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Energy-based models

* Inan energy-based model the model distribution is a Gibbs distribution p;(x) = ée‘ﬁEl(’c). The model provides a

representation of the energy potential £,: 1 — R.

* Training:
=V, L(A) = jVA logpa(x) p(x)dx = -+ = =BE,[V3(Ex(x))] + BEp, [Va(Ex(x))]. %
X
2

* The first term is called the positive phase (easy to approximate from data) and the %o

second term is called the negative phase (requires samples from the model/Gibbs

distribution).
* Old EBMs (e.g., Boltzmann machines) used the Ising potential E; = — Zi,j=1,...,m Ai j0; 0;

which didn’t work out so great! X3
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Modern (deep) EBMs

* Duand Mordatch (2019) showed the first large-scale EBM Models Parameters Training Time  Sampling Time
trainings. EBM 5M 48 3 Hour (Variable)
) ) Pixel CNN++ 160M 1300 72 Hour
* Langevin dynam|c5:1 Glow 115M 1300 0.5 Hour
SNGAN M 9 0.02 Hour
Corruption Completions Model Tnception* FID
4 ' CIFAR-10 Unconditional
PixelCNN [Van Oord et al., 2016] 4.60 65.93
PixelIQN [Ostrovski et al., 2018] 5.29 49.46
EBM (single) 6.02 40.58
DCGAN [Radford et al., 2016] 6.40 37.11
WGAN + GP [Gulrajani et al., 2017] 6.50 36.4
EBM (10 historical ensemble) 6.78 382
SNGAN [Miyato et al., 2018] 8.22 21.7
CIFAR-10 Conditional
Improved GAN 8.09 -
EBM (single) 8.30 37.9
Spectral Normalization GAN 8.59 25.5
ImageNet 32x32 Conditional
Pixel CNN 8.33 33.27
PixelIQN 10.18 2299
EBM (single) 1822 1431
ImageNet 128x128 Conditional
ACGAN [Odena et al., 2017] 28.5 -
EBM* (single) 28.6 437
SNGAN 36.8 27.62
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Benefits of EBMs

Guo et al. (2017): Over the years conventional classifiers have become less and less calibrated.

Grathwohl et al. (2019): Joint EBM improve the calibration and adversarial robustness of the representation.

Du and Mordatch (2019): Good at OOD detection by EBMs.

Model PixelCNN++ Glow EBM (ours)
SVHN 0.32 0.24 0.63
Textures 0.33 0.27 0.48
Constant Uniform 0.0 0.0 0.30
Uniform 1.0 1.0 1.0
CIFAR10 Interpolation 0.71 0.59 0.70
Average 0.47 0.42 0.62

Figure 10: AUROC scores of out of distribution classification on differ-
ent datasets. Only our model gets better than chance classification.
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Stochastic security

* Elflein et al., (2021): EBMs outperform normalizing flows
in OOD detection.

* Hill-Mitchel-Zho (2021): Convergent EBMs purify an image

from adversarial attacks.

Normal Pneumothorax
Ma et al. 2020, arXiv:1907.10456v2

Benign Nevus Malignant Nevus ‘

Ma et al. 2020, arXiv:1907.10456v2



Our agenda

Instead of Monte-Carlo simulation of Langevin dynamics dX; = —VE(X;)dt + /28~1dW, ...

... solve the Fokker-Planck equation

0
a—'i = V.(VEp) + B~ 1Ap.

* A second order PDE; a.k.a. the diffusion equation; a.k.a. Kolmogorov’s forward equation.
* Our approach: Linearize the generator L = —VE.V + 1A and solve using quantum linear system solvers.

* Theorem [Motamedi-R]. A quantum computer can sample from the Gibbs state of an analytic periodic potential using

0(d3ePpolylog(1/€)) queries to the energy oracle.

* The training scheme does not require QRAM. 9)

* Non convexity is now a non-issue and the complexity of algorithm

depends rather on the rate of decay of Fourier coefficients of E.




High precision sampling using Fourier interpolation

2:
3:

4.
5:
Output: Sample point x.

Input: Energy function oracle Og, lattice parameters N, M € N, solution time 7" > 0
1:

Construct an oracle for the discretization LL of the generator of the Fokker—Planck equation (see Fig. 4 in
the appendix).

Deploy the algorithm of [BCOW17] to prepare a quantum state approximating |u(7")) pertaining to the
solution of 4% = L, with  (0) = 1, at time t = 7.

Apply the upsampling isometry FJ;II tF'n involving quantum Fourier transformations on the prepared state
(Theorem 3.1).

Measure the resulting state in the computational basis to obtain a lattice point € [—£/2,£/2]%.

Draw a sample Z uniformly at random from the box Hle [:1:2 — 4Mfﬁ, Zi + g ME +2} around .

e By writing FPE in the Fourier domain we boost our precision with a technique we call upsampling:

* Given a (C, a)-semi-analytic periodic function u, an integer N > 2ad, and a quantum state |y ) € Hy

that is e-close to |u,y ) we can sample from u? with an O(g, C) precision.
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The oracle of the ODE solver
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Long mixing time in equilibrium dynamics

Let ps be the corresponding steady distribution. Further, assume that for a constant A > 0 any

differentiable function f € L?(p,) satisfies
Var, [f] < kE, ||Vf|?]

e Then

t

<ek
L? (ps)

2 q

Ps

P01

Ps

L2(ps)

1
* Note: TV (pe, ps) <3 \/Varps(pt/ps)-

* Proposition [Motamedi-R]: Analytic period functions (on a torus) admit a universal Poincare constant k =
O(eA).

* So, no speed up in terms of the mixing time. However, in practice A is bounded.
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Exponential guantum speedups for Morse potentials

https://bastian.rieck.me/blog/posts/2019/morse_theory/
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Comparison with other algorithms

Method Potential type %Fgg cgi?;{);)igtgy Norm Mi?lggiilﬁgon
This paper non-convex periodic zeroeth O (I’\Z E /26A/ 2d7) ™V O (ﬁ: E/2 e22d" A fE_l)
Rejection sampling non-convex zeroeth 0, (eA) TV 0, (eAAfce_z)
This paper Morse and periodic zeroeth O ()\_QeA/ 2d7) V. O ()\_QeA/ 2d°A fE_l)
Cl. RLA [LE20]  Morse and periodic  first O ()\_4L4d36_2) ™V O ()\_4L4d3Afe€_4)
MRW []():éWYIS] convex first 0] (L2d3€_2) TV O (L2d3AJ2ce_4)
Q. ULD [CLL"22] strongly convex  zeroeth O (M_QLle/ 25_1) Wy -
CL ULD [CCBJ17]  strongly convex first O (,u_zLle/ 26_1) W -
MALA [%LL+22] strongly convex first O (,u_l/le/Qd) ™V O (M_1/2L1/2dAf6_1)
Cl. MALA [LST20]  strongly convex first O (,u_lLd) TV O (u_lLdA?es_Q)

Pooya Ronagh | UW | PI | IQC | 1QBit



12

Outlook

Outlook 1: Beyond periodic functions

Periodicity does not create a constrain in data-driven training.

Direct sampling from [—1, 1]% can be achieved by moving to

Chebychev spectral methods (WIP).

Outlook 2:

In diffusion models the diffusion equation is solved for a finite
time avoiding the long mixing time.
This requires solving FPEs with time-dependent drift and

diffusion terms (WIP).

Outlook 3:

Digital computation is very expensive for FTQC. Perhaps all this
machinery should rather be developed in the bosonic setting

(Please talk to me if interested...).
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