∣x ,… ,x ⟩ ↦A T 0 n−1 M ∣i⟩ ∣b⊕A x ⟩ ∣x ,… ,x ⟩i T 0 n−1 M

 where L = [x ,… ,x]1 n
T x ∈i {0, 1}ℓ

What we build: QRAM gate

∣i⟩ ∣b⟩ ∣x ⟩ ∣0⟩ ↦A T i Mi Aux
⊗poly(n) ∣i⟩ (R(i)∣b⟩ ∣x ⟩)∣0⟩ ,A T i Mi Aux

⊗poly(n)

Memo:

10.1

Definition:[] A quantum random access gate of memory size is
a with ,

QRAG n

QMD R(i) = SWAPM ↔Ti

 ∣i⟩ ∣b⟩ ∣x ,… ,x ⟩ ↦A T 0 n−1 M ∣i⟩ ∣x ⟩ ∣x ,… ,x , b,x ,… ,x ⟩A i T 0 i−1 i+1 n−1 M

Let be a power of .n ∈ N 2

What we build: QRAG gate

 where L = [x ,… ,x]1 n
T x ∈i {0, 1}ℓ

11

Some known circuits

Images from https://arxiv.org/pdf/2202.11302.pdf and https://arxiv.org/pdf/1502.03450.pdf

Multiplexer

Bucket-brigade

Giovannetti, Vittorio, et al. "Architectures for a quantum random access memory." PRA

Liu, Junyu., et al. "Quantum Data Center: Theories and Applications" - https://arxiv.org/pdf/2207.14336.pdf
12

13

Tools and assumptions (1)

memo: with GT gates we can build Fan-Out gates

Fan-Out gate: It is a sequence of gates sharing a single control
qubit.

CNOT

∣b⟩∣x ,… ,x ⟩ ↦0 n−1 ∣b⟩∣x ⊕0 b,… ,x ⊕n−1 b⟩.

Global-Tunable gate: It is a sequence of CZ gates that can share
control or target registers.
Let . The -arity Global Tunable gate is the
unitary operator

Θ ∈ [−1, 1]n×n n GTΘ
(n)

GT =Θ
(n)

C Z(Θ) .
1≤i<j≤n

∏ i ij →j

14

Tools and assumptions (2)

Fact: [-decomposition of single qubit gates]: for a single-qubit
gate there are angles such that

Z

U α,β, γ, δ ∈ [−1, 1]

U = e Z(β) H Z(γ) H Z(δ),iπα

Fact: [Equivalence Fan-Out and Parity]: The Fan-Out gate is
equivalent to the up to a Hadamard conjugation.PARITY

(i.e. Fan-Out)⟺ PARITY

15

Tools and assumptions (3)

Theorem: The gate can be implemented in -depth using

 ancillae and Fan-Out gates with
arity at most .

 ancillae and gates with arity at most
.

AND(n) O(1)

2n log n+O(n) 6n+O(log n)
2n

2n+O(log n) 4 GT n+
O(log n)

Claim: A number of pair-wise commuting Fan-Out gates
 can be performed in depth- using one gate.
l

FO ,… ,FO(n)0 (n)l−1 3 GT

T., Yasuhiro, and S. Tani. "Collapse of the hierarchy of constant-depth exact quantum circuits."

B., Sergey, D. Maslov, and Y. Nam. "Constant-Cost Implementations of Clifford Operations and Multiply-Controlled Gates Using Global Interactions."16

First construction!

#Fan-Out Ancilla #GT Ancilla
f-UCG
f-FIN

QRAM

O(n2)n O(n2 log n)n O(n2)n9

O(n2)n O(n2 log n)n 7 O(n2)n

Technique Number 1: convert the input into a
one-hot-encoding

O(n log n log log n) 6O(n log n) O(n log n)

Fan-Out Gates GT Gates

17

First construction!

#Fan-Out Ancilla #GT Ancilla
f-UCG
f-FIN

QRAM

O(n2)n O(n2 log n)n O(n2)n9

O(n2)n O(n2 log n)n 7 O(n2)n

Technique Number 1: convert the input into a
one-hot-encoding

O(n log n log log n) 6O(n log n) O(n log n)

Here, is a -junta with .f (J , r) ∣ ∣ =J t, t+ r ≤ n

Fan-Out Gates GT Gates

17.1

How to build a QRAM in constant depth?

Input

18

19

20

21

22

23

How many GT gates?

24

How many GT gates?

1

24.1

How many GT gates?

1 3

24.2

How many GT gates?

1 43

24.3

How many GT gates?

1 43 6

24.4

How many GT gates?

1 43 6 7

24.5

General idea for -juntas(J , r)

Compute the one-hot encoding of and separately

Create copies of the target register
Apply the Z gates for the Z decomposition of in parallel

Undo the copies of the target register
Undo the computation of the one-hot encoding

J J

U

25

General idea for -juntas(J , r)

26

General idea for -juntas(J , r)

27

General idea for -juntas(J , r)

Z(δ)x
28

Parallel computation using Fan-Out gates

Moore C. et al. "Parallel quantum computation and quantum codes."

Høyer, P., et al. "Quantum fan-out is powerful."

Green, F., et al. "Counting, fanout and the complexity of quantum ACC."

29

Second construction!

Technique Number 2: use good ideas from [1] on the functions
obtained by the -decomposition of

Z Ux

U =x e Z(β) H Z(γ) H Z(δ),iπαx
x x x

[1] T., Yasuhiro, and S. Tani. "Collapse of the hierarchy of constant-depth exact quantum circuits."30

Second construction!

Technique Number 2: use good ideas from [1] on the functions
obtained by the -decomposition of

Z Ux

U =x e Z(β) H Z(γ) H Z(δ),iπαx
x x x

[1] T., Yasuhiro, and S. Tani. "Collapse of the hierarchy of constant-depth exact quantum circuits."

For - :f UCG

30.1

Second construction!

Technique Number 2: use good ideas from [1] on the functions
obtained by the -decomposition of

Z Ux

U =x e Z(β) H Z(γ) H Z(δ),iπαx
x x x

[1] T., Yasuhiro, and S. Tani. "Collapse of the hierarchy of constant-depth exact quantum circuits."

For - :f UCG

30.2

Boolean analysis
First representation is the Fourier expansion (over the reals).
For

, for ,
 is

g : {0, 1} ↦n R
g(x) = (S)χ (x)

S⊆[n]

∑ g S

(S) =g g(x)χ (x)2n
1 ∑x∈{0,1}n S S ⊆ [n]

χ (x) :=S (−1) x∑i∈S i PARITY (x)S

31

Boolean analysis
First representation is the Fourier expansion (over the reals).
For

, for ,
 is

g : {0, 1} ↦n R
g(x) = (S)χ (x)

S⊆[n]

∑ g S

(S) =g g(x)χ (x)2n
1 ∑x∈{0,1}n S S ⊆ [n]

χ (x) :=S (−1) x∑i∈S i PARITY (x)S

The Fourier support of is

while its sparsity is

g

supp(g) := {S ⊆ [n] : (S) =g 0},
∣ supp(f)∣

31.1

Boolean analysis
First representation is the Fourier expansion (over the reals).
For

, for ,
 is

g : {0, 1} ↦n R
g(x) = (S)χ (x)

S⊆[n]

∑ g S

(S) =g g(x)χ (x)2n
1 ∑x∈{0,1}n S S ⊆ [n]

χ (x) :=S (−1) x∑i∈S i PARITY (x)S

The Fourier support of is

while its sparsity is

g

supp(g) := {S ⊆ [n] : (S) =g 0},
∣ supp(f)∣

We can build similar definitions for the -decomposition of a
unitary: .

Z

α,β, γ, δ : {0, 1} →n [−1, 1]

supp(f) := supp(α) ∪ supp(β) ∪ supp(γ) ∪ supp(δ)
, , supp (f)>k supp (f)≤k supp (f),…=k

31.2

More Fourier ideas..

The second representation is based on the existence of a function
 with a (potentially) sparse Fourier expansion that

approximates : ,

.

p : {0, 1} →n R
g ϵ > 0

∣p(x) −
x∈{0,1}n
max g(x)∣ ≤ ϵ

32

More Fourier ideas..

The third representation is using functions instead. The
(unique) real-polynomial -representation is

where and the coefficients are given
by .
For functions over we can further change the representation

AND

{0, 1}
 g(x) = (S)x ,

S⊆[n]

∑ g S

x :=S x∏i∈S i :f 2 →[n] R
(S) =f (−1) f(T)∑T⊆S

∣S∣−∣T ∣

{0, 1}

The second representation is based on the existence of a function
 with a (potentially) sparse Fourier expansion that

approximates : ,

.

p : {0, 1} →n R
g ϵ > 0

∣p(x) −
x∈{0,1}n
max g(x)∣ ≤ ϵ

32.1

-FIN gates with Boolean analysisf

33

-FIN gates with Boolean analysisf

34

-FIN gates with Boolean analysisf

35

(copy input) Attach an ancillary register .
For each in parallel, copy the qubit using a Fan-
Out gate.

(compute parity) Attach an ancillary register
. For each in parallel, apply a

 gate

∣0⟩⨂S∈supp (f)>1 RS

⊗∣S∣

i ∈ [n] ∣x ⟩i I

∣x⟩ ∣b⟩ ↦I T ∣x⟩ ∣b⟩ ∣x ⟩ . I T

S∈supp (f)>1

⨂ S RS

∣0⟩ =P
⊗∣ supp (f)∣>1

∣0⟩⨂S∈supp (f)>1 PS S ∈ supp (f)>1

PARITYR →PS S

(∣S∣)

∣x⟩ ∣b⟩ ∣x ⟩ ↦I T

S∈supp (f)>1

⨂ S RS ∣x⟩ ∣b⟩ ∣x ⟩ x ⟩ .I T

S∈supp (f)>1

⨂ S RS ⨁
i∈S

i PS

-UCG: Fourier constructionf

36

Fourier construction

(copy target) Copy for times in .
(apply phase) For each in parallel, apply a

 gate controlled on register onto the -th qubit in
register
(un-copy target) Undo the copy.
Observe that the relative phase is summing up, composing

T supp (f)>0 T′

S ∈ supp (δ)>0

Z((S))δ PS S

T′

δ

 ∣x⟩ ∣b⟩ ↦I T ∣x⟩ Z (S)χ (x) ∣b⟩ ↦I

S⊆[n]

∑ δ S T,T′
⊗m ∣x⟩ Z(δ(x))∣b⟩ .I T

37

-UCG: Fourier constructionf

!

Idea: apply onto a target qubit by simply applying to it a
sequence of phases controlled on , for .

Z(δ(x)) = Z((S)χ (x))∑S∈supp(δ) δ S

Z(δ(x))
Z((S))δ χ (x)S S ∈ supp(δ)

Observe:

38

-UCG: Fourier constructionf

!

Idea: apply onto a target qubit by simply applying to it a
sequence of phases controlled on , for .

Z(δ(x)) = Z((S)χ (x))∑S∈supp(δ) δ S

Z(δ(x))
Z((S))δ χ (x)S S ∈ supp(δ)

Observe:

How?

1. First compute from the target qubit using one
Fan-Out, where ,

2. Apply the controlled phases onto different copies.

3. Uncompute the copies with another Fan-Out.

(∣0⟩ +⊗m ∣1⟩)/⊗m 2

m := ∣ supp(δ)∣

Z((S))δ

(∣0⟩ +⊗m (−1) ∣1⟩)/ =(S)χ (x)∑S δ S ⊗m 2 Z(δ(x))(∣0⟩ +⊗m ∣1⟩)/⊗m 2

38.1

QRAM as a function

Let .

The QRAM function is defined as .

f : {0, 1} ×n {0, 1} ↦log n {0, 1}

f(x, i) = xi

39

QRAM as a function

Let .

The QRAM function is defined as .

f : {0, 1} ×n {0, 1} ↦log n {0, 1}

f(x, i) = xi

We can do Fourier analysis on this function!

39.1

QRAM as a function

Let .

The QRAM function is defined as .

f : {0, 1} ×n {0, 1} ↦log n {0, 1}

f(x, i) = xi

We can do Fourier analysis on this function!

Theorem: Let be a power of . A of memory size
 can be implemented in constant-depth using

either ancillae and Fan-Out gates,
or ancillae and gates.

n ∈ N 2 QRAM

n

n log n2
1 2 2n2

2n2 2 GT

39.2

Bonus slide: QRAG vs QRAM

Theorem: A query to a QRAM of memory size can be
simulated using queries to a QRAG of memory size ,

n

2 n

40

Bonus slide: QRAG vs QRAM

Theorem: A query to a QRAM of memory size can be
simulated using queries to a QRAG of memory size ,

n

2 n

Theorem: In our computational model, a query to a
QRAG cannot be simulated by any number of queries
to a QRAM.

40.1

Bonus slide: QRAG vs QRAM

Theorem: A query to a QRAM of memory size can be
simulated using queries to a QRAG of memory size ,

n

2 n

Theorem: In our computational model, a query to a
QRAG cannot be simulated by any number of queries
to a QRAM.
Theorem: ... but suppose that single-qubit gates can
be freely applied onto the memory register of any
QRAM. Then a QRAG of memory size can be
simulated using queries to a QRAM of memory size
and Hadamard gates.

M

n

3 n

2(n+ 1)

40.2

Conclusions
We show constant-depth circuits:

UCGs
Boolean functions
quantum memory gates

We can improve the depth of many circuits:

Bonus: formal definition of quantum computer with access to
quantum memory
Future work? Moral of the story?

log (n) ↦2 log (n)k

PhDs/postdocs:
cs@quantumlah.org

Open Source lecture notes:

41

