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PASQAL at a Glance

200+

EMPLOYEES
18 nationalities

40

YEARS
History in quantum 

technologies

15+

PATENTS & 
APPLICATIONS
800+ publications

350+

QUBITS
Best-in-class qubit count and 

path to 10,000 qubits 
available in the cloud in 2026

>20

CLIENTS
Multiple QPUs sold via 

HPCQS framework, activities 
in more than 10 countries, 
and engagements with top 

cloud distributors

FULL-STACK

QUANTUM HARDWARE 
AND SOFTWARE TODAY 

Aiming for Practical 
Quantum Advantage
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Hardware control
electronics

vacuum 
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laser

2D acousto-optic laser 

beam reflector

• Currently available systems are in the order of 300+
qubits

• Clear blueprint to showcase  1000 qubits in near-term

• Analog and analog-digital capabilities

• Development of Algorithms and Solutions 

PASQAL Hardware

PASQAL manufacturers industrialized neutral-atoms type quantum processors offering attractive 
scaling, flexible topology and analog and digital computational mode
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Hardware1 Offerings

Our Full-Stack Solution is Key to Driving Customer Success

PASQAL’s comprehensive full-stack offer covers the full range of needs from the 
quantum computer hardware to the way to use it on personalized software on use cases

Gen 1 
100 / 200-Q

Gen 2 
512 / 1,024-Q

Gen 3
5,000 / 10,000-Q 

and beyond

GPU Cluster

Access
• Cloud access
• Data center install
• On-premise install

Platform
• Coding platform
• GUI
• Software integrations

Solutions
• Turnkey solutions per problem 

and sector
• Chemistry, CFD2, Finance

Libraries
• Quantum (ready) algorithms per 

mathematical problem
• PDE, optimization, ML 

Support
• R&D support
• Tech support
• Maintenance

[1] Q represents qubits
[2] CFD represents computational fluid dynamics

Emulator
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Merger PASQAL <> Qu&Co for application-driven Research

Application-driven in-house quantum algorithm research

Accelerating research and the road towards quantum advantage by 
combining HW technology & problem orientations

In January 2022, PASQAL announced merging with 
quantum software startup Qu&Co

1-2 
years
earlier

Hardware

Technology-
driven

Software

Problem-
oriented
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PASQAL’S Mission

We want to make the world and industry 
quantum-ready, and develop concrete quantum 

solutions for their most valuable problems. 

At the same time, we are eager to research 
towards quantum advantage and the impact it can 

have to our socio-economic world. 
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Where do we see quantum advantage in the near future?

Use Cases with relevance to the industry and the socio-economic world

Quantum Advantage CandidatesCurrent Technologies

• 300+ Physical Qubits are available

• Fault Tolerance is still a regime to be explored

• Error Mitigation Techniques 

• Some sort of advantage can be demonstrated

• Classically Hard Problem 

• Relevant solution takes too much time if feasible

• Use Case has an impact for our world

• Have a benchmark (at least in smaller scale)

Computational Advantage will arise in the design of quantum solutions (and algorithms) for classically hard 
problems and use cases with relevance to our world.  

Accuracy and Precision should not be mixed ! 
We care for both (at least in most cases!)
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Application: Quantum Simulation for Scientific discovery

Analog Quantum Simulation are already operating in a regime going beyond the capabilities of classical supercomputers 

Staggered magnetisation histograms for 10 × 10 
and 14 × 14 arrays, with MPS shown on the lower 
part of the 10 × 10 array (14 days for simulation 
with TeNPy). 
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Application: Learning on Graph-structured data

Graph Machine Learning offers a QML opportunity native to reprogrammable neutral atoms 

Quantum procedures go beyond classical means. 
Geometry induced by the quantum procedure cannot 

be efficiently reproduced by classical means
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Neutral atom arrays enable ‘native’ implementations 
of graph machine learning techniques

Source: Work in Progress + “Quantum evolution kernel : Machine learning on graphs with programmable arrays of qubits”, Louis-Paul Henry, Slimane Thabet, Constantin Dalyac, Loïc Henriet, Phys. Rev. A 104, 032416  (2021)
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Application: Enhancing classical graph ML with quantum features

Graph Machine Learning could benefit from quantum correlations[1]

Aggregation weights are computed using the long-
range correlations of a quantum system

Quantum Graph Feature maps encode graph into 
Hilbert space and correlation matrices are observed

[1] “Extending Graph Transformers with Quantum Computed Aggregation”, Slimane Thabet, Romain Fouilland, Loic Henriet, https://arxiv.org/abs/2210.10610 (2022)

https://arxiv.org/abs/2210.10610
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[1] Solving nonlinear differential equations with differentiable quantum circuits https://arxiv.org/abs/2011.103955 Phys. Rev. A 103, 052416 (2021)

Compare with loss-
function constructed 

from diff.equ. and 
boundary conditions

Automatic 
differentiation

through 
backpropagation

Circuit differentiation

Update variational
parameters θ of the 

quantum circuit

Variationally 
update the NN 

weights

up to 2N basis functions 
for fitting f(x) and df/dx

PINN[1] with comparable performance 
as DQC would need up-to O(2N) nodes 

with high connectivity

PINN[1]

DQC[2]
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Application: Solving Non-Linear Partial Differential Equations

DQC is a variational approach, where parametric 
functions are represented by measurements on the 
output of quantum circuits

The upper part describes the structure of a classical 
neural network, while the lower part describes the 
structure of DQC

The neural network is essentially a non-linear function 
generator which, given an input x, produces an output 
f(x). One trains the NN to represent the function that 
solves a DE given boundary conditions. At a given step, a 
loss function is evaluated and an update of the NN 
weights is decided in order to improve the quality of the 
output. One very important ingredient here is automatic 
differentiation, which allows you to not only have access 
to f, but also to the derivative of f with respect to x

What we proposed for DQC is to use a quantum circuit 
to produce a universal function generator, similar to the 
classical case, sometimes also called a Quantum Neural 
Network or Quantum Model

The analogue of the NN consists of a quantum circuit. 
Very much like automatic differentiation for classical 
neural networks, there are ways to access function 
derivatives through analytical circuit differentiation

DQC

https://arxiv.org/abs/2011.103955
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Digital / Analog setups provide a promising solution for DQC implementation

Digital: algorithm implemented through sequence of 
discrete quantum gate operations

Analog: user has control over small number of 
parameters and the quantum computer evolves 
towards an answer continuously[2]

Digital is universal, but noise limits the use to very 
short gate sequences, which limits the near-term 
potential for quantum advantage

Analog is perhaps not fully universal, but researchers 
are finding that it requires typically 104-105 less 
quantum operations

Analog quantum (or analog-digital) may therefore 
very well be our best chance to implement DQC 
workflows

Digital / Analog Quantum Computation

Measurement
Digital
variat,
gates

Digital
variational 

gates

Quantum
feature

map

Original 
(fully digital) 
DQC circuit

Optimized
(analog-digital) 

DQC circuit

Digital
entanglers

Analog
entanglers
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Application: Quantum (Scientific) Machine Learning (QSciML)

QML with Digital-Analog QNN circuits for simulating systems governed by Differential Equations

Differential Constraints Help Train Generative modelsSolving known deterministic equations (PDE)

Learning DE-models based on real-world data
Optimizing control/model parameters to maximize 
solution characteristics of merit

[1] Solving nonlinear differential equations with differentiable quantum circuits https://arxiv.org/abs/2011.103955 Phys. Rev. A 103, 052416 (2021)
[2] Protocols for Trainable and Differentiable Quantum Generative Modelling https://arxiv.org/abs/2202.08253
[3] Quantum Extremal Learning https://arxiv.org/abs/2205.02807
[4] Quantum Model Discovery https://arxiv.org/abs/2111.063766

https://arxiv.org/abs/2011.103955
https://arxiv.org/abs/2202.08253
https://arxiv.org/abs/2205.02807
https://arxiv.org/abs/2111.063766
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From Analog applications to Digital-Analog paradigms 

Pulse-level Control Paradigms

Digital-AnalogAnalog

With “Analog” quantum computing, we mean continuous 
control of our system Hamiltonian by the application of 
optical addressing with laser light
As an example, we can operate our quantum optical system  
in the Ising model regime, where the parametric 
Hamiltonian can be described as

In a “digital-analog” paradigm, we  define it as digital 
operations, such as arbitrary single-qubit gate(s)/rotations,  
interleaved with global multi-qubit operations such as 
evolution over an Ising Hamiltonian.

This allows efficient entanglement at low circuit depth, 
while simultaneously allowing more specific control of 
individual rotations
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Where to go next in QML? What challenges are to be tackled?

Pulse-level Control Paradigms

Quantum Advantage of Quantum Neural Networks 
over classical (Deep) Neural Networks?

(Analog) circuit differentiation is too expensive! 
How can we do practical gradient descent?

• We, as part of a broader community on the topic, have 
also developed extensions of the parameter shift rule 
towards more general unitaries including analog blocks

• Recent work has expanded further on these, including 
explicity formulations for analog evolutions.

• However, for optimization based on gradient descent, 
the cost compared to backpropagation is simply too high 
to  be practical

Open questions
• Can we train classically? 
• Can we train more cheaply? Stochastic?

• Several papers which use expressivity arguments to 
claim a theoretic advantage over classical

• Classical neural networks were only very recently 
understood more rigorously theoretically – is it simply 
too early to expect the same here? Do we need a 
quantum computer to understand a quantum computer?

• Several papers pointing out limitations of QNN and QML 
in general, but often it is not clear how broadly 
applicable the statements are, and no clear solutions 
exist yet

[1] Generalized quantum circuit differentiation rules https://arxiv.org/abs/2108.01218 Phys. Rev. A 104, 052417 (2021)

https://arxiv.org/abs/2108.01218
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We are hiring in a variety of seniority levels: 

panagiotis.barkoutsos@pasqal.com

Thank you!


