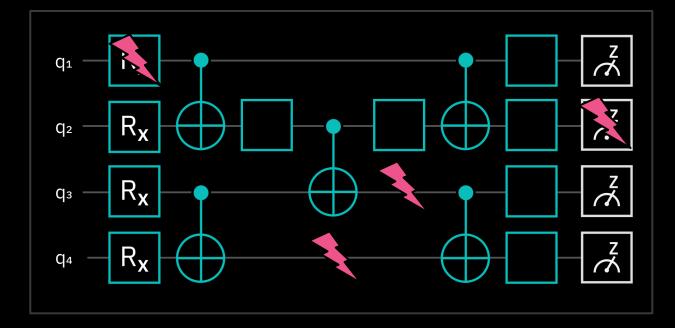
The Mission of IBM Quantum

Dr. Christa Zoufal

Research Scientist Quantum Computational Science IBM Quantum, IBM Research Europe - Zurich

Our mission


Bring useful quantum computing to the world Make the world quantum safe

Our mission

Bring useful quantum computing to the world Make the world quantum safe

IBM Quantum

In quantum computation, we must deal with errors.

Dealing with errors in quantum systems

- Error correction: computation is performed on encoded (logical) qubits. Errors are corrected during the computation.
- Error mitigation: computation is performed on unencoded (physical) qubits. Errors are corrected by combining outcomes of many noisy circuits.

Dealing with errors in quantum systems

- Error correction: computation is performed on encoded (logical) qubits. Errors are corrected during the computation.
- Error mitigation: computation is performed on unencoded (physical) qubits. Errors are corrected by combining outcomes of many noisy circuits.

Approach	Gate set	Qubit overhead	Circuit output	Sampling overhead	Scaling
Error correction (today)	Clifford + T	Large	Any	None	Polynomial
Error mitigation (today)	Any	None	Expected values of observables	Large	Exponential

Recent Breakthrough in Error Correction

arXiv > quant-ph > arXiv:2308.07915

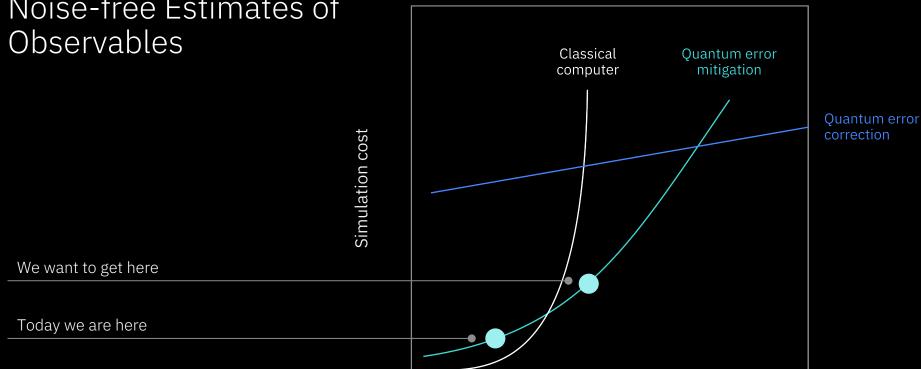
Help | Advand

Quantum Physics

[Submitted on 15 Aug 2023]

High-threshold and low-overhead fault-tolerant quantum memory

Sergey Bravyi, Andrew W. Cross, Jay M. Gambetta, Dmitri Maslov, Patrick Rall, Theodore J. Yoder

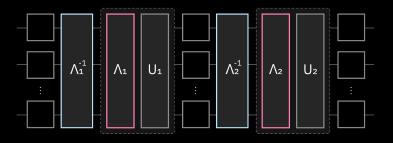

Quantum error correction becomes a practical possibility only if the physical error rate is below a threshold value that depends on a particular quantum code, syndrome measurement circuit, and a decoding algorithm. Here we present an end-to-end quantum error correction protocol that implements fault-tolerant memory based on a family of LDPC codes with a high encoding rate that achieves an error threshold of 0.8% for the standard circuit-based noise model. This is on par with the surface code which has remained an uncontested leader in terms of its high error threshold for nearly 20 years. The full syndrome measurement cycle for a length-*n* code in our family requires *n* ancillary qubits and a depth-7 circuit composed of nearest-neighbor CNOT gates. The required qubit connectivity is a degree-6 graph that consists of two edge-disjoint planar subgraphs. As a concrete example, we show that 12 logical qubits can be preserved for ten million syndrome cycles using 288 physical qubits in total, assuming the physical error rate of 0.1%. We argue that achieving the same level of error suppression on 12 logical qubits with the surface code would require more than 4000 physical qubits. Our findings bring demonstrations of a low-overhead fault-tolerant quantum memory within the reach of near-term quantum processors.

Previous estimates: 1 logical qubit ~500 physical qubits

New IBM paper (so far for memory): 1 logical qubit ~50 physical qubits

Error Mitigation: Noise-free Estimates of

IBM Quantum

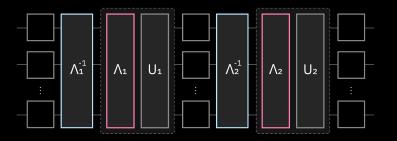

Quantum circuit complexity

Error mitigation

IBM Quantum

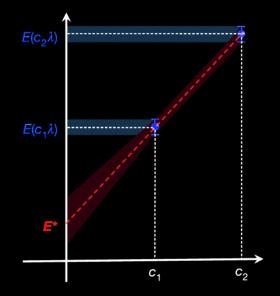
Probabilistic Error Cancellation

Average over many circuit instances with additional gates inserted to reconstruct the noise inverse and get unbiased estimates of expectation values



Error mitigation

IBM Quantum


Probabilistic Error Cancellation

Average over many circuit instances with additional gates inserted to reconstruct the noise inverse and get unbiased estimates of expectation values

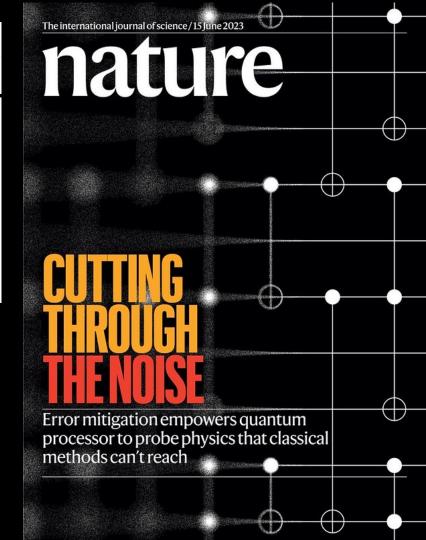
Zero Noise Extrapolation

Increase noise through stretching circuits and extrapolate back to the zero noise limit

Noise amplification / stretch factor

nature

Explore content V About the journal V Publish with us V


<u>nature</u> > <u>articles</u> > article

Article Open Access Published: 14 June 2023

Evidence for the utility of quantum computing before fault tolerance

Youngseok Kim ⊡, Andrew Eddins ⊡, Sajant Anand, Ken Xuan Wei, Ewout van den Berg, Sami Rosenblatt, Hasan Nayfeh, Yantao Wu, Michael Zaletel, Kristan Temme & Abhinav Kandala ⊡

<u>Nature</u> 618, 500–505 (2023) | <u>Cite this article</u>

Multiple 100+ qubit experiments have been published by now!

Simulating large-size quantum spin chains on cloud-based superconducting quantum computers

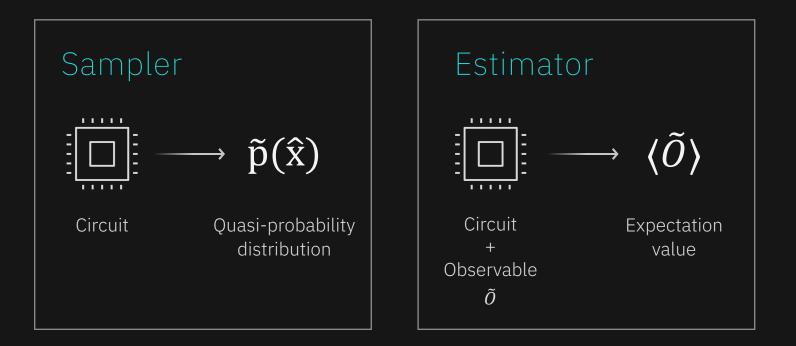
102 qubits / 3186 CX gates arXiv:2207.09994

Uncovering Local Integrability in Quantum Many-Body Dynamics

124 qubits / 2641 CX gates arXiv:2307.07552

Realizing the Nishimori transition across the error threshold for constant-depth quantum circuits 125 gubits / 429 gates + meas. arXiv:2309.02863

Scalable Circuits for Preparing Ground States on Digital Quantum Computers: The Schwinger Model Vacuum on 100 Qubits

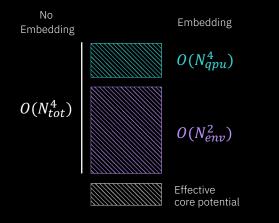

100 qubits / 788 CX gates arXiv:2308.04481

Efficient Long-Range Entanglement using Dynamic Circuits

101 qubits / 504 gates + meas. arXiv:2308.13065

We now deliver these optimizations through the Qiskit Runtime Primitives

IBM Quantum


Leverage Quantum + Classical Compute

IBM Quantum

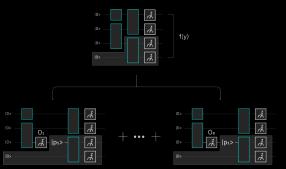
Embedding

Effective leveraging of QPU resources: Only the part of the problem which most benefits from exploiting entanglement is undertaken by the QPU

The CPU is efficient in tackling the remaining of the problem

Entanglement forging

Break down a correlated system into smaller subsystems which can be tackled by smaller QPUs.

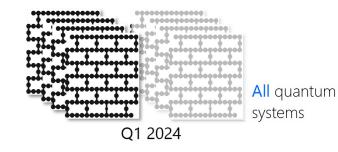

Recover the lost correlations with classical post-processing of the QPUs outputs

 $\left\langle \begin{array}{c} \textcircled{1} \\ (\begin{tabular}{c} \ \ (\begin{tabular}{c} \ \ \ \ (\begin{tabular}{c}$

Circuit cutting

Simulate a large quantum circuit using small QPUs by cutting the circuit into subcircuits, which are then sent to QPUs

The output of the original circuit is built from classical post-processing of the subcircuits outputs


We are upgrading our fleet to 100+ qubit systems... for everyone

2021 Washington

Brisbane

Cusco Nazca Sherbrooke Cleveland (co-located) Kawasaki (co-located) Quebec (co-located)

Open Plan	Pay-As-You-Go	Premium Plan	Dedicated System Service
Free Qiskit Runtime-as-a- Service available via the cloud, powered by the same utility-scale systems as our paid offering	Qiskit Runtime-as-a-Service available via IBM Cloud as self- service, powered by utility- scale systems	Qiskit Runtime-as-a-Service available via the cloud, powered by utility-scale systems. Reserved capacity access through IBM Quantum or via an IBM Quantum hub	Qiskit Runtime-as-a-Service powered by a dedicated managed quantum system at IBM or client location, purchased as reserved capacity and available via the cloud
Suitable for learning quantum computing and exploring our technology	For those that need more flexible access to complete their quantum utility research project, test their business model, or just pay for what they need	For organizations executing on a strategic quantum roadmap, looking to develop quantum utility IBM Quantum Network	Ideal for organizations that need the maximum control over their resources and data IBM Quantum Network
		Membership and Benefits	Membership and Benefits

IBM Quantum Credits

A program built to award subsidized access to a limited number of researchers, startups, and other ecosystem pioneers working on highly innovative projects that advance techniques and algorithms needed to explore impactful application areas.

Apply or find out more:

IBM Quantum

ouf@zurich.ibm.com