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• A central goal of science is to learn how our universe operates. 

• Because our universe is inherently quantum, the ability to efficiently learn in the quantum 
world could lead to many advances.
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A cartoon depiction of learning

• Learning is the combination of: 

1. receiving information about the universe, 2. processing that information to form models, 
3. storing the models and, subsequently,      4. using the models to predict in new scenarios.
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Error on training data

Foundation

Prediction error = Training error + Generalization error
Error on unseen inputs

• The key is to understand the generalization error.

• How to understand the prediction performance of a quantum machine?
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Prediction error − Training error = Generalization error
Error on unseen inputs

• What does generalization error depend on?

• Model, data, optimization process, … are all important factors.
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Generalization error
Some empirical facts:

2. Data: If the data is purely random, the machine can grow to a 
large size, fit the training data perfectly, but does not generalize.

1. Model: If the trainable machine has many trainable gates described 
by the same parameters, then generalization error is small.



Error on training data

Generalization error

Prediction error − Training error = Generalization error
Error on unseen inputs

• Model, data, optimization process, … are all important factors.

• What does generalization error depend on?

• We will see a type of generalization error bound for quantum machines.
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With  training samples, if the trained machine has  trainable gates, 
 possible structures, and each trainable gate is used  times, 

then generalization error  w.h.p.
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Concentration Board Time

Let  be independent and identically distributed (i.i.d.) 
random variable in . We have

X1, …, XN
[0,1]

Pr [𝔼[Xi] ≤
1
N

N

∑
i=1

Xi + ϵ] ≥ 1 − exp(−2Nϵ2)

This is known as Hoeffding’s concentration inequality.



Covering Net Board Time

How many balls are needed 
to cover all quantum machines 
with  trainable 2-qubit gates?T

To cover a trainable 2-qubit gate, 
we only need  -radius 

-norm ball.
(1/ϵ)𝒪(1) ϵ

∥⋅∥∞



Error on training data

Beyond training distribution

Prediction error = Training error + Generalization error

• We now have a good understanding for generalization error when the 
training data come from the same distribution as the unseen inputs.

Error on unseen inputs

• This kinds of generalization based on I.I.D. samples is useful.



Error on training data

Prediction error = Training error + Generalization error
Error on unseen inputs

• However, ideally, we want to generalize beyond the training distribution.

• We now have a good understanding for generalization error when the 
training data come from the same distribution as the unseen inputs.

Beyond training distribution
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Prediction error = Training error + Generalization error
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• While this seems impossible, one can actually do this! 

• This ability is known as “out-of-distribution generalization”.
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Beyond training distribution
• This theorem holds when training samples are random product states; 

But the prediction is on random entangled states.

With  training samples, if the trained machine has  trainable gates, 
 possible structures, and each trainable gate is used  times, 

then generalization error  w.h.p.

N T
≤ GT ≤ MT

= 𝒪
T log(MTT)

N
+

log(GT)
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Equivalence of predictions

Board Time

Let  be two distributions over -qubit states, 
such that the distributions are locally-scrambled.

𝒟1, 𝒟2 n

 (prediction error under ) 
 prediction error under   
 (prediction error under )

0.5 𝒟2
≤ 𝒟1 ≤
2 𝒟2

Constraints are from the structure of unitaries.
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Relevant works

Generalization in QML 
from few training data

Out-of-distribution generalization 
in learning quantum dynamics

Understanding QML also requires 
rethinking generalization

Learning quantum states and unitaries 
of bounded gate complexity

[This tutorial + numerics]

[This tutorial + numerics]

[Covering-net learning is optimal]

[Looking at model class alone is not enough]



Take home message
• How to understand prediction error of trainable quantum machines?

Error on training data

Prediction error = Training error + Generalization error
Error on unseen inputs

• Structure of quantum mechanics imply bounded generalization error: 

(A) Train well  predict well for trainable quantum machines 

(B) Train well on product states  predict well on entangled states

⟹

⟹
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• When can quantum machines predict better than classical machines?

Quantum advantage
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[HBC+] Huang, et all. Quantum advantage in learning from experiments, Science, 2022.

[HKP21] Huang, Kueng, Preskill. Information-theoretic bounds on quantum advantage in machine learning, Physical Review Letters, 2021.
[CCHL21] Chen, Cotler, Huang, Li. Exponential separations in learning with and without quantum memory, FOCS, 2021.
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[HBC+] Huang, et all. Quantum advantage in learning from experiments, Science, 2022.

[HKP21] Huang, Kueng, Preskill. Information-theoretic bounds on quantum advantage in machine learning, Physical Review Letters, 2021.
[CCHL21] Chen, Cotler, Huang, Li. Exponential separations in learning with and without quantum memory, FOCS, 2021.
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Quantum advantage 
in learning physical dynamics

• There is an unknown -qubit process  that can be generated in  time. 

• And there is a known distribution  over -qubit states. 

• Goal: Predict  to a small trace distance for most of .

n ℰ poly(n)
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Quantum agent only needs  experiments to predict  well for .
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poly(n) ℰ(ρ) ρ ∼ 𝒟
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Tree Representation
• We consider a graphical representation of the memory state of the 

classical agent when learning a quantum process .ℰ
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• Controlling the total variation (TV) distance between the leaf distribution 
in the null hypothesis and the alternative hypothesis.
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and more…

Information-theoretic Board Time



Quantum advantage in 𝖭𝖨𝖲𝖰

• Do these quantum advantages persist in noisy quantum computers? 
Yes! Rigorous analysis in [HFP22], Experiments in [HBC+22].

Classical agentPhysical system

Classical 
information

Quantum agentPhysical system

Quantum 
information

[HBC+22] Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean. Quantum advantage in learning from experiments, Science, 2022.
[HFP22] Huang, Flammia, Preskill. Foundations for learning from noisy quantum experiments, QIP, 2022.



Demonstration on Sycamore: 
Quantum advantage in learning dynamics

Quantum Quantum

ClassicalClassical

[HBC+22] Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean. Quantum advantage in learning from experiments, Science, 2022.
[HFP22] Huang, Flammia, Preskill. Foundations for learning from noisy quantum experiments, QIP, 2022.
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Relevant works

Exponential separation btw. learning 
w/ and w/o quantum memory

[This tutorial + more techniques]

Quantum advantage in learning 
from experiments

[This tutorial + more experiments]

Learning quantum processes and 
Hamiltonians via Pauli transfer matrix
[Exponential advantage in learning entries of PTM]

Advantage of quantum control 
in many-body Hamiltonian learning
[Quadratic advantage in learning Hamiltonians]
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Take home message

• However, we should not fixate solely on quantum advantage. 

• As we build the foundation of QML, quantum advantages naturally emerge. 
(e.g., the exponential advantage in learning poly-time physical processes)

[——— This tutorial ———]

• Quantum advantage is the ultimate goal of quantum technology. 
(otherwise, we should just use the existing classical technology) 

• The advantage can be diverse: computation, information, memory, energy, ….
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• How to build a quantum machine capable of learning and discovering 
new facets of our universe beyond humans and classical machines?

AI (2022) imaging itself learning and discovering new facets of our quantum universe

Long-term ambition



• Questions about learning, about quantum agents, about shadows, 
about NISQ, about future directions are all welcomed. Ask anything!

Q&A


