
Quantum algorithms:
What’s quantum complexity theory got to do with it?

Sevag Gharibian

Department of Computer Science
Institute for Photonic Quantum Systems (PhoQS)

Paderborn University
Germany

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 1 / 66

Mindset

Quantum computers

vs.

Classical computers

Comparison:
1 Classical: Honed over decades, extremely good at many tasks. Actually exist.

2 Quantum:
▶ Promise∗ of substantial improved performance for certain (important!) tasks.
▶ Relatively early in hardware development

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 2 / 66

Mindset

Quantum computers

vs.

Classical computers

Comparison:
1 Classical: Honed over decades, extremely good at many tasks. Actually exist.

2 Quantum:
▶ Promise∗ of substantial improved performance for certain (important!) tasks.
▶ Relatively early in hardware development

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 2 / 66

Mindset

Quantum computers

vs.

Classical computers

Comparison:
1 Classical: Honed over decades, extremely good at many tasks. Actually exist.

2 Quantum:
▶ Promise∗ of substantial improved performance for certain (important!) tasks.
▶ Relatively early in hardware development

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 2 / 66

Mindset

Quantum computers

vs.

Classical computers

Comparison:
1 Classical: Honed over decades, extremely good at many tasks. Actually exist.

2 Quantum:
▶ Promise∗ of substantial improved performance for certain (important!) tasks.
▶ Relatively early in hardware development

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 2 / 66

Mindset

Quantum computers

vs.

Classical computers

Comparison:
1 Classical: Honed over decades, extremely good at many tasks. Actually exist.

2 Quantum:
▶ Promise∗ of substantial improved performance for certain (important!) tasks.

▶ Relatively early in hardware development

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 2 / 66

Mindset

Quantum computers

vs.

Classical computers

Comparison:
1 Classical: Honed over decades, extremely good at many tasks. Actually exist.

2 Quantum:
▶ Promise∗ of substantial improved performance for certain (important!) tasks.
▶ Relatively early in hardware development

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 2 / 66

With an eye on...

Computational Complexity Theory
What resources (e.g. time, space) required to solve a computational problem?
Complexity classes such as P, NP, BQP, QMA

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 3 / 66

Outline

1 A brief history of quantum algorithms

2 The computational model

3 Matrix Inversion (MI)
MI ∈ BQP
MI is BQP-hard

4 Quantum Singular Value Transform (QSVT)

5 Dequantization
Example: Low-precision estimation of ground state energies

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 4 / 66

Origins
Wiesner’s quantum money (late 1970’s): “Unforgeable” notion of money

Security: Proven via semidefinite programming [MVW12]

Adaptive attack: Scheme insecure if bank returns banknote after checking it! [BNSU14]

Encapsulates many traits of quantum computing:

Possible to do things which are impossible classically (due, e.g., to no-cloning theorem)

Such feats do not require a universal quantum computer

Beware the details hiding in quantum claims

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 5 / 66

Origins
Wiesner’s quantum money (late 1970’s): “Unforgeable” notion of money

Security: Proven via semidefinite programming [MVW12]

Adaptive attack: Scheme insecure if bank returns banknote after checking it! [BNSU14]

Encapsulates many traits of quantum computing:

Possible to do things which are impossible classically (due, e.g., to no-cloning theorem)

Such feats do not require a universal quantum computer

Beware the details hiding in quantum claims

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 5 / 66

The 1990’s: The first “gamechangers”
Shor (1994)

Poly-time quantum algorithm for integer factorization

Breaks popular cryptosystem RSA, whose security assumes “classical hardness” of factoring

Complexity of factoring: Believed “NP-intermediate”, i.e. neither in P nor NP-complete

Other famous NP-intermediate problem: Graph Isomorphism (GI)
▶ Shor’s period-finding generalized to “hidden subgroup” problem with hope of solving GI
▶ Surprise: GI has a quasi-poly-time classical algorithm [Babai 2016]

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 6 / 66

The 1990’s: The first “gamechangers”
Shor (1994)

Poly-time quantum algorithm for integer factorization

Breaks popular cryptosystem RSA, whose security assumes “classical hardness” of factoring

Complexity of factoring: Believed “NP-intermediate”, i.e. neither in P nor NP-complete

Other famous NP-intermediate problem: Graph Isomorphism (GI)
▶ Shor’s period-finding generalized to “hidden subgroup” problem with hope of solving GI
▶ Surprise: GI has a quasi-poly-time classical algorithm [Babai 2016]

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 6 / 66

The 1990’s: The first “gamechangers”
Shor (1994)

Poly-time quantum algorithm for integer factorization

Breaks popular cryptosystem RSA, whose security assumes “classical hardness” of factoring

Complexity of factoring: Believed “NP-intermediate”, i.e. neither in P nor NP-complete

Other famous NP-intermediate problem: Graph Isomorphism (GI)
▶ Shor’s period-finding generalized to “hidden subgroup” problem with hope of solving GI

▶ Surprise: GI has a quasi-poly-time classical algorithm [Babai 2016]

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 6 / 66

The 1990’s: The first “gamechangers”
Shor (1994)

Poly-time quantum algorithm for integer factorization

Breaks popular cryptosystem RSA, whose security assumes “classical hardness” of factoring

Complexity of factoring: Believed “NP-intermediate”, i.e. neither in P nor NP-complete

Other famous NP-intermediate problem: Graph Isomorphism (GI)
▶ Shor’s period-finding generalized to “hidden subgroup” problem with hope of solving GI
▶ Surprise: GI has a quasi-poly-time classical algorithm [Babai 2016]

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 6 / 66

The 1990’s: The first “gamechangers”
Shor (1994)

Poly-time quantum algorithm for integer factorization

Breaks popular cryptosystem RSA, whose security assumes “classical hardness” of factoring

Complexity of factoring: Believed “NP-intermediate”, i.e. neither in P nor NP-complete

Other famous NP-intermediate problem: Graph Isomorphism (GI)
▶ Shor’s period-finding generalized to “hidden subgroup” problem with hope of solving GI
▶ Surprise: GI has a quasi-poly-time classical algorithm [Babai 2016]

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 6 / 66

The 1990’s: The first “gamechangers”

Grover (1996)
Finds marked item in unstructured database of N items with O(

√
N) queries

Generalized to amplitude amplification:
▶ Boosts any probabilistic algorithm with success probability p to success probability

√
p

Lloyd’s Hamiltonian simulation algorithm (1996)

Efficiently simulates quantum systems governed by local Hamiltonians H =
∑

i Hi ∈ L(C2)⊗n

Introduced use of Trotterization/Lie Product Formula:

eH1+H2 = lim
n→∞

(
e

H1
n e

H2
n

)n

.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 7 / 66

The 1990’s: The first “gamechangers”

Grover (1996)
Finds marked item in unstructured database of N items with O(

√
N) queries

Generalized to amplitude amplification:
▶ Boosts any probabilistic algorithm with success probability p to success probability

√
p

Lloyd’s Hamiltonian simulation algorithm (1996)

Efficiently simulates quantum systems governed by local Hamiltonians H =
∑

i Hi ∈ L(C2)⊗n

Introduced use of Trotterization/Lie Product Formula:

eH1+H2 = lim
n→∞

(
e

H1
n e

H2
n

)n

.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 7 / 66

The 2000’s: The posterchild

Harrow-Hassadim-Lloyd (HHL) algorithm (2008)

Solves∗ linear systems of equations Ax = b with exponential speedup, i.e. time polylog(dim(x))

∗: Returns quantum representation |ψx⟩ ∈ (C2)⊗n of x ⇒ can’t read all entries of x !

Approach: “Eigenvalue surgery”
1 Use Hamiltonian simulation to simulate unitary U = eiA

2 Use Quantum Phase Estimation on U to “extract” eigenvalues of A and “manually” invert them

BQP-complete: Matrix inversion precisely captures the power of efficient quantum computation

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 8 / 66

The 2000’s: The posterchild

Harrow-Hassadim-Lloyd (HHL) algorithm (2008)

Solves∗ linear systems of equations Ax = b with exponential speedup, i.e. time polylog(dim(x))

∗: Returns quantum representation |ψx⟩ ∈ (C2)⊗n of x ⇒ can’t read all entries of x !

Approach: “Eigenvalue surgery”
1 Use Hamiltonian simulation to simulate unitary U = eiA

2 Use Quantum Phase Estimation on U to “extract” eigenvalues of A and “manually” invert them

BQP-complete: Matrix inversion precisely captures the power of efficient quantum computation

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 8 / 66

The 2000’s: The posterchild

Harrow-Hassadim-Lloyd (HHL) algorithm (2008)

Solves∗ linear systems of equations Ax = b with exponential speedup, i.e. time polylog(dim(x))

∗: Returns quantum representation |ψx⟩ ∈ (C2)⊗n of x ⇒ can’t read all entries of x !

Approach: “Eigenvalue surgery”
1 Use Hamiltonian simulation to simulate unitary U = eiA

2 Use Quantum Phase Estimation on U to “extract” eigenvalues of A and “manually” invert them

BQP-complete: Matrix inversion precisely captures the power of efficient quantum computation

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 8 / 66

The 2000’s: The posterchild

Harrow-Hassadim-Lloyd (HHL) algorithm (2008)

Solves∗ linear systems of equations Ax = b with exponential speedup, i.e. time polylog(dim(x))

∗: Returns quantum representation |ψx⟩ ∈ (C2)⊗n of x ⇒ can’t read all entries of x !

Approach: “Eigenvalue surgery”
1 Use Hamiltonian simulation to simulate unitary U = eiA

2 Use Quantum Phase Estimation on U to “extract” eigenvalues of A and “manually” invert them

BQP-complete: Matrix inversion precisely captures the power of efficient quantum computation

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 8 / 66

The 2010’s: A general quantum algorithms framework
Low-Chuang optimal Hamiltonian simulation algorithm (2016)

Simulate Hamiltonian H for time t and error ϵ, i.e. unitary U = eiHt in time O(t + log(1/ϵ))

Introduced technique of qubitization or “block encodings”:

U =


H M12 · · · M1m

M21 M22 · · · M2m
...

...
. . .

...
Mm1 Mm2 · · · Mmm

 → U ′ =


p(H) M12 · · · M1m

M21 M22 · · · M2m
...

...
. . .

...
Mm1 Mm2 · · · Mmm


Idea:

▶ Want to map |ψ⟩ 7→ eiHt |ψ⟩
▶ Embed H in top-left block of some unitary U
▶ Use “qubitization” to map H 7→ p(H) for some appropriate polynomial p such that p(H) ≈ eiHt

▶ Use “post-selection” to probabilistically map

U|ψ⟩ 7→ p(H)|ψ⟩ ≈ eiHt |ψ⟩.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 9 / 66

The 2010’s: A general quantum algorithms framework
Low-Chuang optimal Hamiltonian simulation algorithm (2016)

Simulate Hamiltonian H for time t and error ϵ, i.e. unitary U = eiHt in time O(t + log(1/ϵ))

Introduced technique of qubitization or “block encodings”:

U =


H M12 · · · M1m

M21 M22 · · · M2m
...

...
. . .

...
Mm1 Mm2 · · · Mmm

 → U ′ =


p(H) M12 · · · M1m

M21 M22 · · · M2m
...

...
. . .

...
Mm1 Mm2 · · · Mmm


Idea:

▶ Want to map |ψ⟩ 7→ eiHt |ψ⟩

▶ Embed H in top-left block of some unitary U
▶ Use “qubitization” to map H 7→ p(H) for some appropriate polynomial p such that p(H) ≈ eiHt

▶ Use “post-selection” to probabilistically map

U|ψ⟩ 7→ p(H)|ψ⟩ ≈ eiHt |ψ⟩.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 9 / 66

The 2010’s: A general quantum algorithms framework
Low-Chuang optimal Hamiltonian simulation algorithm (2016)

Simulate Hamiltonian H for time t and error ϵ, i.e. unitary U = eiHt in time O(t + log(1/ϵ))

Introduced technique of qubitization or “block encodings”:

U =


H M12 · · · M1m

M21 M22 · · · M2m
...

...
. . .

...
Mm1 Mm2 · · · Mmm

 → U ′ =


p(H) M12 · · · M1m

M21 M22 · · · M2m
...

...
. . .

...
Mm1 Mm2 · · · Mmm


Idea:

▶ Want to map |ψ⟩ 7→ eiHt |ψ⟩
▶ Embed H in top-left block of some unitary U

▶ Use “qubitization” to map H 7→ p(H) for some appropriate polynomial p such that p(H) ≈ eiHt

▶ Use “post-selection” to probabilistically map

U|ψ⟩ 7→ p(H)|ψ⟩ ≈ eiHt |ψ⟩.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 9 / 66

The 2010’s: A general quantum algorithms framework
Low-Chuang optimal Hamiltonian simulation algorithm (2016)

Simulate Hamiltonian H for time t and error ϵ, i.e. unitary U = eiHt in time O(t + log(1/ϵ))

Introduced technique of qubitization or “block encodings”:

U =


H M12 · · · M1m

M21 M22 · · · M2m
...

...
. . .

...
Mm1 Mm2 · · · Mmm

 → U ′ =


p(H) M12 · · · M1m

M21 M22 · · · M2m
...

...
. . .

...
Mm1 Mm2 · · · Mmm


Idea:

▶ Want to map |ψ⟩ 7→ eiHt |ψ⟩
▶ Embed H in top-left block of some unitary U
▶ Use “qubitization” to map H 7→ p(H) for some appropriate polynomial p such that p(H) ≈ eiHt

▶ Use “post-selection” to probabilistically map

U|ψ⟩ 7→ p(H)|ψ⟩ ≈ eiHt |ψ⟩.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 9 / 66

The 2010’s: A general quantum algorithms framework
Low-Chuang optimal Hamiltonian simulation algorithm (2016)

Simulate Hamiltonian H for time t and error ϵ, i.e. unitary U = eiHt in time O(t + log(1/ϵ))

Introduced technique of qubitization or “block encodings”:

U =


H M12 · · · M1m

M21 M22 · · · M2m
...

...
. . .

...
Mm1 Mm2 · · · Mmm

 → U ′ =


p(H) M12 · · · M1m

M21 M22 · · · M2m
...

...
. . .

...
Mm1 Mm2 · · · Mmm


Idea:

▶ Want to map |ψ⟩ 7→ eiHt |ψ⟩
▶ Embed H in top-left block of some unitary U
▶ Use “qubitization” to map H 7→ p(H) for some appropriate polynomial p such that p(H) ≈ eiHt

▶ Use “post-selection” to probabilistically map

U|ψ⟩ 7→ p(H)|ψ⟩ ≈ eiHt |ψ⟩.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 9 / 66

The 2010’s: A general quantum algorithms framework
Quantum Singular Value Transformation (Gilyén, Su, Low, and Wiebe 2019)

Generalizes Low and Chuang’s qubitization approach to non-square matrices A

Given non-square A (embedded as block of unitary U), polynomial p, simulates mapping

|ψ⟩ 7→ p
(√

A†A
)
|ψ⟩.

Unified framework for a host of quantum algorithms:
▶ Hamiltonian simulation, linear systems, amplitude amplification, quantum machine learning

algorithms, and essentially all “quantum matrix linear algebra”
▶ [Martyn, Rossi, Tan and Chuang 2021] iteratively apply QSVT to simulate Fourier Transform

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 10 / 66

The 2010’s: A general quantum algorithms framework
Quantum Singular Value Transformation (Gilyén, Su, Low, and Wiebe 2019)

Generalizes Low and Chuang’s qubitization approach to non-square matrices A

Given non-square A (embedded as block of unitary U), polynomial p, simulates mapping

|ψ⟩ 7→ p
(√

A†A
)
|ψ⟩.

Unified framework for a host of quantum algorithms:
▶ Hamiltonian simulation, linear systems, amplitude amplification, quantum machine learning

algorithms, and essentially all “quantum matrix linear algebra”

▶ [Martyn, Rossi, Tan and Chuang 2021] iteratively apply QSVT to simulate Fourier Transform

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 10 / 66

The 2010’s: A general quantum algorithms framework
Quantum Singular Value Transformation (Gilyén, Su, Low, and Wiebe 2019)

Generalizes Low and Chuang’s qubitization approach to non-square matrices A

Given non-square A (embedded as block of unitary U), polynomial p, simulates mapping

|ψ⟩ 7→ p
(√

A†A
)
|ψ⟩.

Unified framework for a host of quantum algorithms:
▶ Hamiltonian simulation, linear systems, amplitude amplification, quantum machine learning

algorithms, and essentially all “quantum matrix linear algebra”
▶ [Martyn, Rossi, Tan and Chuang 2021] iteratively apply QSVT to simulate Fourier Transform

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 10 / 66

Outline

1 A brief history of quantum algorithms

2 The computational model

3 Matrix Inversion (MI)
MI ∈ BQP
MI is BQP-hard

4 Quantum Singular Value Transform (QSVT)

5 Dequantization
Example: Low-precision estimation of ground state energies

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 11 / 66

Which computing model?
Universal models:

Quantum Turing Machines

Quantum circuits

Quantum adiabatic computing

One-way measurement based computing

Quantum walks

Quantum Approximate Optimization Algorithm (QAOA)

Here: Work with poly(n)-size quantum circuit implementing n-qubit unitaries U, e.g.

|0⟩⊗n


|0⟩ H • · · · H

|0⟩ X · · · •
...

...
|0⟩ H · · · Z

 |ψ⟩ ∈ (C2)⊗n

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 12 / 66

Which computing model?
Universal models:

Quantum Turing Machines

Quantum circuits

Quantum adiabatic computing

One-way measurement based computing

Quantum walks

Quantum Approximate Optimization Algorithm (QAOA)

Here: Work with poly(n)-size quantum circuit implementing n-qubit unitaries U, e.g.

|0⟩⊗n


|0⟩ H • · · · H

|0⟩ X · · · •
...

...
|0⟩ H · · · Z

 |ψ⟩ ∈ (C2)⊗n

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 12 / 66

What counts as an efficient quantum algorithm?
Bounded-error quantum polynomial-time (BQP)
Promise problem A = (Ayes,Ano) ∈ BQP if ∃ P-uniform quantum circuit family {Qn} and polynomial q as
below. The first output qubit of Qn is measured in the standard basis and returned. For any input x ∈ {0, 1}∗:

(YES case) If x ∈ Ayes, then Qn outputs 1 with probability at least 2/3.

(NO case) If x ∈ Ano, then Qn outputs 1 with probability at most 1/3.

|x1⟩

Qn

...
|xn⟩
|0⟩

...
|0⟩

input x

ancilla of q(n) qubits

Exercise: Why do we require a P-uniform quantum circuit family?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 13 / 66

What counts as an efficient quantum algorithm?
Bounded-error quantum polynomial-time (BQP)
Promise problem A = (Ayes,Ano) ∈ BQP if ∃ P-uniform quantum circuit family {Qn} and polynomial q as
below. The first output qubit of Qn is measured in the standard basis and returned. For any input x ∈ {0, 1}∗:

(YES case) If x ∈ Ayes, then Qn outputs 1 with probability at least 2/3.

(NO case) If x ∈ Ano, then Qn outputs 1 with probability at most 1/3.

|x1⟩

Qn

...
|xn⟩
|0⟩

...
|0⟩

input x

ancilla of q(n) qubits

Exercise: Why do we require a P-uniform quantum circuit family?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 13 / 66

Assumption

All quantum operations are noise-free, i.e. perfect

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 14 / 66

Outline

1 A brief history of quantum algorithms

2 The computational model

3 Matrix Inversion (MI)
MI ∈ BQP
MI is BQP-hard

4 Quantum Singular Value Transform (QSVT)

5 Dequantization
Example: Low-precision estimation of ground state energies

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 15 / 66

The Pikachu of BQP

Linear system solving:

Input: Invertible A ∈ CN×N and target vector b ∈ CN

Output: x ∈ CN such that Ax = b.

What is the complexity of linear system solving?

If A and x given explicitly in matrix form⇒ x = A−1b classically in time poly(N)

If A represented “succinctly” via query-access and b given via quantum circuit?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 16 / 66

The Pikachu of BQP

Linear system solving:

Input: Invertible A ∈ CN×N and target vector b ∈ CN

Output: x ∈ CN such that Ax = b.

What is the complexity of linear system solving?

If A and x given explicitly in matrix form⇒ x = A−1b classically in time poly(N)

If A represented “succinctly” via query-access and b given via quantum circuit?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 16 / 66

The Pikachu of BQP

Linear system solving:

Input: Invertible A ∈ CN×N and target vector b ∈ CN

Output: x ∈ CN such that Ax = b.

What is the complexity of linear system solving?

If A and x given explicitly in matrix form⇒ x = A−1b classically in time poly(N)

If A represented “succinctly” via query-access and b given via quantum circuit?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 16 / 66

Matrix inversion problem (MI)

Input: O(1)-sparse row-computable invertible Hermitian matrix A ∈ CN×N .

O(1)-sparse: At most O(1) non-zero entries per row.

Row-computable: ∃ polylog(N)-time classical algorithm which, given r ∈ [N], outputs entries of row r .

Output: Let |x⟩ ∝ A−1|0N⟩ be a unit vector, and Π = |1⟩⟨1| a projector onto the first qubit of |x⟩. Then:

If ⟨x |Π|x⟩ ≥ 2/3, output YES.

If ⟨x |Π|x⟩ ≤ 1/3, output NO.

Theorem [Harrow, Hassidim, Lloyd, 2008]
MI is BQP-complete under poly-time many-one reduction, i.e.:

MI is in BQP, i.e. can be efficiently solved in polylog(N) time on a quantum computer,

MI is BQP-hard, i.e. BQP computation can be reduced to an instance of MI.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 17 / 66

Matrix inversion problem (MI)

Input: O(1)-sparse row-computable invertible Hermitian matrix A ∈ CN×N .

O(1)-sparse: At most O(1) non-zero entries per row.

Row-computable: ∃ polylog(N)-time classical algorithm which, given r ∈ [N], outputs entries of row r .

Output: Let |x⟩ ∝ A−1|0N⟩ be a unit vector, and Π = |1⟩⟨1| a projector onto the first qubit of |x⟩. Then:

If ⟨x |Π|x⟩ ≥ 2/3, output YES.

If ⟨x |Π|x⟩ ≤ 1/3, output NO.

Theorem [Harrow, Hassidim, Lloyd, 2008]
MI is BQP-complete under poly-time many-one reduction, i.e.:

MI is in BQP, i.e. can be efficiently solved in polylog(N) time on a quantum computer,

MI is BQP-hard, i.e. BQP computation can be reduced to an instance of MI.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 17 / 66

Matrix inversion problem (MI)

Input: O(1)-sparse row-computable invertible Hermitian matrix A ∈ CN×N .

O(1)-sparse: At most O(1) non-zero entries per row.

Row-computable: ∃ polylog(N)-time classical algorithm which, given r ∈ [N], outputs entries of row r .

Output: Let |x⟩ ∝ A−1|0N⟩ be a unit vector, and Π = |1⟩⟨1| a projector onto the first qubit of |x⟩. Then:

If ⟨x |Π|x⟩ ≥ 2/3, output YES.

If ⟨x |Π|x⟩ ≤ 1/3, output NO.

Theorem [Harrow, Hassidim, Lloyd, 2008]
MI is BQP-complete under poly-time many-one reduction, i.e.:

MI is in BQP, i.e. can be efficiently solved in polylog(N) time on a quantum computer,

MI is BQP-hard, i.e. BQP computation can be reduced to an instance of MI.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 17 / 66

Matrix inversion problem (MI)

Input: O(1)-sparse row-computable invertible Hermitian matrix A ∈ CN×N .

O(1)-sparse: At most O(1) non-zero entries per row.

Row-computable: ∃ polylog(N)-time classical algorithm which, given r ∈ [N], outputs entries of row r .

Output: Let |x⟩ ∝ A−1|0N⟩ be a unit vector, and Π = |1⟩⟨1| a projector onto the first qubit of |x⟩. Then:

If ⟨x |Π|x⟩ ≥ 2/3, output YES.

If ⟨x |Π|x⟩ ≤ 1/3, output NO.

Theorem [Harrow, Hassidim, Lloyd, 2008]
MI is BQP-complete under poly-time many-one reduction, i.e.:

MI is in BQP, i.e. can be efficiently solved in polylog(N) time on a quantum computer,

MI is BQP-hard, i.e. BQP computation can be reduced to an instance of MI.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 17 / 66

Matrix inversion problem (MI)

Input: O(1)-sparse row-computable invertible Hermitian matrix A ∈ CN×N .

O(1)-sparse: At most O(1) non-zero entries per row.

Row-computable: ∃ polylog(N)-time classical algorithm which, given r ∈ [N], outputs entries of row r .

Output: Let |x⟩ ∝ A−1|0N⟩ be a unit vector, and Π = |1⟩⟨1| a projector onto the first qubit of |x⟩. Then:

If ⟨x |Π|x⟩ ≥ 2/3, output YES.

If ⟨x |Π|x⟩ ≤ 1/3, output NO.

Theorem [Harrow, Hassidim, Lloyd, 2008]
MI is BQP-complete under poly-time many-one reduction, i.e.:

MI is in BQP, i.e. can be efficiently solved in polylog(N) time on a quantum computer,

MI is BQP-hard, i.e. BQP computation can be reduced to an instance of MI.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 17 / 66

Matrix inversion problem (MI)

Input: O(1)-sparse row-computable invertible Hermitian matrix A ∈ CN×N .

O(1)-sparse: At most O(1) non-zero entries per row.

Row-computable: ∃ polylog(N)-time classical algorithm which, given r ∈ [N], outputs entries of row r .

Output: Let |x⟩ ∝ A−1|0N⟩ be a unit vector, and Π = |1⟩⟨1| a projector onto the first qubit of |x⟩. Then:

If ⟨x |Π|x⟩ ≥ 2/3, output YES.

If ⟨x |Π|x⟩ ≤ 1/3, output NO.

Theorem [Harrow, Hassidim, Lloyd, 2008]
MI is BQP-complete under poly-time many-one reduction, i.e.:

MI is in BQP, i.e. can be efficiently solved in polylog(N) time on a quantum computer,

MI is BQP-hard, i.e. BQP computation can be reduced to an instance of MI.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 17 / 66

Outline

1 A brief history of quantum algorithms

2 The computational model

3 Matrix Inversion (MI)
MI ∈ BQP
MI is BQP-hard

4 Quantum Singular Value Transform (QSVT)

5 Dequantization
Example: Low-precision estimation of ground state energies

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 18 / 66

Overview
Goal: Given sparse Hermitian A and poly-size circuit for |b⟩, want to compute unit vector |x⟩ ∝ A−1|b⟩.

Idea: To compute A−1, coherently invert each eigenvalue of A via Quantum Phase Estimation (QPE).

Notation: Spectral decomposition A =
∑

i λi |ψi⟩⟨ψi |.

Framework: Eigenvalue surgery
1 Eigenvalue extraction (via Hamiltonian simulation and Quantum Phase Estimation (QPE))
2 Eigenvalue processing (done classically, coherently)
3 Eigenvalue reinsertion (via postselection)

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 19 / 66

Overview
Goal: Given sparse Hermitian A and poly-size circuit for |b⟩, want to compute unit vector |x⟩ ∝ A−1|b⟩.

Idea: To compute A−1, coherently invert each eigenvalue of A via Quantum Phase Estimation (QPE).

Notation: Spectral decomposition A =
∑

i λi |ψi⟩⟨ψi |.

Framework: Eigenvalue surgery
1 Eigenvalue extraction (via Hamiltonian simulation and Quantum Phase Estimation (QPE))
2 Eigenvalue processing (done classically, coherently)
3 Eigenvalue reinsertion (via postselection)

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 19 / 66

Overview
Goal: Given sparse Hermitian A and poly-size circuit for |b⟩, want to compute unit vector |x⟩ ∝ A−1|b⟩.

Idea: To compute A−1, coherently invert each eigenvalue of A via Quantum Phase Estimation (QPE).

Notation: Spectral decomposition A =
∑

i λi |ψi⟩⟨ψi |.

Framework: Eigenvalue surgery
1 Eigenvalue extraction (via Hamiltonian simulation and Quantum Phase Estimation (QPE))
2 Eigenvalue processing (done classically, coherently)
3 Eigenvalue reinsertion (via postselection)

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 19 / 66

Hamiltonian simulation
Question: Why is quantum dynamics unitary?

(Time-independent) Schrödinger equation

Time evolution of any n-qubit system governed by Hermitian matrix H ∈ L(C2)⊗n, called a Hamiltonian:

i
d |ψ⟩

dt
= H|ψ⟩ solve−→ |ψt⟩ = e−iHt |ψ0⟩ (← unitary!)

Hamiltonian simulation [Low, Chuang 2017]

Given d-sparse H, simulation time t ≥ 0, and ϵ > 0, can simulate eiHt up to error ϵ and success probability at
least 1− 2ϵ in timea

O
(

td ∥H∥max +
log(1/ϵ)

log log(1/ϵ)

)
.

aQuery complexity. Gate complexity has O(n) overhead.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 20 / 66

Hamiltonian simulation
Question: Why is quantum dynamics unitary?

(Time-independent) Schrödinger equation

Time evolution of any n-qubit system governed by Hermitian matrix H ∈ L(C2)⊗n, called a Hamiltonian:

i
d |ψ⟩

dt
= H|ψ⟩

solve−→ |ψt⟩ = e−iHt |ψ0⟩ (← unitary!)

Hamiltonian simulation [Low, Chuang 2017]

Given d-sparse H, simulation time t ≥ 0, and ϵ > 0, can simulate eiHt up to error ϵ and success probability at
least 1− 2ϵ in timea

O
(

td ∥H∥max +
log(1/ϵ)

log log(1/ϵ)

)
.

aQuery complexity. Gate complexity has O(n) overhead.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 20 / 66

Hamiltonian simulation
Question: Why is quantum dynamics unitary?

(Time-independent) Schrödinger equation

Time evolution of any n-qubit system governed by Hermitian matrix H ∈ L(C2)⊗n, called a Hamiltonian:

i
d |ψ⟩

dt
= H|ψ⟩ solve−→ |ψt⟩ = e−iHt |ψ0⟩ (← unitary!)

Hamiltonian simulation [Low, Chuang 2017]

Given d-sparse H, simulation time t ≥ 0, and ϵ > 0, can simulate eiHt up to error ϵ and success probability at
least 1− 2ϵ in timea

O
(

td ∥H∥max +
log(1/ϵ)

log log(1/ϵ)

)
.

aQuery complexity. Gate complexity has O(n) overhead.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 20 / 66

Hamiltonian simulation
Question: Why is quantum dynamics unitary?

(Time-independent) Schrödinger equation

Time evolution of any n-qubit system governed by Hermitian matrix H ∈ L(C2)⊗n, called a Hamiltonian:

i
d |ψ⟩

dt
= H|ψ⟩ solve−→ |ψt⟩ = e−iHt |ψ0⟩ (← unitary!)

Hamiltonian simulation [Low, Chuang 2017]

Given d-sparse H, simulation time t ≥ 0, and ϵ > 0, can simulate eiHt up to error ϵ and success probability at
least 1− 2ϵ in timea

O
(

td ∥H∥max +
log(1/ϵ)

log log(1/ϵ)

)
.

aQuery complexity. Gate complexity has O(n) overhead.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 20 / 66

Overview
Goal: Given sparse Hermitian A and poly-size circuit for |b⟩, want to compute unit vector |x⟩ ∝ A−1|b⟩.

Idea: To compute A−1, coherently invert each eigenvalue of A via Quantum Phase Estimation (QPE).

Notation: Spectral decomposition A =
∑

i λi |ψi⟩⟨ψi |.

Framework: Eigenvalue surgery
1 Eigenvalue extraction (via Hamiltonian simulation and Quantum Phase Estimation (QPE))
2 Eigenvalue processing (done classically, coherently)
3 Eigenvalue reinsertion (via postselection)

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 21 / 66

Quantum Phase Estimation (QPE)

Hermitian H with spectral decomposition H =
∑

j λj |ψj⟩⟨ψj | acting on n qubits.

Spectral decomposition of corresponding Hamiltonian evolution/unitary:

U = eiH =
∑

j

eiλj |ψj⟩⟨ψj |.

Goal: Given eigenvector |ψj⟩, precision parameter k , want to compute λj to k bits of precision.

Quantum Phase Estimation (QPE)

Given precision k , and ability to compute controlled-U2K
for 1 ≤ K ≤ k in time poly(n), map

|0k ⟩|ψj⟩ 7→ |λ̃j⟩|ψj⟩

in time poly(n), where λ̃j is λj up to k bits.

Exercise: Given n-qubit unitary U, can we efficiently compute U2n
in general?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 22 / 66

Quantum Phase Estimation (QPE)

Hermitian H with spectral decomposition H =
∑

j λj |ψj⟩⟨ψj | acting on n qubits.

Spectral decomposition of corresponding Hamiltonian evolution/unitary:

U = eiH =
∑

j

eiλj |ψj⟩⟨ψj |.

Goal: Given eigenvector |ψj⟩, precision parameter k , want to compute λj to k bits of precision.

Quantum Phase Estimation (QPE)

Given precision k , and ability to compute controlled-U2K
for 1 ≤ K ≤ k in time poly(n), map

|0k ⟩|ψj⟩ 7→ |λ̃j⟩|ψj⟩

in time poly(n), where λ̃j is λj up to k bits.

Exercise: Given n-qubit unitary U, can we efficiently compute U2n
in general?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 22 / 66

Quantum Phase Estimation (QPE)

Hermitian H with spectral decomposition H =
∑

j λj |ψj⟩⟨ψj | acting on n qubits.

Spectral decomposition of corresponding Hamiltonian evolution/unitary:

U = eiH =
∑

j

eiλj |ψj⟩⟨ψj |.

Goal: Given eigenvector |ψj⟩, precision parameter k , want to compute λj to k bits of precision.

Quantum Phase Estimation (QPE)

Given precision k , and ability to compute controlled-U2K
for 1 ≤ K ≤ k in time poly(n), map

|0k ⟩|ψj⟩ 7→ |λ̃j⟩|ψj⟩

in time poly(n), where λ̃j is λj up to k bits.

Exercise: Given n-qubit unitary U, can we efficiently compute U2n
in general?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 22 / 66

Quantum Phase Estimation (QPE)

Hermitian H with spectral decomposition H =
∑

j λj |ψj⟩⟨ψj | acting on n qubits.

Spectral decomposition of corresponding Hamiltonian evolution/unitary:

U = eiH =
∑

j

eiλj |ψj⟩⟨ψj |.

Goal: Given eigenvector |ψj⟩, precision parameter k , want to compute λj to k bits of precision.

Quantum Phase Estimation (QPE)

Given precision k , and ability to compute controlled-U2K
for 1 ≤ K ≤ k in time poly(n), map

|0k ⟩|ψj⟩ 7→ |λ̃j⟩|ψj⟩

in time poly(n), where λ̃j is λj up to k bits.

Exercise: Given n-qubit unitary U, can we efficiently compute U2n
in general?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 22 / 66

Overview
Goal: Given sparse Hermitian A and poly-size circuit for |b⟩, want to compute unit vector |x⟩ ∝ A−1|b⟩.

Idea: To compute A−1, coherently invert each eigenvalue of A via Quantum Phase Estimation (QPE).

Notation: Spectral decomposition A =
∑

i λi |ψi⟩⟨ψi |.

Framework: Eigenvalue surgery
1 Eigenvalue extraction (via Hamiltonian simulation and Quantum Phase Estimation (QPE))
2 Eigenvalue processing (done classically, coherently)
3 Eigenvalue reinsertion (via postselection)

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 23 / 66

Step 1: Eigenvalue extraction

Recall spectral decomposition A =
∑

i λi |ψi⟩⟨ψi |.

Prepare target state

|b⟩ =
N∑

j=1

αj |ψj⟩ ∈ CN ,

for eigenvectors |ψj⟩ of A. (Recall: Given circuit to prepare |b⟩ as input.)

Apply QPE to unitary eiA with an n-qubit ancilla:

N∑
j=1

αj |0n⟩|ψj⟩ 7→
N∑

j=1

αj |λj⟩|ψj⟩ ∈ (C2)⊗n ⊗ CN .

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 24 / 66

Step 1: Eigenvalue extraction

Recall spectral decomposition A =
∑

i λi |ψi⟩⟨ψi |.

Prepare target state

|b⟩ =
N∑

j=1

αj |ψj⟩ ∈ CN ,

for eigenvectors |ψj⟩ of A. (Recall: Given circuit to prepare |b⟩ as input.)

Apply QPE to unitary eiA with an n-qubit ancilla:

N∑
j=1

αj |0n⟩|ψj⟩ 7→
N∑

j=1

αj |λj⟩|ψj⟩ ∈ (C2)⊗n ⊗ CN .

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 24 / 66

Step 2: Eigenvalue processing

Conditioned on the first register, rotate a new single-qubit ancilla as follows:

N∑
j=1

αj |λj⟩|ψj⟩|0⟩ 7→
N∑

j=1

αj |λj⟩|ψj⟩

(√
1 − 1

λ2
j κ

2(A)
|0⟩+

(
1

λjκ(A)

)
|1⟩

)
∈ (C2)⊗n⊗CN⊗C2.

Key parameter: Condition number κ(A) := ∥A−1∥∞ ∥A∥∞.

Exercise:
Assume ∥A∥∞ = 1. Show

1
κ(A)

≤ 1
λjκ(A)

≤ 1.

Thus, amplitudes above well-defined.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 25 / 66

Step 2: Eigenvalue processing

Conditioned on the first register, rotate a new single-qubit ancilla as follows:

N∑
j=1

αj |λj⟩|ψj⟩|0⟩ 7→
N∑

j=1

αj |λj⟩|ψj⟩

(√
1 − 1

λ2
j κ

2(A)
|0⟩+

(
1

λjκ(A)

)
|1⟩

)
∈ (C2)⊗n⊗CN⊗C2.

Key parameter: Condition number κ(A) := ∥A−1∥∞ ∥A∥∞.

Exercise:
Assume ∥A∥∞ = 1. Show

1
κ(A)

≤ 1
λjκ(A)

≤ 1.

Thus, amplitudes above well-defined.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 25 / 66

Step 3: Eigenvalue reinsertion

Uncompute eigenvalues via inverse QPE:

N∑
j=1

αj |λj⟩|ψj⟩

(√
1 − 1

λ2
j κ

2(A)
|0⟩+

(
1

λjκ(A)

)
|1⟩

)

7→
N∑

j=1

αj |0⟩|ψj⟩

(√
1 − 1

λ2
j κ

2(A)
|0⟩+

(
1

λjκ(A)

)
|1⟩

)
.

Measure third register in standard basis, postselect on outcome 1, discard third register:

N∑
j=1

αj

(
1
λj

)
|ψj⟩ ∝ A−1|b⟩ ∈ CN .

Exercise. Prove that probability of obtaining outcome 1 is at least 1/κ2(A).

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 26 / 66

Step 3: Eigenvalue reinsertion

Uncompute eigenvalues via inverse QPE:

N∑
j=1

αj |λj⟩|ψj⟩

(√
1 − 1

λ2
j κ

2(A)
|0⟩+

(
1

λjκ(A)

)
|1⟩

)

7→
N∑

j=1

αj |0⟩|ψj⟩

(√
1 − 1

λ2
j κ

2(A)
|0⟩+

(
1

λjκ(A)

)
|1⟩

)
.

Measure third register in standard basis, postselect on outcome 1, discard third register:

N∑
j=1

αj

(
1
λj

)
|ψj⟩ ∝ A−1|b⟩ ∈ CN .

Exercise. Prove that probability of obtaining outcome 1 is at least 1/κ2(A).

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 26 / 66

Step 3: Eigenvalue reinsertion

Uncompute eigenvalues via inverse QPE:

N∑
j=1

αj |λj⟩|ψj⟩

(√
1 − 1

λ2
j κ

2(A)
|0⟩+

(
1

λjκ(A)

)
|1⟩

)

7→
N∑

j=1

αj |0⟩|ψj⟩

(√
1 − 1

λ2
j κ

2(A)
|0⟩+

(
1

λjκ(A)

)
|1⟩

)
.

Measure third register in standard basis, postselect on outcome 1, discard third register:

N∑
j=1

αj

(
1
λj

)
|ψj⟩ ∝ A−1|b⟩ ∈ CN .

Exercise. Prove that probability of obtaining outcome 1 is at least 1/κ2(A).

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 26 / 66

Runtime

To compute unit vector proportional to A−1|b⟩ within error ϵ:

Õ(log(N)s2κ2(A)/ϵ) where

N the dimension of A,

s the sparsity of A,

logN the number of qubits A acts on.

Implication:

When κ(A), s ∈ polylog(N), exponentially faster than classically solving N × N system.

But this solves a different problem than classical linear systems solvers!

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 27 / 66

Runtime

To compute unit vector proportional to A−1|b⟩ within error ϵ:

Õ(log(N)s2κ2(A)/ϵ) where

N the dimension of A,

s the sparsity of A,

logN the number of qubits A acts on.

Implication:

When κ(A), s ∈ polylog(N), exponentially faster than classically solving N × N system.

But this solves a different problem than classical linear systems solvers!

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 27 / 66

Outline

1 A brief history of quantum algorithms

2 The computational model

3 Matrix Inversion (MI)
MI ∈ BQP
MI is BQP-hard

4 Quantum Singular Value Transform (QSVT)

5 Dequantization
Example: Low-precision estimation of ground state energies

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 28 / 66

Matrix inversion problem (MI)

Input: O(1)-sparse row-computable invertible Hermitian matrix A ∈ CN×N

O(1)-sparse: At most O(1) non-zero entries per row.

Row-computable: ∃ polylog(N)-time classical algorithm which, given r ∈ [N], outputs entries of row r .

Output: Let |x⟩ ∝ A−1|0N⟩ be a unit vector, and Π = |1⟩⟨1| a projector onto the first qubit of |x⟩. Then:

If ⟨x |Π|x⟩ ≥ 2/3, output YES.

If ⟨x |Π|x⟩ ≤ 1/3, output NO.

Theorem [Harrow, Hassidim, Lloyd, 2008]
MI is BQP-complete under poly-time many-one reduction, i.e.:

MI is in BQP, i.e. can be efficiently solved in polylog(N) time on a quantum computer,

MI is BQP-hard, i.e. BQP computation can be reduced to an instance of MI.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 29 / 66

MI is BQP-hard

Goal: Show that any BQP computation V poly-time reducible to an instance A of MI.

Arbitrary BQP circuit

MI instance

Moral: If you can solve MI, you can simulate any BQP circuit

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 30 / 66

MI is BQP-hard

Goal: Show that any BQP computation V poly-time reducible to an instance A of MI.

Arbitrary BQP circuit

MI instance

Moral: If you can solve MI, you can simulate any BQP circuit

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 30 / 66

MI is BQP-hard

Goal: Show that any BQP computation V poly-time reducible to an instance A of MI.

Arbitrary BQP circuit

MI instance

Moral: If you can solve MI, you can simulate any BQP circuit

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 30 / 66

MI is BQP-hard
Goal: Show that any BQP computation V poly-time reducible to an instance A of MI.

Starting point: Let V = Vm · · ·V1 be a BQP circuit on n qubits, N = 2n. Assume WLOG m is power of 2.

Problem: Need to tie matrix inverse with action of V .

Idea:

Recall Maclaurin series 1
1−x =

∑∞
l=0 x l for |x | < 1.

We could apply this to any normal matrix U with ∥U∥∞ < 1 to get

(I − U)−1 =
∞∑
l=0

U l .

What would be great: Normal matrix U acting something like

Uk |0n⟩ ≈ Vk · · ·V1|0n⟩.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 31 / 66

MI is BQP-hard
Goal: Show that any BQP computation V poly-time reducible to an instance A of MI.

Starting point: Let V = Vm · · ·V1 be a BQP circuit on n qubits, N = 2n. Assume WLOG m is power of 2.

Problem: Need to tie matrix inverse with action of V .

Idea:

Recall Maclaurin series 1
1−x =

∑∞
l=0 x l for |x | < 1.

We could apply this to any normal matrix U with ∥U∥∞ < 1 to get

(I − U)−1 =
∞∑
l=0

U l .

What would be great: Normal matrix U acting something like

Uk |0n⟩ ≈ Vk · · ·V1|0n⟩.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 31 / 66

MI is BQP-hard
Goal: Show that any BQP computation V poly-time reducible to an instance A of MI.

Starting point: Let V = Vm · · ·V1 be a BQP circuit on n qubits, N = 2n. Assume WLOG m is power of 2.

Problem: Need to tie matrix inverse with action of V .

Idea:

Recall Maclaurin series 1
1−x =

∑∞
l=0 x l for |x | < 1.

We could apply this to any normal matrix U with ∥U∥∞ < 1 to get

(I − U)−1 =
∞∑
l=0

U l .

What would be great: Normal matrix U acting something like

Uk |0n⟩ ≈ Vk · · ·V1|0n⟩.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 31 / 66

MI is BQP-hard
Goal: Show that any BQP computation V poly-time reducible to an instance A of MI.

Starting point: Let V = Vm · · ·V1 be a BQP circuit on n qubits, N = 2n. Assume WLOG m is power of 2.

Problem: Need to tie matrix inverse with action of V .

Idea:

Recall Maclaurin series 1
1−x =

∑∞
l=0 x l for |x | < 1.

We could apply this to any normal matrix U with ∥U∥∞ < 1 to get

(I − U)−1 =
∞∑
l=0

U l .

What would be great: Normal matrix U acting something like

Uk |0n⟩ ≈ Vk · · ·V1|0n⟩.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 31 / 66

What would be great: Normal matrix U acting something like

Uk |0n⟩ ≈ Vk · · ·V1|0n⟩.

Define:

U =
m−1∑
t=0

|t + 1⟩⟨t | ⊗ Vt+1 +
2m−1∑
t=m

|t + 1mod 2m⟩⟨t | ⊗ V †
2m−t ∈ U((C

2)⊗ log m ⊗ (C2)⊗n),

Exercise: Check that U is unitary.

Exercise: Check that Um|0log m⟩|0n⟩ = |m⟩V |0n⟩.

Implication: Measuring first qubit of second register of Um|0log m⟩|0n⟩ simulates measuring output qubit of V !

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 32 / 66

What would be great: Normal matrix U acting something like

Uk |0n⟩ ≈ Vk · · ·V1|0n⟩.

Define:

U =
m−1∑
t=0

|t + 1⟩⟨t | ⊗ Vt+1 +
2m−1∑
t=m

|t + 1mod 2m⟩⟨t | ⊗ V †
2m−t ∈ U((C

2)⊗ log m ⊗ (C2)⊗n),

Exercise: Check that U is unitary.

Exercise: Check that Um|0log m⟩|0n⟩ = |m⟩V |0n⟩.

Implication: Measuring first qubit of second register of Um|0log m⟩|0n⟩ simulates measuring output qubit of V !

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 32 / 66

What would be great: Normal matrix U acting something like

Uk |0n⟩ ≈ Vk · · ·V1|0n⟩.

Define:

U =
m−1∑
t=0

|t + 1⟩⟨t | ⊗ Vt+1 +
2m−1∑
t=m

|t + 1mod 2m⟩⟨t | ⊗ V †
2m−t ∈ U((C

2)⊗ log m ⊗ (C2)⊗n),

Exercise: Check that U is unitary.

Exercise: Check that Um|0log m⟩|0n⟩ = |m⟩V |0n⟩.

Implication: Measuring first qubit of second register of Um|0log m⟩|0n⟩ simulates measuring output qubit of V !

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 32 / 66

We could apply this to any normal matrix U with ∥U∥∞ < 1 to get (I − U)−1 =
∑

l=0 U l .

Define U =
∑m−1

t=0 |t + 1⟩⟨t | ⊗ Vt+1 +
∑2m−1

t=m |t + 1mod 2m⟩⟨t | ⊗ V †
2m−t ∈ U((C

2)⊗ log m ⊗ (C2)⊗n),

Define A = I − U. Then,

|x⟩ ∝ A−1|0log m+n⟩
= (I − U)−1|0log m+n⟩

∝
∞∑
l=0

U l |0⟩log m|0n⟩

∝ |0⟩|0n⟩+ |1⟩V1|0n⟩+ · · ·+ |m⟩Vm · · ·V1|0n⟩.

Implication:
▶ Measuring first register gives |m⟩ with probability ≈ 1/(m + 1).
▶ Postselecting on |m⟩, measuring second register reveals BQP circuit V ’s output.

Exercise: I cheated slightly on one of the lines above (regarding |x⟩) — where did I cheat?

Exercise: I cheated less slightly somewhere else on this slide. Where did I make a bigger boo boo?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 33 / 66

We could apply this to any normal matrix U with ∥U∥∞ < 1 to get (I − U)−1 =
∑

l=0 U l .

Define U =
∑m−1

t=0 |t + 1⟩⟨t | ⊗ Vt+1 +
∑2m−1

t=m |t + 1mod 2m⟩⟨t | ⊗ V †
2m−t ∈ U((C

2)⊗ log m ⊗ (C2)⊗n),

Define A = I − U. Then,

|x⟩ ∝ A−1|0log m+n⟩

= (I − U)−1|0log m+n⟩

∝
∞∑
l=0

U l |0⟩log m|0n⟩

∝ |0⟩|0n⟩+ |1⟩V1|0n⟩+ · · ·+ |m⟩Vm · · ·V1|0n⟩.

Implication:
▶ Measuring first register gives |m⟩ with probability ≈ 1/(m + 1).
▶ Postselecting on |m⟩, measuring second register reveals BQP circuit V ’s output.

Exercise: I cheated slightly on one of the lines above (regarding |x⟩) — where did I cheat?

Exercise: I cheated less slightly somewhere else on this slide. Where did I make a bigger boo boo?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 33 / 66

We could apply this to any normal matrix U with ∥U∥∞ < 1 to get (I − U)−1 =
∑

l=0 U l .

Define U =
∑m−1

t=0 |t + 1⟩⟨t | ⊗ Vt+1 +
∑2m−1

t=m |t + 1mod 2m⟩⟨t | ⊗ V †
2m−t ∈ U((C

2)⊗ log m ⊗ (C2)⊗n),

Define A = I − U. Then,

|x⟩ ∝ A−1|0log m+n⟩
= (I − U)−1|0log m+n⟩

∝
∞∑
l=0

U l |0⟩log m|0n⟩

∝ |0⟩|0n⟩+ |1⟩V1|0n⟩+ · · ·+ |m⟩Vm · · ·V1|0n⟩.

Implication:
▶ Measuring first register gives |m⟩ with probability ≈ 1/(m + 1).
▶ Postselecting on |m⟩, measuring second register reveals BQP circuit V ’s output.

Exercise: I cheated slightly on one of the lines above (regarding |x⟩) — where did I cheat?

Exercise: I cheated less slightly somewhere else on this slide. Where did I make a bigger boo boo?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 33 / 66

We could apply this to any normal matrix U with ∥U∥∞ < 1 to get (I − U)−1 =
∑

l=0 U l .

Define U =
∑m−1

t=0 |t + 1⟩⟨t | ⊗ Vt+1 +
∑2m−1

t=m |t + 1mod 2m⟩⟨t | ⊗ V †
2m−t ∈ U((C

2)⊗ log m ⊗ (C2)⊗n),

Define A = I − U. Then,

|x⟩ ∝ A−1|0log m+n⟩
= (I − U)−1|0log m+n⟩

∝
∞∑
l=0

U l |0⟩log m|0n⟩

∝ |0⟩|0n⟩+ |1⟩V1|0n⟩+ · · ·+ |m⟩Vm · · ·V1|0n⟩.

Implication:
▶ Measuring first register gives |m⟩ with probability ≈ 1/(m + 1).
▶ Postselecting on |m⟩, measuring second register reveals BQP circuit V ’s output.

Exercise: I cheated slightly on one of the lines above (regarding |x⟩) — where did I cheat?

Exercise: I cheated less slightly somewhere else on this slide. Where did I make a bigger boo boo?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 33 / 66

We could apply this to any normal matrix U with ∥U∥∞ < 1 to get (I − U)−1 =
∑

l=0 U l .

Define U =
∑m−1

t=0 |t + 1⟩⟨t | ⊗ Vt+1 +
∑2m−1

t=m |t + 1mod 2m⟩⟨t | ⊗ V †
2m−t ∈ U((C

2)⊗ log m ⊗ (C2)⊗n),

Define A = I − U. Then,

|x⟩ ∝ A−1|0log m+n⟩
= (I − U)−1|0log m+n⟩

∝
∞∑
l=0

U l |0⟩log m|0n⟩

∝ |0⟩|0n⟩+ |1⟩V1|0n⟩+ · · ·+ |m⟩Vm · · ·V1|0n⟩.

Implication:
▶ Measuring first register gives |m⟩ with probability ≈ 1/(m + 1).
▶ Postselecting on |m⟩, measuring second register reveals BQP circuit V ’s output.

Exercise: I cheated slightly on one of the lines above (regarding |x⟩) — where did I cheat?

Exercise: I cheated less slightly somewhere else on this slide. Where did I make a bigger boo boo?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 33 / 66

We could apply this to any normal matrix U with ∥U∥∞ < 1 to get (I − U)−1 =
∑

l=0 U l .

Define U =
∑m−1

t=0 |t + 1⟩⟨t | ⊗ Vt+1 +
∑2m−1

t=m |t + 1mod 2m⟩⟨t | ⊗ V †
2m−t ∈ U((C

2)⊗ log m ⊗ (C2)⊗n),

Define A = I − U. Then,

|x⟩ ∝ A−1|0log m+n⟩
= (I − U)−1|0log m+n⟩

∝
∞∑
l=0

U l |0⟩log m|0n⟩

∝ |0⟩|0n⟩+ |1⟩V1|0n⟩+ · · ·+ |m⟩Vm · · ·V1|0n⟩.

Implication:
▶ Measuring first register gives |m⟩ with probability ≈ 1/(m + 1).

▶ Postselecting on |m⟩, measuring second register reveals BQP circuit V ’s output.

Exercise: I cheated slightly on one of the lines above (regarding |x⟩) — where did I cheat?

Exercise: I cheated less slightly somewhere else on this slide. Where did I make a bigger boo boo?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 33 / 66

We could apply this to any normal matrix U with ∥U∥∞ < 1 to get (I − U)−1 =
∑

l=0 U l .

Define U =
∑m−1

t=0 |t + 1⟩⟨t | ⊗ Vt+1 +
∑2m−1

t=m |t + 1mod 2m⟩⟨t | ⊗ V †
2m−t ∈ U((C

2)⊗ log m ⊗ (C2)⊗n),

Define A = I − U. Then,

|x⟩ ∝ A−1|0log m+n⟩
= (I − U)−1|0log m+n⟩

∝
∞∑
l=0

U l |0⟩log m|0n⟩

∝ |0⟩|0n⟩+ |1⟩V1|0n⟩+ · · ·+ |m⟩Vm · · ·V1|0n⟩.

Implication:
▶ Measuring first register gives |m⟩ with probability ≈ 1/(m + 1).
▶ Postselecting on |m⟩, measuring second register reveals BQP circuit V ’s output.

Exercise: I cheated slightly on one of the lines above (regarding |x⟩) — where did I cheat?

Exercise: I cheated less slightly somewhere else on this slide. Where did I make a bigger boo boo?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 33 / 66

We could apply this to any normal matrix U with ∥U∥∞ < 1 to get (I − U)−1 =
∑

l=0 U l .

Define U =
∑m−1

t=0 |t + 1⟩⟨t | ⊗ Vt+1 +
∑2m−1

t=m |t + 1mod 2m⟩⟨t | ⊗ V †
2m−t ∈ U((C

2)⊗ log m ⊗ (C2)⊗n),

Define A = I − U. Then,

|x⟩ ∝ A−1|0log m+n⟩
= (I − U)−1|0log m+n⟩

∝
∞∑
l=0

U l |0⟩log m|0n⟩

∝ |0⟩|0n⟩+ |1⟩V1|0n⟩+ · · ·+ |m⟩Vm · · ·V1|0n⟩.

Implication:
▶ Measuring first register gives |m⟩ with probability ≈ 1/(m + 1).
▶ Postselecting on |m⟩, measuring second register reveals BQP circuit V ’s output.

Exercise: I cheated slightly on one of the lines above (regarding |x⟩) — where did I cheat?

Exercise: I cheated less slightly somewhere else on this slide. Where did I make a bigger boo boo?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 33 / 66

We could apply this to any normal matrix U with ∥U∥∞ < 1 to get (I − U)−1 =
∑

l=0 U l .

Define U =
∑m−1

t=0 |t + 1⟩⟨t | ⊗ Vt+1 +
∑2m−1

t=m |t + 1mod 2m⟩⟨t | ⊗ V †
2m−t ∈ U((C

2)⊗ log m ⊗ (C2)⊗n),

Define A = I − U. Then,

|x⟩ ∝ A−1|0log m+n⟩
= (I − U)−1|0log m+n⟩

∝
∞∑
l=0

U l |0⟩log m|0n⟩

∝ |0⟩|0n⟩+ |1⟩V1|0n⟩+ · · ·+ |m⟩Vm · · ·V1|0n⟩.

Implication:
▶ Measuring first register gives |m⟩ with probability ≈ 1/(m + 1).
▶ Postselecting on |m⟩, measuring second register reveals BQP circuit V ’s output.

Exercise: I cheated slightly on one of the lines above (regarding |x⟩) — where did I cheat?

Exercise: I cheated less slightly somewhere else on this slide. Where did I make a bigger boo boo?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 33 / 66

Final exercises for MI

Construction almost works, but for 3 issues to check:

1 A must be O(1)-sparse (by def of MI).

Exercise: Check that U, and thus A, are O(1)-sparse.

2 MI needs YES case and NO case thresholds of 2/3 vs 1/3 for BQP. The current construction will give
2/(3(m + 1)) vs 1/(3(m + 1)).

Exercise: Modify the construction to boost the YES/NO thresholds to 2/3 and 1/3, respectively.

3 Our current choice of A is not necessarily invertible, since ∥U∥∞ = 1. (Maclaurin series does not apply.)

Exercise: Consider first A = I − 1
2 U. Show that A is invertible and has κ(A) ∈ O(1). Where will this

construction nevertheless fail in the analysis?

Exercise Consider finally A = I − e−1/mU. Show that A is invertible, has κ(A) ∈ O(m) ∈ polylog(N).

4 I cheated again. There is a 4th issue — A must be Hermitian. But I will spare you these details.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 34 / 66

Final exercises for MI

Construction almost works, but for 3 issues to check:

1 A must be O(1)-sparse (by def of MI).

Exercise: Check that U, and thus A, are O(1)-sparse.

2 MI needs YES case and NO case thresholds of 2/3 vs 1/3 for BQP. The current construction will give
2/(3(m + 1)) vs 1/(3(m + 1)).

Exercise: Modify the construction to boost the YES/NO thresholds to 2/3 and 1/3, respectively.

3 Our current choice of A is not necessarily invertible, since ∥U∥∞ = 1. (Maclaurin series does not apply.)

Exercise: Consider first A = I − 1
2 U. Show that A is invertible and has κ(A) ∈ O(1). Where will this

construction nevertheless fail in the analysis?

Exercise Consider finally A = I − e−1/mU. Show that A is invertible, has κ(A) ∈ O(m) ∈ polylog(N).

4 I cheated again. There is a 4th issue — A must be Hermitian. But I will spare you these details.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 34 / 66

Final exercises for MI

Construction almost works, but for 3 issues to check:

1 A must be O(1)-sparse (by def of MI).

Exercise: Check that U, and thus A, are O(1)-sparse.

2 MI needs YES case and NO case thresholds of 2/3 vs 1/3 for BQP. The current construction will give
2/(3(m + 1)) vs 1/(3(m + 1)).

Exercise: Modify the construction to boost the YES/NO thresholds to 2/3 and 1/3, respectively.

3 Our current choice of A is not necessarily invertible, since ∥U∥∞ = 1. (Maclaurin series does not apply.)

Exercise: Consider first A = I − 1
2 U. Show that A is invertible and has κ(A) ∈ O(1). Where will this

construction nevertheless fail in the analysis?

Exercise Consider finally A = I − e−1/mU. Show that A is invertible, has κ(A) ∈ O(m) ∈ polylog(N).

4 I cheated again. There is a 4th issue — A must be Hermitian. But I will spare you these details.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 34 / 66

Final exercises for MI

Construction almost works, but for 3 issues to check:

1 A must be O(1)-sparse (by def of MI).

Exercise: Check that U, and thus A, are O(1)-sparse.

2 MI needs YES case and NO case thresholds of 2/3 vs 1/3 for BQP. The current construction will give
2/(3(m + 1)) vs 1/(3(m + 1)).

Exercise: Modify the construction to boost the YES/NO thresholds to 2/3 and 1/3, respectively.

3 Our current choice of A is not necessarily invertible, since ∥U∥∞ = 1. (Maclaurin series does not apply.)

Exercise: Consider first A = I − 1
2 U. Show that A is invertible and has κ(A) ∈ O(1). Where will this

construction nevertheless fail in the analysis?

Exercise Consider finally A = I − e−1/mU. Show that A is invertible, has κ(A) ∈ O(m) ∈ polylog(N).

4 I cheated again. There is a 4th issue — A must be Hermitian. But I will spare you these details.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 34 / 66

Final exercises for MI

Construction almost works, but for 3 issues to check:

1 A must be O(1)-sparse (by def of MI).

Exercise: Check that U, and thus A, are O(1)-sparse.

2 MI needs YES case and NO case thresholds of 2/3 vs 1/3 for BQP. The current construction will give
2/(3(m + 1)) vs 1/(3(m + 1)).

Exercise: Modify the construction to boost the YES/NO thresholds to 2/3 and 1/3, respectively.

3 Our current choice of A is not necessarily invertible, since ∥U∥∞ = 1. (Maclaurin series does not apply.)

Exercise: Consider first A = I − 1
2 U. Show that A is invertible and has κ(A) ∈ O(1). Where will this

construction nevertheless fail in the analysis?

Exercise Consider finally A = I − e−1/mU. Show that A is invertible, has κ(A) ∈ O(m) ∈ polylog(N).

4 I cheated again. There is a 4th issue — A must be Hermitian. But I will spare you these details.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 34 / 66

Outline

1 A brief history of quantum algorithms

2 The computational model

3 Matrix Inversion (MI)
MI ∈ BQP
MI is BQP-hard

4 Quantum Singular Value Transform (QSVT)

5 Dequantization
Example: Low-precision estimation of ground state energies

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 35 / 66

Open season
Observation: For linear systems, given as input Hermitian A, we:

Showed how to simulate A−1 by “manually” inverting eigenvalues, i.e. A−1 =
∑

i
1
λi
|ψi⟩⟨ψi |.

Used Quantum Phase Estimation (QPE) and post-selection.

Question: What other operator functions f (A) can we efficiently simulate?

Recall:

BQP-hardness of MI used Taylor series f (x) = 1
1−x =

∑∞
l=0 x l for |x | < 1.

▶ Idea: Try to simulate polynomials applied to A.

A not unitary→ post-selection still needed.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 36 / 66

Open season
Observation: For linear systems, given as input Hermitian A, we:

Showed how to simulate A−1 by “manually” inverting eigenvalues, i.e. A−1 =
∑

i
1
λi
|ψi⟩⟨ψi |.

Used Quantum Phase Estimation (QPE) and post-selection.

Question: What other operator functions f (A) can we efficiently simulate?

Recall:

BQP-hardness of MI used Taylor series f (x) = 1
1−x =

∑∞
l=0 x l for |x | < 1.

▶ Idea: Try to simulate polynomials applied to A.

A not unitary→ post-selection still needed.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 36 / 66

Open season
Observation: For linear systems, given as input Hermitian A, we:

Showed how to simulate A−1 by “manually” inverting eigenvalues, i.e. A−1 =
∑

i
1
λi
|ψi⟩⟨ψi |.

Used Quantum Phase Estimation (QPE) and post-selection.

Question: What other operator functions f (A) can we efficiently simulate?

Recall:

BQP-hardness of MI used Taylor series f (x) = 1
1−x =

∑∞
l=0 x l for |x | < 1.

▶ Idea: Try to simulate polynomials applied to A.

A not unitary→ post-selection still needed.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 36 / 66

Open season
Observation: For linear systems, given as input Hermitian A, we:

Showed how to simulate A−1 by “manually” inverting eigenvalues, i.e. A−1 =
∑

i
1
λi
|ψi⟩⟨ψi |.

Used Quantum Phase Estimation (QPE) and post-selection.

Question: What other operator functions f (A) can we efficiently simulate?

Recall:

BQP-hardness of MI used Taylor series f (x) = 1
1−x =

∑∞
l=0 x l for |x | < 1.

▶ Idea: Try to simulate polynomials applied to A.

A not unitary→ post-selection still needed.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 36 / 66

Open season
Observation: For linear systems, given as input Hermitian A, we:

Showed how to simulate A−1 by “manually” inverting eigenvalues, i.e. A−1 =
∑

i
1
λi
|ψi⟩⟨ψi |.

Used Quantum Phase Estimation (QPE) and post-selection.

Question: What other operator functions f (A) can we efficiently simulate?

Recall:

BQP-hardness of MI used Taylor series f (x) = 1
1−x =

∑∞
l=0 x l for |x | < 1.

▶ Idea: Try to simulate polynomials applied to A.

A not unitary→ post-selection still needed.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 36 / 66

Remember this?
Quantum Singular Value Transformation (Gilyén, Su, Low, and Wiebe 2019)

Generalizes Low and Chuang’s qubitization approach to non-square matrices A

Given non-square A (embedded as block of unitary U), polynomial p, simulates mapping

|ψ⟩ 7→ p
(√

A†A
)
|ψ⟩.

Unified framework for a host of quantum algorithms:
▶ Hamiltonian simulation, linear systems, amplitude amplification, quantum machine learning

algorithms, and essentially all “quantum matrix linear algebra”
▶ [Martyn, Rossi, Tan and Chuang 2021] iteratively apply QSVT to simulate Fourier Transform

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 37 / 66

Challenges

1 How to apply non-unitary (or perhaps not even square) A?

2 Given polynomial p and ability to apply A, how to apply p(A)?

Solutions:

1 Use block encodings of A (more generally, projected unitary encodings).

2 Use Quantum Signal Processing (QSP), i.e. qubitization.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 38 / 66

Challenges

1 How to apply non-unitary (or perhaps not even square) A?

2 Given polynomial p and ability to apply A, how to apply p(A)?

Solutions:

1 Use block encodings of A (more generally, projected unitary encodings).

2 Use Quantum Signal Processing (QSP), i.e. qubitization.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 38 / 66

Challenges

1 How to apply non-unitary (or perhaps not even square) A?

2 Given polynomial p and ability to apply A, how to apply p(A)?

Solutions:

1 Use block encodings of A (more generally, projected unitary encodings).

2 Use Quantum Signal Processing (QSP), i.e. qubitization.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 38 / 66

Step 1: Block encodings
Recall key step of HHL algorithm (A =

∑
j λj |ψj⟩⟨ψj |:

N∑
j=1

αj |0⟩R |λj⟩|ψj⟩ 7→
N∑

j=1

αj

(√
1− 1

λ2
j κ

2(A)
|0⟩+

(
1

λjκ(A)

)
|1⟩

)
R

|λj⟩|ψj⟩.

Postselecting on |1⟩ in register R simulated application of A−1, i.e. eigenvector |ψj⟩ hit with coefficient λ−1
j .

Effective unitary HHL implements (before measuring R):

U =

(
A−1 ?
? ?

)
= |0⟩⟨0|R ⊗ A−1 + |0⟩⟨1|R⊗? + |1⟩⟨0|R⊗? + |1⟩⟨1|R⊗?

So, we may view HHL as doing:
1 Prepare initial state: |0⟩R |b⟩
2 Use QPE to simulate U|0⟩R |b⟩.
3 Measure R and postselect on outcome 0:

U|0⟩R |b⟩ 7→ (⟨0|R ⊗ I)U|0⟩R |b⟩ ∝ A−1|b⟩.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 39 / 66

Step 1: Block encodings
Recall key step of HHL algorithm (A =

∑
j λj |ψj⟩⟨ψj |:

N∑
j=1

αj |0⟩R |λj⟩|ψj⟩ 7→
N∑

j=1

αj

(√
1− 1

λ2
j κ

2(A)
|0⟩+

(
1

λjκ(A)

)
|1⟩

)
R

|λj⟩|ψj⟩.

Postselecting on |1⟩ in register R simulated application of A−1, i.e. eigenvector |ψj⟩ hit with coefficient λ−1
j .

Effective unitary HHL implements (before measuring R):

U =

(
A−1 ?
? ?

)
= |0⟩⟨0|R ⊗ A−1 + |0⟩⟨1|R⊗? + |1⟩⟨0|R⊗? + |1⟩⟨1|R⊗?

So, we may view HHL as doing:
1 Prepare initial state: |0⟩R |b⟩
2 Use QPE to simulate U|0⟩R |b⟩.
3 Measure R and postselect on outcome 0:

U|0⟩R |b⟩ 7→ (⟨0|R ⊗ I)U|0⟩R |b⟩ ∝ A−1|b⟩.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 39 / 66

Step 1: Block encodings
Recall key step of HHL algorithm (A =

∑
j λj |ψj⟩⟨ψj |:

N∑
j=1

αj |0⟩R |λj⟩|ψj⟩ 7→
N∑

j=1

αj

(√
1− 1

λ2
j κ

2(A)
|0⟩+

(
1

λjκ(A)

)
|1⟩

)
R

|λj⟩|ψj⟩.

Postselecting on |1⟩ in register R simulated application of A−1, i.e. eigenvector |ψj⟩ hit with coefficient λ−1
j .

Effective unitary HHL implements (before measuring R):

U =

(
A−1 ?
? ?

)
= |0⟩⟨0|R ⊗ A−1 + |0⟩⟨1|R⊗? + |1⟩⟨0|R⊗? + |1⟩⟨1|R⊗?

So, we may view HHL as doing:
1 Prepare initial state: |0⟩R |b⟩

2 Use QPE to simulate U|0⟩R |b⟩.
3 Measure R and postselect on outcome 0:

U|0⟩R |b⟩ 7→ (⟨0|R ⊗ I)U|0⟩R |b⟩ ∝ A−1|b⟩.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 39 / 66

Step 1: Block encodings
Recall key step of HHL algorithm (A =

∑
j λj |ψj⟩⟨ψj |:

N∑
j=1

αj |0⟩R |λj⟩|ψj⟩ 7→
N∑

j=1

αj

(√
1− 1

λ2
j κ

2(A)
|0⟩+

(
1

λjκ(A)

)
|1⟩

)
R

|λj⟩|ψj⟩.

Postselecting on |1⟩ in register R simulated application of A−1, i.e. eigenvector |ψj⟩ hit with coefficient λ−1
j .

Effective unitary HHL implements (before measuring R):

U =

(
A−1 ?
? ?

)
= |0⟩⟨0|R ⊗ A−1 + |0⟩⟨1|R⊗? + |1⟩⟨0|R⊗? + |1⟩⟨1|R⊗?

So, we may view HHL as doing:
1 Prepare initial state: |0⟩R |b⟩
2 Use QPE to simulate U|0⟩R |b⟩.

3 Measure R and postselect on outcome 0:

U|0⟩R |b⟩ 7→ (⟨0|R ⊗ I)U|0⟩R |b⟩ ∝ A−1|b⟩.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 39 / 66

Step 1: Block encodings
Recall key step of HHL algorithm (A =

∑
j λj |ψj⟩⟨ψj |:

N∑
j=1

αj |0⟩R |λj⟩|ψj⟩ 7→
N∑

j=1

αj

(√
1− 1

λ2
j κ

2(A)
|0⟩+

(
1

λjκ(A)

)
|1⟩

)
R

|λj⟩|ψj⟩.

Postselecting on |1⟩ in register R simulated application of A−1, i.e. eigenvector |ψj⟩ hit with coefficient λ−1
j .

Effective unitary HHL implements (before measuring R):

U =

(
A−1 ?
? ?

)
= |0⟩⟨0|R ⊗ A−1 + |0⟩⟨1|R⊗? + |1⟩⟨0|R⊗? + |1⟩⟨1|R⊗?

So, we may view HHL as doing:
1 Prepare initial state: |0⟩R |b⟩
2 Use QPE to simulate U|0⟩R |b⟩.
3 Measure R and postselect on outcome 0:

U|0⟩R |b⟩ 7→ (⟨0|R ⊗ I)U|0⟩R |b⟩ ∝ A−1|b⟩.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 39 / 66

Block encoding
A block encoding of matrix A on n qubits is any unitary U s.t.

U =

(
A ·
· ·

)
= |0⟩⟨0|⊗n ⊗ A + . . .

Assumptions:

We have efficient implementation of U.

Probability of post-selecting on |0⟩⊗n depends on A and state we apply it to.

More generally:

Projected Unitary Encoding

A projected unitary encoding of matrix A on n qubits is (ΠL,U,ΠR) s.t.

A = ΠLUΠR for projectors ΠL,ΠR and unitary U.

Exercise. What are ΠL and ΠR in case of block encoding?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 40 / 66

Block encoding
A block encoding of matrix A on n qubits is any unitary U s.t.

U =

(
A ·
· ·

)
= |0⟩⟨0|⊗n ⊗ A + . . .

Assumptions:

We have efficient implementation of U.

Probability of post-selecting on |0⟩⊗n depends on A and state we apply it to.

More generally:

Projected Unitary Encoding

A projected unitary encoding of matrix A on n qubits is (ΠL,U,ΠR) s.t.

A = ΠLUΠR for projectors ΠL,ΠR and unitary U.

Exercise. What are ΠL and ΠR in case of block encoding?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 40 / 66

Block encoding
A block encoding of matrix A on n qubits is any unitary U s.t.

U =

(
A ·
· ·

)
= |0⟩⟨0|⊗n ⊗ A + . . .

Assumptions:

We have efficient implementation of U.

Probability of post-selecting on |0⟩⊗n depends on A and state we apply it to.

More generally:

Projected Unitary Encoding

A projected unitary encoding of matrix A on n qubits is (ΠL,U,ΠR) s.t.

A = ΠLUΠR for projectors ΠL,ΠR and unitary U.

Exercise. What are ΠL and ΠR in case of block encoding?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 40 / 66

Block encoding
A block encoding of matrix A on n qubits is any unitary U s.t.

U =

(
A ·
· ·

)
= |0⟩⟨0|⊗n ⊗ A + . . .

Assumptions:

We have efficient implementation of U.

Probability of post-selecting on |0⟩⊗n depends on A and state we apply it to.

More generally:

Projected Unitary Encoding

A projected unitary encoding of matrix A on n qubits is (ΠL,U,ΠR) s.t.

A = ΠLUΠR for projectors ΠL,ΠR and unitary U.

Exercise. What are ΠL and ΠR in case of block encoding?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 40 / 66

Block encoding
A block encoding of matrix A on n qubits is any unitary U s.t.

U =

(
A ·
· ·

)
= |0⟩⟨0|⊗n ⊗ A + . . .

Assumptions:

We have efficient implementation of U.

Probability of post-selecting on |0⟩⊗n depends on A and state we apply it to.

More generally:

Projected Unitary Encoding

A projected unitary encoding of matrix A on n qubits is (ΠL,U,ΠR) s.t.

A = ΠLUΠR for projectors ΠL,ΠR and unitary U.

Exercise. What are ΠL and ΠR in case of block encoding?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 40 / 66

Step 2: Quantum Signal Processing

Have projected unitary encoding A = ΠLUΠR for efficiently implementable U.

Given polynomial p, how to obtain projected unitary encoding of p(A)?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 41 / 66

Step 2: Quantum Signal Processing

Have projected unitary encoding A = ΠLUΠR for efficiently implementable U.

Given polynomial p, how to obtain projected unitary encoding of p(A)?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 41 / 66

Step 2: Quantum Signal Processing

Have projected unitary encoding A = ΠLUΠR for efficiently implementable U.

Want to map:

U =

(
A ·
· ·

)
7→ U =

(
p(A) ·
· ·

)

Postselecting on |0⟩⊗n simulates application of p(A).

Tool: Quantum Signal Processing (QSP), in two steps:

1 QSP on single qubit system

2 Embed into QSP on larger systems

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 42 / 66

Step 2: Quantum Signal Processing

Have projected unitary encoding A = ΠLUΠR for efficiently implementable U.

Want to map:

U =

(
A ·
· ·

)
7→ U =

(
p(A) ·
· ·

)

Postselecting on |0⟩⊗n simulates application of p(A).

Tool: Quantum Signal Processing (QSP), in two steps:

1 QSP on single qubit system

2 Embed into QSP on larger systems

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 42 / 66

Step 2: Quantum Signal Processing

Have projected unitary encoding A = ΠLUΠR for efficiently implementable U.

Want to map:

U =

(
A ·
· ·

)
7→ U =

(
p(A) ·
· ·

)

Postselecting on |0⟩⊗n simulates application of p(A).

Tool: Quantum Signal Processing (QSP), in two steps:

1 QSP on single qubit system

2 Embed into QSP on larger systems

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 42 / 66

QSP on single qubit system

Consider following block encoding of 1× 1 Hermitian matrix [x] with x ∈ [−1, 1]:

R(x) :=
(

x
√

1− x2
√

1− x2 −x

)
∈ L(C2).

Want: Given polynomial p, induce map

R(x) 7→
(

p(x) ·
· ·

)
∈ L(C2).

Question:
▶ Suppose we can apply R, R†, and eiθZ for Pauli Z and any θ ∈ [0, 2π].

▶ For which polynomials p can the mapping above be done, and what is the cost?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 43 / 66

QSP on single qubit system

Consider following block encoding of 1× 1 Hermitian matrix [x] with x ∈ [−1, 1]:

R(x) :=
(

x
√

1− x2
√

1− x2 −x

)
∈ L(C2).

Want: Given polynomial p, induce map

R(x) 7→
(

p(x) ·
· ·

)
∈ L(C2).

Question:
▶ Suppose we can apply R, R†, and eiθZ for Pauli Z and any θ ∈ [0, 2π].

▶ For which polynomials p can the mapping above be done, and what is the cost?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 43 / 66

QSP on single qubit system

Consider following block encoding of 1× 1 Hermitian matrix [x] with x ∈ [−1, 1]:

R(x) :=
(

x
√

1− x2
√

1− x2 −x

)
∈ L(C2).

Want: Given polynomial p, induce map

R(x) 7→
(

p(x) ·
· ·

)
∈ L(C2).

Question:
▶ Suppose we can apply R, R†, and eiθZ for Pauli Z and any θ ∈ [0, 2π].

▶ For which polynomials p can the mapping above be done, and what is the cost?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 43 / 66

QSP on single qubit system
A polynomial p ∈ C[x] is odd if all coefficients corresponding to even powers of x are 0.

Alternatively, for all x ∈ R, p(−x) = −p(x).

QSVT using reflections
Let p ∈ C[x] be odd polynomial of degree d , s.t.

1 for all x ∈ [−1, 1], |p(x)| ≤ 1, and
2 for all x ∈ [−∞,−1] ∪ [1,∞], |p(x)| ≥ 1.

There exists sequence of d angles Φ := (ϕ1, . . . , ϕd) ∈ Rd s.t.(
p(x) ·
· ·

)
= eiϕ1Z R(x)eiϕ2Z R(x) · · · eiϕd Z R(x).

Exercise: Why do we need condition (1)?

Exercise: Why do we prefer low-degree polynomials?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 44 / 66

QSP on single qubit system
A polynomial p ∈ C[x] is odd if all coefficients corresponding to even powers of x are 0.

Alternatively, for all x ∈ R, p(−x) = −p(x).

QSVT using reflections

Let p ∈ C[x] be odd polynomial of degree d , s.t.

1 for all x ∈ [−1, 1], |p(x)| ≤ 1, and
2 for all x ∈ [−∞,−1] ∪ [1,∞], |p(x)| ≥ 1.

There exists sequence of d angles Φ := (ϕ1, . . . , ϕd) ∈ Rd s.t.(
p(x) ·
· ·

)
= eiϕ1Z R(x)eiϕ2Z R(x) · · · eiϕd Z R(x).

Exercise: Why do we need condition (1)?

Exercise: Why do we prefer low-degree polynomials?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 44 / 66

QSP on single qubit system
A polynomial p ∈ C[x] is odd if all coefficients corresponding to even powers of x are 0.

Alternatively, for all x ∈ R, p(−x) = −p(x).

QSVT using reflections

Let p ∈ C[x] be odd polynomial of degree d , s.t.
1 for all x ∈ [−1, 1], |p(x)| ≤ 1, and

2 for all x ∈ [−∞,−1] ∪ [1,∞], |p(x)| ≥ 1.

There exists sequence of d angles Φ := (ϕ1, . . . , ϕd) ∈ Rd s.t.(
p(x) ·
· ·

)
= eiϕ1Z R(x)eiϕ2Z R(x) · · · eiϕd Z R(x).

Exercise: Why do we need condition (1)?

Exercise: Why do we prefer low-degree polynomials?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 44 / 66

QSP on single qubit system
A polynomial p ∈ C[x] is odd if all coefficients corresponding to even powers of x are 0.

Alternatively, for all x ∈ R, p(−x) = −p(x).

QSVT using reflections

Let p ∈ C[x] be odd polynomial of degree d , s.t.
1 for all x ∈ [−1, 1], |p(x)| ≤ 1, and
2 for all x ∈ [−∞,−1] ∪ [1,∞], |p(x)| ≥ 1.

There exists sequence of d angles Φ := (ϕ1, . . . , ϕd) ∈ Rd s.t.(
p(x) ·
· ·

)
= eiϕ1Z R(x)eiϕ2Z R(x) · · · eiϕd Z R(x).

Exercise: Why do we need condition (1)?

Exercise: Why do we prefer low-degree polynomials?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 44 / 66

QSP on single qubit system
A polynomial p ∈ C[x] is odd if all coefficients corresponding to even powers of x are 0.

Alternatively, for all x ∈ R, p(−x) = −p(x).

QSVT using reflections

Let p ∈ C[x] be odd polynomial of degree d , s.t.
1 for all x ∈ [−1, 1], |p(x)| ≤ 1, and
2 for all x ∈ [−∞,−1] ∪ [1,∞], |p(x)| ≥ 1.

There exists sequence of d angles Φ := (ϕ1, . . . , ϕd) ∈ Rd s.t.(
p(x) ·
· ·

)
=

eiϕ1Z R(x)eiϕ2Z R(x) · · · eiϕd Z R(x).

Exercise: Why do we need condition (1)?

Exercise: Why do we prefer low-degree polynomials?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 44 / 66

QSP on single qubit system
A polynomial p ∈ C[x] is odd if all coefficients corresponding to even powers of x are 0.

Alternatively, for all x ∈ R, p(−x) = −p(x).

QSVT using reflections

Let p ∈ C[x] be odd polynomial of degree d , s.t.
1 for all x ∈ [−1, 1], |p(x)| ≤ 1, and
2 for all x ∈ [−∞,−1] ∪ [1,∞], |p(x)| ≥ 1.

There exists sequence of d angles Φ := (ϕ1, . . . , ϕd) ∈ Rd s.t.(
p(x) ·
· ·

)
= eiϕ1Z R(x)eiϕ2Z R(x) · · · eiϕd Z R(x).

Exercise: Why do we need condition (1)?

Exercise: Why do we prefer low-degree polynomials?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 44 / 66

QSP on single qubit system
A polynomial p ∈ C[x] is odd if all coefficients corresponding to even powers of x are 0.

Alternatively, for all x ∈ R, p(−x) = −p(x).

QSVT using reflections

Let p ∈ C[x] be odd polynomial of degree d , s.t.
1 for all x ∈ [−1, 1], |p(x)| ≤ 1, and
2 for all x ∈ [−∞,−1] ∪ [1,∞], |p(x)| ≥ 1.

There exists sequence of d angles Φ := (ϕ1, . . . , ϕd) ∈ Rd s.t.(
p(x) ·
· ·

)
= eiϕ1Z R(x)eiϕ2Z R(x) · · · eiϕd Z R(x).

Exercise: Why do we need condition (1)?

Exercise: Why do we prefer low-degree polynomials?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 44 / 66

QSP on single qubit system
A polynomial p ∈ C[x] is odd if all coefficients corresponding to even powers of x are 0.

Alternatively, for all x ∈ R, p(−x) = −p(x).

QSVT using reflections

Let p ∈ C[x] be odd polynomial of degree d , s.t.
1 for all x ∈ [−1, 1], |p(x)| ≤ 1, and
2 for all x ∈ [−∞,−1] ∪ [1,∞], |p(x)| ≥ 1.

There exists sequence of d angles Φ := (ϕ1, . . . , ϕd) ∈ Rd s.t.(
p(x) ·
· ·

)
= eiϕ1Z R(x)eiϕ2Z R(x) · · · eiϕd Z R(x).

Exercise: Why do we need condition (1)?

Exercise: Why do we prefer low-degree polynomials?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 44 / 66

On to the general case: A acting on n qubits

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 45 / 66

Singular Value Decomposition
Question: Thus far, mapped real x ∈ [−1, 1] to p(x). What is high-dimensional analogue of this?

Singular Value Decomposition (SVD)

Any matrix A ∈ L(Cd) has singular value decomposition

A =
d∑

i=1

si |li⟩⟨ri |, for

si ≥ 0 are singular values,

{|li⟩} are orthonormal set of left singular vectors,

{|ri⟩} are orthonormal set of right singular vectors.

Goal: Given projected unitary encoding A = ΠLUΠR and odd polynomial p ∈ C[x], simulate

p(A) :=
d∑

i=1

p(si)|li⟩⟨ri |.

Exercise. Why does this generalize our single-qubit setup? (i.e. previously we had x ∈ [−1, 1])

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 46 / 66

Singular Value Decomposition
Question: Thus far, mapped real x ∈ [−1, 1] to p(x). What is high-dimensional analogue of this?

Singular Value Decomposition (SVD)

Any matrix A ∈ L(Cd) has singular value decomposition

A =
d∑

i=1

si |li⟩⟨ri |, for

si ≥ 0 are singular values,

{|li⟩} are orthonormal set of left singular vectors,

{|ri⟩} are orthonormal set of right singular vectors.

Goal: Given projected unitary encoding A = ΠLUΠR and odd polynomial p ∈ C[x], simulate

p(A) :=
d∑

i=1

p(si)|li⟩⟨ri |.

Exercise. Why does this generalize our single-qubit setup? (i.e. previously we had x ∈ [−1, 1])

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 46 / 66

Singular Value Decomposition
Question: Thus far, mapped real x ∈ [−1, 1] to p(x). What is high-dimensional analogue of this?

Singular Value Decomposition (SVD)

Any matrix A ∈ L(Cd) has singular value decomposition

A =
d∑

i=1

si |li⟩⟨ri |, for

si ≥ 0 are singular values,

{|li⟩} are orthonormal set of left singular vectors,

{|ri⟩} are orthonormal set of right singular vectors.

Goal: Given projected unitary encoding A = ΠLUΠR and odd polynomial p ∈ C[x], simulate

p(A) :=
d∑

i=1

p(si)|li⟩⟨ri |.

Exercise. Why does this generalize our single-qubit setup? (i.e. previously we had x ∈ [−1, 1])

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 46 / 66

Singular Value Decomposition
Question: Thus far, mapped real x ∈ [−1, 1] to p(x). What is high-dimensional analogue of this?

Singular Value Decomposition (SVD)

Any matrix A ∈ L(Cd) has singular value decomposition

A =
d∑

i=1

si |li⟩⟨ri |, for

si ≥ 0 are singular values,

{|li⟩} are orthonormal set of left singular vectors,

{|ri⟩} are orthonormal set of right singular vectors.

Goal: Given projected unitary encoding A = ΠLUΠR and odd polynomial p ∈ C[x], simulate

p(A) :=
d∑

i=1

p(si)|li⟩⟨ri |.

Exercise. Why does this generalize our single-qubit setup? (i.e. previously we had x ∈ [−1, 1])

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 46 / 66

QSVT by alternating phase modulation (Gilyén, Su, Low, and Wiebe 2018)

Consider projected unitary encoding A = ΠLUΠR , and let p ∈ C[x] be odd polynomial of degree d , s.t.
1 for all x ∈ [−1, 1], |p(x)| ≤ 1, and
2 for all x ∈ [−∞,−1] ∪ [1,∞], |p(x)| ≥ 1.

There exists sequence of d angles Φ := (ϕ1, . . . , ϕd) ∈ Rd s.t.

p(A) = ΠLUΦΠR = ΠL

(
eiϕ1(2ΠL−I)Ueiϕ2(2ΠR−I)U† · · · eiϕd (2ΠL−I)U

)
ΠR .

What is the cost of implementing UΦ?
O(m) uses of U and U†

O(m) uses of following circuit which implements map |b⟩⟨b| ⊗ e(−1)b iϕ(2Π−I):

|b⟩ e−iϕσz

Π Π...
...

...

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 47 / 66

QSVT by alternating phase modulation (Gilyén, Su, Low, and Wiebe 2018)

Consider projected unitary encoding A = ΠLUΠR , and let p ∈ C[x] be odd polynomial of degree d , s.t.
1 for all x ∈ [−1, 1], |p(x)| ≤ 1, and
2 for all x ∈ [−∞,−1] ∪ [1,∞], |p(x)| ≥ 1.

There exists sequence of d angles Φ := (ϕ1, . . . , ϕd) ∈ Rd s.t.

p(A) = ΠLUΦΠR

= ΠL

(
eiϕ1(2ΠL−I)Ueiϕ2(2ΠR−I)U† · · · eiϕd (2ΠL−I)U

)
ΠR .

What is the cost of implementing UΦ?
O(m) uses of U and U†

O(m) uses of following circuit which implements map |b⟩⟨b| ⊗ e(−1)b iϕ(2Π−I):

|b⟩ e−iϕσz

Π Π...
...

...

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 47 / 66

QSVT by alternating phase modulation (Gilyén, Su, Low, and Wiebe 2018)

Consider projected unitary encoding A = ΠLUΠR , and let p ∈ C[x] be odd polynomial of degree d , s.t.
1 for all x ∈ [−1, 1], |p(x)| ≤ 1, and
2 for all x ∈ [−∞,−1] ∪ [1,∞], |p(x)| ≥ 1.

There exists sequence of d angles Φ := (ϕ1, . . . , ϕd) ∈ Rd s.t.

p(A) = ΠLUΦΠR = ΠL

(
eiϕ1(2ΠL−I)Ueiϕ2(2ΠR−I)U† · · · eiϕd (2ΠL−I)U

)
ΠR .

What is the cost of implementing UΦ?
O(m) uses of U and U†

O(m) uses of following circuit which implements map |b⟩⟨b| ⊗ e(−1)b iϕ(2Π−I):

|b⟩ e−iϕσz

Π Π...
...

...

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 47 / 66

QSVT by alternating phase modulation (Gilyén, Su, Low, and Wiebe 2018)

Consider projected unitary encoding A = ΠLUΠR , and let p ∈ C[x] be odd polynomial of degree d , s.t.
1 for all x ∈ [−1, 1], |p(x)| ≤ 1, and
2 for all x ∈ [−∞,−1] ∪ [1,∞], |p(x)| ≥ 1.

There exists sequence of d angles Φ := (ϕ1, . . . , ϕd) ∈ Rd s.t.

p(A) = ΠLUΦΠR = ΠL

(
eiϕ1(2ΠL−I)Ueiϕ2(2ΠR−I)U† · · · eiϕd (2ΠL−I)U

)
ΠR .

What is the cost of implementing UΦ?

O(m) uses of U and U†

O(m) uses of following circuit which implements map |b⟩⟨b| ⊗ e(−1)b iϕ(2Π−I):

|b⟩ e−iϕσz

Π Π...
...

...

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 47 / 66

QSVT by alternating phase modulation (Gilyén, Su, Low, and Wiebe 2018)

Consider projected unitary encoding A = ΠLUΠR , and let p ∈ C[x] be odd polynomial of degree d , s.t.
1 for all x ∈ [−1, 1], |p(x)| ≤ 1, and
2 for all x ∈ [−∞,−1] ∪ [1,∞], |p(x)| ≥ 1.

There exists sequence of d angles Φ := (ϕ1, . . . , ϕd) ∈ Rd s.t.

p(A) = ΠLUΦΠR = ΠL

(
eiϕ1(2ΠL−I)Ueiϕ2(2ΠR−I)U† · · · eiϕd (2ΠL−I)U

)
ΠR .

What is the cost of implementing UΦ?
O(m) uses of U and U†

O(m) uses of following circuit which implements map |b⟩⟨b| ⊗ e(−1)b iϕ(2Π−I):

|b⟩ e−iϕσz

Π Π...
...

...

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 47 / 66

QSVT by alternating phase modulation (Gilyén, Su, Low, and Wiebe 2018)

Consider projected unitary encoding A = ΠLUΠR , and let p ∈ C[x] be odd polynomial of degree d , s.t.
1 for all x ∈ [−1, 1], |p(x)| ≤ 1, and
2 for all x ∈ [−∞,−1] ∪ [1,∞], |p(x)| ≥ 1.

There exists sequence of d angles Φ := (ϕ1, . . . , ϕd) ∈ Rd s.t.

p(A) = ΠLUΦΠR = ΠL

(
eiϕ1(2ΠL−I)Ueiϕ2(2ΠR−I)U† · · · eiϕd (2ΠL−I)U

)
ΠR .

What is the cost of implementing UΦ?
O(m) uses of U and U†

O(m) uses of following circuit which implements map |b⟩⟨b| ⊗ e(−1)b iϕ(2Π−I):

|b⟩ e−iϕσz

Π Π...
...

...

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 47 / 66

Sanity check

We said that for projected unitary encoding A = ΠLUΠR and polynomial p ∈ C[x],

p(A) = ΠL

(
eiϕ1(2ΠL−I)Ueiϕ2(2ΠR−I)U† · · · eiϕd (2ΠL−I)U

)
ΠR .

Exercise: What happens if A = U, i.e. ΠL = ΠR = I, meaning no block encoding necessary?

Exercise: Aren’t you forgetting to ask a very important question? (Hint: The sequence
(ϕ1, . . . , ϕd).)

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 48 / 66

Sanity check

We said that for projected unitary encoding A = ΠLUΠR and polynomial p ∈ C[x],

p(A) = ΠL

(
eiϕ1(2ΠL−I)Ueiϕ2(2ΠR−I)U† · · · eiϕd (2ΠL−I)U

)
ΠR .

Exercise: What happens if A = U, i.e. ΠL = ΠR = I, meaning no block encoding necessary?

Exercise: Aren’t you forgetting to ask a very important question? (Hint: The sequence
(ϕ1, . . . , ϕd).)

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 48 / 66

Proof intuition
Key insight: Can decompose all operators into direct sum of 1- and 2-dimensional subspaces.

Recall: Given A = ΠLUΠR =
∑d

i=1 si |li⟩⟨ri |. Order singular values:

s1 ≥ s2 ≥ · · · ≥ sk︸ ︷︷ ︸
= 1

≥ sk+1 ≥ · · · ≥ sr︸ ︷︷ ︸
0 < · < 1︸ ︷︷ ︸

r = rank(A)

≥ sr+1 ≥ · · · ≥ sd︸ ︷︷ ︸
= 0

Theorem (Invariant subspaces)

U =
⊕
i∈[k]

[si]
Hi
H̃i
⊕
⊕

i∈[r]\[k]

 si

√
1− s2

i√
1− s2

i −si

Hi

H̃i

⊕
⊕

i∈[d]\[r]

[1]H
R
i

H̃R
i
⊕
⊕

i∈[d]\[r]

[1]H
L
i

H̃L
i
⊕ [·]H⊥

H̃⊥

eiϕ(2Π−I) =
⊕
i∈[k]

[
eiϕ
]Hi

Hi

⊕
⊕

i∈[r]\[k]

[
eiϕ 0
0 e−iϕ

]Hi

Hi

⊕
⊕

i∈[d]\[r]

[
eiϕ
]HR

i

HR
i

⊕
⊕

i∈[d]\[r]

[
e−iϕ

]HL
i

HL
i

⊕ [·]H⊥
H⊥

,

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 49 / 66

Proof intuition
Key insight: Can decompose all operators into direct sum of 1- and 2-dimensional subspaces.

Recall: Given A = ΠLUΠR =
∑d

i=1 si |li⟩⟨ri |. Order singular values:

s1 ≥ s2 ≥ · · · ≥ sk︸ ︷︷ ︸
= 1

≥ sk+1 ≥ · · · ≥ sr︸ ︷︷ ︸
0 < · < 1︸ ︷︷ ︸

r = rank(A)

≥ sr+1 ≥ · · · ≥ sd︸ ︷︷ ︸
= 0

Theorem (Invariant subspaces)

U =
⊕
i∈[k]

[si]
Hi
H̃i
⊕
⊕

i∈[r]\[k]

 si

√
1− s2

i√
1− s2

i −si

Hi

H̃i

⊕
⊕

i∈[d]\[r]

[1]H
R
i

H̃R
i
⊕
⊕

i∈[d]\[r]

[1]H
L
i

H̃L
i
⊕ [·]H⊥

H̃⊥

eiϕ(2Π−I) =
⊕
i∈[k]

[
eiϕ
]Hi

Hi

⊕
⊕

i∈[r]\[k]

[
eiϕ 0
0 e−iϕ

]Hi

Hi

⊕
⊕

i∈[d]\[r]

[
eiϕ
]HR

i

HR
i

⊕
⊕

i∈[d]\[r]

[
e−iϕ

]HL
i

HL
i

⊕ [·]H⊥
H⊥

,

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 49 / 66

Proof intuition
Key insight: Can decompose all operators into direct sum of 1- and 2-dimensional subspaces.

Recall: Given A = ΠLUΠR =
∑d

i=1 si |li⟩⟨ri |. Order singular values:

s1 ≥ s2 ≥ · · · ≥ sk︸ ︷︷ ︸
= 1

≥ sk+1 ≥ · · · ≥ sr︸ ︷︷ ︸
0 < · < 1︸ ︷︷ ︸

r = rank(A)

≥ sr+1 ≥ · · · ≥ sd︸ ︷︷ ︸
= 0

Theorem (Invariant subspaces)

U =
⊕
i∈[k]

[si]
Hi
H̃i
⊕
⊕

i∈[r]\[k]

 si

√
1− s2

i√
1− s2

i −si

Hi

H̃i

⊕
⊕

i∈[d]\[r]

[1]H
R
i

H̃R
i
⊕
⊕

i∈[d]\[r]

[1]H
L
i

H̃L
i
⊕ [·]H⊥

H̃⊥

eiϕ(2Π−I) =
⊕
i∈[k]

[
eiϕ
]Hi

Hi

⊕
⊕

i∈[r]\[k]

[
eiϕ 0
0 e−iϕ

]Hi

Hi

⊕
⊕

i∈[d]\[r]

[
eiϕ
]HR

i

HR
i

⊕
⊕

i∈[d]\[r]

[
e−iϕ

]HL
i

HL
i

⊕ [·]H⊥
H⊥

,

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 49 / 66

Proof intuition

U =
⊕
i∈[k]

[si]
Hi
H̃i
⊕
⊕

i∈[r]\[k]

 si

√
1− s2

i√
1− s2

i −si

Hi

H̃i

⊕
⊕

i∈[d]\[r]

[1]H
R
i

H̃R
i
⊕
⊕

i∈[d]\[r]

[1]H
L
i

H̃L
i
⊕ [·]H⊥

H̃⊥

Recall: k largest index with sk = 1, r largest index with sr > 0 (i.e. r = rank (A) for A = ΠLUΠR).

Question: What are the spaces Hi and H̃i?

1 ≤ i ≤ k Hi := Span (|ri⟩) H̃i := Span (|li⟩) ,

k < i ≤ r Hi := Span
(
|ri⟩, |r⊥i ⟩

)
|r⊥i ⟩ :=

(I − Π)U†|li⟩
∥(I − Π)U†|li⟩∥

=
(I − Π)U†|li⟩√

1− s2
i

,

H̃i := Span
(
|li⟩, |l⊥i ⟩

)
|l⊥i ⟩ :=

(I − Π̃)U|ri⟩∥∥∥(I − Π̃)U|ri⟩
∥∥∥ =

(I − Π̃)U|ri⟩√
1− s2

i

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 50 / 66

Proof intuition

U =
⊕
i∈[k]

[si]
Hi
H̃i
⊕
⊕

i∈[r]\[k]

 si

√
1− s2

i√
1− s2

i −si

Hi

H̃i

⊕
⊕

i∈[d]\[r]

[1]H
R
i

H̃R
i
⊕
⊕

i∈[d]\[r]

[1]H
L
i

H̃L
i
⊕ [·]H⊥

H̃⊥

Recall: k largest index with sk = 1, r largest index with sr > 0 (i.e. r = rank (A) for A = ΠLUΠR).

Question: What are the spaces Hi and H̃i?

1 ≤ i ≤ k Hi := Span (|ri⟩) H̃i := Span (|li⟩) ,

k < i ≤ r Hi := Span
(
|ri⟩, |r⊥i ⟩

)
|r⊥i ⟩ :=

(I − Π)U†|li⟩
∥(I − Π)U†|li⟩∥

=
(I − Π)U†|li⟩√

1− s2
i

,

H̃i := Span
(
|li⟩, |l⊥i ⟩

)
|l⊥i ⟩ :=

(I − Π̃)U|ri⟩∥∥∥(I − Π̃)U|ri⟩
∥∥∥ =

(I − Π̃)U|ri⟩√
1− s2

i

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 50 / 66

Proof intuition

U =
⊕
i∈[k]

[si]
Hi
H̃i
⊕
⊕

i∈[r]\[k]

 si

√
1− s2

i√
1− s2

i −si

Hi

H̃i

⊕
⊕

i∈[d]\[r]

[1]H
R
i

H̃R
i
⊕
⊕

i∈[d]\[r]

[1]H
L
i

H̃L
i
⊕ [·]H⊥

H̃⊥

Recall: k largest index with sk = 1, r largest index with sr > 0 (i.e. r = rank (A) for A = ΠLUΠR).

Question: What are the spaces Hi and H̃i?

1 ≤ i ≤ k Hi := Span (|ri⟩) H̃i := Span (|li⟩) ,

k < i ≤ r Hi := Span
(
|ri⟩, |r⊥i ⟩

)
|r⊥i ⟩ :=

(I − Π)U†|li⟩
∥(I − Π)U†|li⟩∥

=
(I − Π)U†|li⟩√

1− s2
i

,

H̃i := Span
(
|li⟩, |l⊥i ⟩

)
|l⊥i ⟩ :=

(I − Π̃)U|ri⟩∥∥∥(I − Π̃)U|ri⟩
∥∥∥ =

(I − Π̃)U|ri⟩√
1− s2

i

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 50 / 66

Proof intuition
Theorem (Invariant subspaces)

U =
⊕
i∈[k]

[si]
Hi
H̃i
⊕
⊕

i∈[r]\[k]

 si

√
1− s2

i√
1− s2

i −si

Hi

H̃i

⊕
⊕

i∈[d]\[r]

[1]H
R
i

H̃R
i
⊕
⊕

i∈[d]\[r]

[1]H
L
i

H̃L
i
⊕ [·]H⊥

H̃⊥

eiϕ(2Π−I) =
⊕
i∈[k]

[
eiϕ
]Hi

Hi

⊕
⊕

i∈[r]\[k]

[
eiϕ 0
0 e−iϕ

]Hi

Hi

⊕
⊕

i∈[d]\[r]

[
eiϕ
]HR

i

HR
i

⊕
⊕

i∈[d]\[r]

[
e−iϕ

]HL
i

HL
i

⊕ [·]H⊥
H⊥

,

Alternating these two yields:

UΦ =
⊕
i∈[k]

[P(si)]
Hi
H̃i
⊕
⊕

i∈[r]\[k]

[
P(si) .
. .

]Hi

H̃i

⊕
⊕

i∈[d]\[r]

[
eiϕ0

]HR
i

H̃R
i

⊕
⊕

i∈[d]\[r]

[
e−iϕ0

]HL
i

H̃L
i

⊕ [·]H⊥
H̃⊥

.

ΠLUΦΠR =
⊕
i∈[k]

[P(si)]
Hi
H̃i
⊕
⊕

i∈[r]\[k]

[
P(si) 0

0 0

]Hi

H̃i

⊕
⊕

i∈[d]\[r]

[0]H
R
i

H̃R
i
⊕
⊕

i∈[d]\[r]

[0]H
L
i

H̃L
i
⊕ [0]H⊥

H̃⊥
=

d∑
i=1

P(si)|li⟩⟨ri |.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 51 / 66

Proof intuition
Theorem (Invariant subspaces)

U =
⊕
i∈[k]

[si]
Hi
H̃i
⊕
⊕

i∈[r]\[k]

 si

√
1− s2

i√
1− s2

i −si

Hi

H̃i

⊕
⊕

i∈[d]\[r]

[1]H
R
i

H̃R
i
⊕
⊕

i∈[d]\[r]

[1]H
L
i

H̃L
i
⊕ [·]H⊥

H̃⊥

eiϕ(2Π−I) =
⊕
i∈[k]

[
eiϕ
]Hi

Hi

⊕
⊕

i∈[r]\[k]

[
eiϕ 0
0 e−iϕ

]Hi

Hi

⊕
⊕

i∈[d]\[r]

[
eiϕ
]HR

i

HR
i

⊕
⊕

i∈[d]\[r]

[
e−iϕ

]HL
i

HL
i

⊕ [·]H⊥
H⊥

,

Alternating these two yields:

UΦ =
⊕
i∈[k]

[P(si)]
Hi
H̃i
⊕
⊕

i∈[r]\[k]

[
P(si) .
. .

]Hi

H̃i

⊕
⊕

i∈[d]\[r]

[
eiϕ0

]HR
i

H̃R
i

⊕
⊕

i∈[d]\[r]

[
e−iϕ0

]HL
i

H̃L
i

⊕ [·]H⊥
H̃⊥

.

ΠLUΦΠR =
⊕
i∈[k]

[P(si)]
Hi
H̃i
⊕
⊕

i∈[r]\[k]

[
P(si) 0

0 0

]Hi

H̃i

⊕
⊕

i∈[d]\[r]

[0]H
R
i

H̃R
i
⊕
⊕

i∈[d]\[r]

[0]H
L
i

H̃L
i
⊕ [0]H⊥

H̃⊥
=

d∑
i=1

P(si)|li⟩⟨ri |.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 51 / 66

QSVT by alternating phase modulation

Consider projected unitary encoding A = ΠLUΠR , and let p ∈ C[x] be odd polynomial of degree d , s.t.
1 for all x ∈ [−1, 1], |p(x)| ≤ 1, and
2 for all x ∈ [−∞,−1] ∪ [1,∞], |p(x)| ≥ 1.

There exists sequence of d angles Φ := (ϕ1, . . . , ϕd) ∈ Rd s.t.

p(A) = ΠLUΦΠR = ΠL

(
eiϕ1(2ΠL−I)Ueiϕ2(2ΠR−I)U† · · · eiϕd (2ΠL−I)U

)
ΠR .

What is the cost of implementing UΦ?
O(m) uses of U and U†

O(m) uses of following circuit which implements map |b⟩⟨b| ⊗ e(−1)b iϕ(2Π−I):

|b⟩ e−iϕσz

Π Π...
...

...

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 52 / 66

Example 1: Linear systems via QSVT
Goal: Given projected unitary encoding of A = ΠLUΠR , want to apply Moore-Penrose pseudoinverse A+.

Recall: For SVD A =
∑d

i=1 si |li⟩⟨ri | ∈ L(Cd), pseudoinverse is

A+ :=
d∑

i=1

1
si
|ri⟩⟨li | (for clarity, we invert only si > 0).

Algorithm sketch
1 Pick singular value cutoff δ > 0, i.e. we will invert only si ≥ δ.
2 Design low-degree polynomial p which ϵ-approximates f (x) = 1

x .

▶ Degree d ∈ O
(1
δ
log(1

ϵ
)
)

suffices.

3 Apply QSVT to compute p(A) ≈ A+.
▶ Costs O(d) uses of U, U†, and Controlled-Π gates
▶ More generally, cost is O(∥A∥F /δ) (i.e. if we don’t assume ∥A∥ ≤ 1).

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 53 / 66

Example 1: Linear systems via QSVT
Goal: Given projected unitary encoding of A = ΠLUΠR , want to apply Moore-Penrose pseudoinverse A+.

Recall: For SVD A =
∑d

i=1 si |li⟩⟨ri | ∈ L(Cd), pseudoinverse is

A+ :=
d∑

i=1

1
si
|ri⟩⟨li | (for clarity, we invert only si > 0).

Algorithm sketch
1 Pick singular value cutoff δ > 0, i.e. we will invert only si ≥ δ.

2 Design low-degree polynomial p which ϵ-approximates f (x) = 1
x .

▶ Degree d ∈ O
(1
δ
log(1

ϵ
)
)

suffices.

3 Apply QSVT to compute p(A) ≈ A+.
▶ Costs O(d) uses of U, U†, and Controlled-Π gates
▶ More generally, cost is O(∥A∥F /δ) (i.e. if we don’t assume ∥A∥ ≤ 1).

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 53 / 66

Example 1: Linear systems via QSVT
Goal: Given projected unitary encoding of A = ΠLUΠR , want to apply Moore-Penrose pseudoinverse A+.

Recall: For SVD A =
∑d

i=1 si |li⟩⟨ri | ∈ L(Cd), pseudoinverse is

A+ :=
d∑

i=1

1
si
|ri⟩⟨li | (for clarity, we invert only si > 0).

Algorithm sketch
1 Pick singular value cutoff δ > 0, i.e. we will invert only si ≥ δ.
2 Design low-degree polynomial p which ϵ-approximates f (x) = 1

x .

▶ Degree d ∈ O
(1
δ
log(1

ϵ
)
)

suffices.

3 Apply QSVT to compute p(A) ≈ A+.
▶ Costs O(d) uses of U, U†, and Controlled-Π gates
▶ More generally, cost is O(∥A∥F /δ) (i.e. if we don’t assume ∥A∥ ≤ 1).

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 53 / 66

Example 1: Linear systems via QSVT
Goal: Given projected unitary encoding of A = ΠLUΠR , want to apply Moore-Penrose pseudoinverse A+.

Recall: For SVD A =
∑d

i=1 si |li⟩⟨ri | ∈ L(Cd), pseudoinverse is

A+ :=
d∑

i=1

1
si
|ri⟩⟨li | (for clarity, we invert only si > 0).

Algorithm sketch
1 Pick singular value cutoff δ > 0, i.e. we will invert only si ≥ δ.
2 Design low-degree polynomial p which ϵ-approximates f (x) = 1

x .

▶ Degree d ∈ O
(1
δ
log(1

ϵ
)
)

suffices.

3 Apply QSVT to compute p(A) ≈ A+.
▶ Costs O(d) uses of U, U†, and Controlled-Π gates

▶ More generally, cost is O(∥A∥F /δ) (i.e. if we don’t assume ∥A∥ ≤ 1).

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 53 / 66

Example 1: Linear systems via QSVT
Goal: Given projected unitary encoding of A = ΠLUΠR , want to apply Moore-Penrose pseudoinverse A+.

Recall: For SVD A =
∑d

i=1 si |li⟩⟨ri | ∈ L(Cd), pseudoinverse is

A+ :=
d∑

i=1

1
si
|ri⟩⟨li | (for clarity, we invert only si > 0).

Algorithm sketch
1 Pick singular value cutoff δ > 0, i.e. we will invert only si ≥ δ.
2 Design low-degree polynomial p which ϵ-approximates f (x) = 1

x .

▶ Degree d ∈ O
(1
δ
log(1

ϵ
)
)

suffices.

3 Apply QSVT to compute p(A) ≈ A+.
▶ Costs O(d) uses of U, U†, and Controlled-Π gates
▶ More generally, cost is O(∥A∥F /δ) (i.e. if we don’t assume ∥A∥ ≤ 1).

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 53 / 66

Example 2: Amplitude Amplification via QSVT
Goal:

Given BQP circuit U which outputs 1 with probability ≥ p.
Compile new circuit U ′ which outputs 1 with probability ≈ 1.

|x1⟩

Qn

...
|xn⟩
|0⟩

...
|0⟩

input x

ancilla of q(n) qubits

How to setup QSVT:
Set ΠR := |x⟩⟨x | ⊗ |0⟩⟨0|⊗q(n) and ΠL := |1⟩⟨1| ⊗ I.
Then, A = ΠLUΠR is rank 1 with singular value the square root of acceptance probability of U.
Pick a polynomial p which is ϵ/2-close to 1 on [

√
p, 1].

Apply QSVT with p to A to get p(A) = ΠLU ′ΠR s..t U ′ accepts with probability ≥ 1− ϵ.

Suffices to choose p of degree O
(

1√
p log(1

ϵ
)
)

.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 54 / 66

Example 2: Amplitude Amplification via QSVT
Goal:

Given BQP circuit U which outputs 1 with probability ≥ p.
Compile new circuit U ′ which outputs 1 with probability ≈ 1.

|x1⟩

Qn

...
|xn⟩
|0⟩

...
|0⟩

input x

ancilla of q(n) qubits

How to setup QSVT:
Set ΠR := |x⟩⟨x | ⊗ |0⟩⟨0|⊗q(n) and ΠL := |1⟩⟨1| ⊗ I.

Then, A = ΠLUΠR is rank 1 with singular value the square root of acceptance probability of U.
Pick a polynomial p which is ϵ/2-close to 1 on [

√
p, 1].

Apply QSVT with p to A to get p(A) = ΠLU ′ΠR s..t U ′ accepts with probability ≥ 1− ϵ.

Suffices to choose p of degree O
(

1√
p log(1

ϵ
)
)

.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 54 / 66

Example 2: Amplitude Amplification via QSVT
Goal:

Given BQP circuit U which outputs 1 with probability ≥ p.
Compile new circuit U ′ which outputs 1 with probability ≈ 1.

|x1⟩

Qn

...
|xn⟩
|0⟩

...
|0⟩

input x

ancilla of q(n) qubits

How to setup QSVT:
Set ΠR := |x⟩⟨x | ⊗ |0⟩⟨0|⊗q(n) and ΠL := |1⟩⟨1| ⊗ I.
Then, A = ΠLUΠR is rank 1 with singular value the square root of acceptance probability of U.

Pick a polynomial p which is ϵ/2-close to 1 on [
√

p, 1].
Apply QSVT with p to A to get p(A) = ΠLU ′ΠR s..t U ′ accepts with probability ≥ 1− ϵ.

Suffices to choose p of degree O
(

1√
p log(1

ϵ
)
)

.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 54 / 66

Example 2: Amplitude Amplification via QSVT
Goal:

Given BQP circuit U which outputs 1 with probability ≥ p.
Compile new circuit U ′ which outputs 1 with probability ≈ 1.

|x1⟩

Qn

...
|xn⟩
|0⟩

...
|0⟩

input x

ancilla of q(n) qubits

How to setup QSVT:
Set ΠR := |x⟩⟨x | ⊗ |0⟩⟨0|⊗q(n) and ΠL := |1⟩⟨1| ⊗ I.
Then, A = ΠLUΠR is rank 1 with singular value the square root of acceptance probability of U.
Pick a polynomial p which is ϵ/2-close to 1 on [

√
p, 1].

Apply QSVT with p to A to get p(A) = ΠLU ′ΠR s..t U ′ accepts with probability ≥ 1− ϵ.

Suffices to choose p of degree O
(

1√
p log(1

ϵ
)
)

.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 54 / 66

Example 2: Amplitude Amplification via QSVT
Goal:

Given BQP circuit U which outputs 1 with probability ≥ p.
Compile new circuit U ′ which outputs 1 with probability ≈ 1.

|x1⟩

Qn

...
|xn⟩
|0⟩

...
|0⟩

input x

ancilla of q(n) qubits

How to setup QSVT:
Set ΠR := |x⟩⟨x | ⊗ |0⟩⟨0|⊗q(n) and ΠL := |1⟩⟨1| ⊗ I.
Then, A = ΠLUΠR is rank 1 with singular value the square root of acceptance probability of U.
Pick a polynomial p which is ϵ/2-close to 1 on [

√
p, 1].

Apply QSVT with p to A to get p(A) = ΠLU ′ΠR s..t U ′ accepts with probability ≥ 1− ϵ.

Suffices to choose p of degree O
(

1√
p log(1

ϵ
)
)

.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 54 / 66

Example 2: Amplitude Amplification via QSVT
Goal:

Given BQP circuit U which outputs 1 with probability ≥ p.
Compile new circuit U ′ which outputs 1 with probability ≈ 1.

|x1⟩

Qn

...
|xn⟩
|0⟩

...
|0⟩

input x

ancilla of q(n) qubits

How to setup QSVT:
Set ΠR := |x⟩⟨x | ⊗ |0⟩⟨0|⊗q(n) and ΠL := |1⟩⟨1| ⊗ I.
Then, A = ΠLUΠR is rank 1 with singular value the square root of acceptance probability of U.
Pick a polynomial p which is ϵ/2-close to 1 on [

√
p, 1].

Apply QSVT with p to A to get p(A) = ΠLU ′ΠR s..t U ′ accepts with probability ≥ 1− ϵ.

Suffices to choose p of degree O
(

1√
p log(1

ϵ
)
)

.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 54 / 66

Outline

1 A brief history of quantum algorithms

2 The computational model

3 Matrix Inversion (MI)
MI ∈ BQP
MI is BQP-hard

4 Quantum Singular Value Transform (QSVT)

5 Dequantization
Example: Low-precision estimation of ground state energies

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 55 / 66

The story of dequantization

Quantum recommendation systems (Kerenidis, Prakash, 2016)

Recommendation system (used by, e.g., Netflix):
▶ Use ratings of n products by m users to provide personalized recommendations to users
▶ Modelled as m × n preference matrix, assumed to have good rank-k approximation

Quantum machine learning algorithm which runs in time poly(k , log(mn)).

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 56 / 66

The story of dequantization

Quantum recommendation systems (Kerenidis, Prakash, 2016)

Recommendation system (used by, e.g., Netflix):
▶ Use ratings of n products by m users to provide personalized recommendations to users
▶ Modelled as m × n preference matrix, assumed to have good rank-k approximation

Quantum machine learning algorithm which runs in time poly(k , log(mn)).

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 56 / 66

The story of dequantization
Conversation between Scott Aaronson and his 18-year old undergrad student, Ewin Tang:

Scott: I like this paper of Iordanis and Anupam. Can you prove it can’t be simulated classically?

Ewin: What do you mean?
Scott: Maybe it’s BQP-complete like the linear systems problem?

A quantum-inspired classical algorithm for recommendation systems (Tang, STOC 2019):

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 57 / 66

The story of dequantization
Conversation between Scott Aaronson and his 18-year old undergrad student, Ewin Tang:

Scott: I like this paper of Iordanis and Anupam. Can you prove it can’t be simulated classically?
Ewin: What do you mean?

Scott: Maybe it’s BQP-complete like the linear systems problem?

A quantum-inspired classical algorithm for recommendation systems (Tang, STOC 2019):

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 57 / 66

The story of dequantization
Conversation between Scott Aaronson and his 18-year old undergrad student, Ewin Tang:

Scott: I like this paper of Iordanis and Anupam. Can you prove it can’t be simulated classically?
Ewin: What do you mean?
Scott: Maybe it’s BQP-complete like the linear systems problem?

A quantum-inspired classical algorithm for recommendation systems (Tang, STOC 2019):

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 57 / 66

The story of dequantization
Conversation between Scott Aaronson and his 18-year old undergrad student, Ewin Tang:

Scott: I like this paper of Iordanis and Anupam. Can you prove it can’t be simulated classically?
Ewin: What do you mean?
Scott: Maybe it’s BQP-complete like the linear systems problem?

A quantum-inspired classical algorithm for recommendation systems (Tang, STOC 2019):

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 57 / 66

There’s more...

Dequantizing QSVT in low-rank settings (Chia, Gilyén, Li, Lin, Tang, Wang, STOC 2020)

Idea: l2-norm sampling approximates matrix products in time independent of dimension

Dequantizes many quantum machine learning algorithms, including:
▶ recommendation systems
▶ principal component analysis
▶ low-rank regression
▶ supervised clustering
▶ support vector machines

So, what does this mean?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 58 / 66

There’s more...
Dequantizing QSVT in low-rank settings (Chia, Gilyén, Li, Lin, Tang, Wang, STOC 2020)

Idea: l2-norm sampling approximates matrix products in time independent of dimension

Dequantizes many quantum machine learning algorithms, including:
▶ recommendation systems
▶ principal component analysis
▶ low-rank regression
▶ supervised clustering
▶ support vector machines

So, what does this mean?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 58 / 66

There’s more...
Dequantizing QSVT in low-rank settings (Chia, Gilyén, Li, Lin, Tang, Wang, STOC 2020)

Idea: l2-norm sampling approximates matrix products in time independent of dimension

Dequantizes many quantum machine learning algorithms, including:
▶ recommendation systems
▶ principal component analysis
▶ low-rank regression
▶ supervised clustering
▶ support vector machines

So, what does this mean?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 58 / 66

There’s more...
Dequantizing QSVT in low-rank settings (Chia, Gilyén, Li, Lin, Tang, Wang, STOC 2020)

Idea: l2-norm sampling approximates matrix products in time independent of dimension

Dequantizes many quantum machine learning algorithms, including:
▶ recommendation systems
▶ principal component analysis
▶ low-rank regression
▶ supervised clustering
▶ support vector machines

So, what does this mean?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 58 / 66

There’s more...
Dequantizing QSVT in low-rank settings (Chia, Gilyén, Li, Lin, Tang, Wang, STOC 2020)

Idea: l2-norm sampling approximates matrix products in time independent of dimension

Dequantizes many quantum machine learning algorithms, including:
▶ recommendation systems
▶ principal component analysis
▶ low-rank regression
▶ supervised clustering
▶ support vector machines

So, what does this mean?

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 58 / 66

Tang’s dequantization of quantum recommender systems
The quantum recommendation system algorithm relies on the following classical data structure.

Lemma ((Kerenidis, Prakash 2017), as stated in (Tang 2019))

∃ data structure storing v ∈ Rn with w nonzero entries in O(w log(n)) space, which supports:

Reading and updating an entry of v in O(log n) time;

Finding ∥v∥2 in O(1) time;

Sampling from distribution v2
i / ∥v∥

2 in O(log n) time.

Observation: Precisely conditions for randomized linear algebra techniques! (Frieze, Kannan, Vempala 2004)

Upshot:

Any quantum algorithm with input encoded as above can, in principle, be attacked via dequantization.

Classical dequantized algorithms still typically polynomially slower than quantum algorithms

One has to be careful in assumptions about how the input is specified!

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 59 / 66

Tang’s dequantization of quantum recommender systems
The quantum recommendation system algorithm relies on the following classical data structure.

Lemma ((Kerenidis, Prakash 2017), as stated in (Tang 2019))

∃ data structure storing v ∈ Rn with w nonzero entries in O(w log(n)) space, which supports:

Reading and updating an entry of v in O(log n) time;

Finding ∥v∥2 in O(1) time;

Sampling from distribution v2
i / ∥v∥

2 in O(log n) time.

Observation: Precisely conditions for randomized linear algebra techniques! (Frieze, Kannan, Vempala 2004)

Upshot:

Any quantum algorithm with input encoded as above can, in principle, be attacked via dequantization.

Classical dequantized algorithms still typically polynomially slower than quantum algorithms

One has to be careful in assumptions about how the input is specified!

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 59 / 66

Tang’s dequantization of quantum recommender systems
The quantum recommendation system algorithm relies on the following classical data structure.

Lemma ((Kerenidis, Prakash 2017), as stated in (Tang 2019))

∃ data structure storing v ∈ Rn with w nonzero entries in O(w log(n)) space, which supports:

Reading and updating an entry of v in O(log n) time;

Finding ∥v∥2 in O(1) time;

Sampling from distribution v2
i / ∥v∥

2 in O(log n) time.

Observation: Precisely conditions for randomized linear algebra techniques! (Frieze, Kannan, Vempala 2004)

Upshot:

Any quantum algorithm with input encoded as above can, in principle, be attacked via dequantization.

Classical dequantized algorithms still typically polynomially slower than quantum algorithms

One has to be careful in assumptions about how the input is specified!

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 59 / 66

Tang’s dequantization of quantum recommender systems
The quantum recommendation system algorithm relies on the following classical data structure.

Lemma ((Kerenidis, Prakash 2017), as stated in (Tang 2019))

∃ data structure storing v ∈ Rn with w nonzero entries in O(w log(n)) space, which supports:

Reading and updating an entry of v in O(log n) time;

Finding ∥v∥2 in O(1) time;

Sampling from distribution v2
i / ∥v∥

2 in O(log n) time.

Observation: Precisely conditions for randomized linear algebra techniques! (Frieze, Kannan, Vempala 2004)

Upshot:

Any quantum algorithm with input encoded as above can, in principle, be attacked via dequantization.

Classical dequantized algorithms still typically polynomially slower than quantum algorithms

One has to be careful in assumptions about how the input is specified!

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 59 / 66

Tang’s dequantization of quantum recommender systems
The quantum recommendation system algorithm relies on the following classical data structure.

Lemma ((Kerenidis, Prakash 2017), as stated in (Tang 2019))

∃ data structure storing v ∈ Rn with w nonzero entries in O(w log(n)) space, which supports:

Reading and updating an entry of v in O(log n) time;

Finding ∥v∥2 in O(1) time;

Sampling from distribution v2
i / ∥v∥

2 in O(log n) time.

Observation: Precisely conditions for randomized linear algebra techniques! (Frieze, Kannan, Vempala 2004)

Upshot:

Any quantum algorithm with input encoded as above can, in principle, be attacked via dequantization.

Classical dequantized algorithms still typically polynomially slower than quantum algorithms

One has to be careful in assumptions about how the input is specified!

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 59 / 66

Tang’s dequantization of quantum recommender systems
The quantum recommendation system algorithm relies on the following classical data structure.

Lemma ((Kerenidis, Prakash 2017), as stated in (Tang 2019))

∃ data structure storing v ∈ Rn with w nonzero entries in O(w log(n)) space, which supports:

Reading and updating an entry of v in O(log n) time;

Finding ∥v∥2 in O(1) time;

Sampling from distribution v2
i / ∥v∥

2 in O(log n) time.

Observation: Precisely conditions for randomized linear algebra techniques! (Frieze, Kannan, Vempala 2004)

Upshot:

Any quantum algorithm with input encoded as above can, in principle, be attacked via dequantization.

Classical dequantized algorithms still typically polynomially slower than quantum algorithms

One has to be careful in assumptions about how the input is specified!

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 59 / 66

Outline

1 A brief history of quantum algorithms

2 The computational model

3 Matrix Inversion (MI)
MI ∈ BQP
MI is BQP-hard

4 Quantum Singular Value Transform (QSVT)

5 Dequantization
Example: Low-precision estimation of ground state energies

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 60 / 66

Guided local Hamiltonian problem (GLH) [G, Le Gall 2022]

Input: sparse Hamiltonian H on n qubits, α < β, samplable |ψ⟩ ∈ (C2)⊗n

Promise: λmin(H) ≤ α or λmin(H) ≥ β, ∥ΠH |ψ⟩∥2 ≥ δ

Output: Decide whether λmin(H) ≤ α or λmin(H) ≥ β

ζ-samplable state for ζ ∈ [0,1)

Have ζ-sampling-access to |ψ⟩ ∈ C2n
if all three hold:

(query access) For any i ∈ [2n], can compute ψi ∈ C in poly(n) classical time

(sampling access) Can sample in poly(n) classical time from distribution p : [2n]→ [0, 1] such that

∀j ∈ [2n] p(j) ∈

[
(1− ζ) |ψj |2

∥|ψ⟩∥2 , (1 + ζ)
|ψj |2

∥|ψ⟩∥2

]

(norm approximation) Have m s.t. |m − ∥|ψ⟩∥ | ≤ ζ ∥|ψ⟩∥.

Note: When ζ = 0, recover [Tang 2019]’s definition from dequantization of recommender systems

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 61 / 66

Guided local Hamiltonian problem (GLH) [G, Le Gall 2022]

Input: sparse Hamiltonian H on n qubits, α < β, samplable |ψ⟩ ∈ (C2)⊗n

Promise: λmin(H) ≤ α or λmin(H) ≥ β, ∥ΠH |ψ⟩∥2 ≥ δ

Output: Decide whether λmin(H) ≤ α or λmin(H) ≥ β

ζ-samplable state for ζ ∈ [0,1)

Have ζ-sampling-access to |ψ⟩ ∈ C2n
if all three hold:

(query access) For any i ∈ [2n], can compute ψi ∈ C in poly(n) classical time

(sampling access) Can sample in poly(n) classical time from distribution p : [2n]→ [0, 1] such that

∀j ∈ [2n] p(j) ∈

[
(1− ζ) |ψj |2

∥|ψ⟩∥2 , (1 + ζ)
|ψj |2

∥|ψ⟩∥2

]

(norm approximation) Have m s.t. |m − ∥|ψ⟩∥ | ≤ ζ ∥|ψ⟩∥.

Note: When ζ = 0, recover [Tang 2019]’s definition from dequantization of recommender systems

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 61 / 66

n = # of qubits

Theorem: GLH “tractable” in O(1)-precision setting

∀ constants δ, α, β ∈ (0, 1] and k ∈ O(log n), GLH classically solvable in poly(n) time with probability 1− 2−n.

~w
Theorem (informal)
The sparse “Guided Singular Value Estimation” problem is efficiently solvable to O(1) precision.~w

choose constant-degree polynomial P in QSVT to “process” singular values
→ possible in O(1)-precision setting

Theorem (informal)
The sparse Quantum Singular Value Transform (QSVT) can be “dequantized” for O(1) precision.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 62 / 66

n = # of qubits

Theorem: GLH “tractable” in O(1)-precision setting

∀ constants δ, α, β ∈ (0, 1] and k ∈ O(log n), GLH classically solvable in poly(n) time with probability 1− 2−n.

~w
Theorem (informal)
The sparse “Guided Singular Value Estimation” problem is efficiently solvable to O(1) precision.~w

choose constant-degree polynomial P in QSVT to “process” singular values
→ possible in O(1)-precision setting

Theorem (informal)
The sparse Quantum Singular Value Transform (QSVT) can be “dequantized” for O(1) precision.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 62 / 66

Dequantizing the QSVT in the sparse setting

Singular Value Transform (SVT)

Input: (1) query-access to s-sparse matrix A ∈ CM×N with ∥A∥ ≤ 1
(2) query-access to u ∈ CN s.t. ∥u∥ ≤ 1
(3) ζ-samplable v ∈ CN s.t. ∥v∥ ≤ 1
(4) even polynomial P ∈ R[x] of degree d (even =⇒ for all x ∈ R, P(x) = P(−x))

Output: estimate ẑ ∈ C s.t. |ẑ − v†P(
√

A†A)u| ≤ ϵ

Lemma: Dequantizing SVT

∀ϵ ∈ (0, 1] and ζ ≤ ϵ/8, SVT solvable classically with probability 1− 1/ poly(N) in O∗((s2d+1)/ϵ2) time.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 63 / 66

Proof sketch for dequantizing SVT
SVT(s, ϵ, ζ) (singular value transform)

Input: (1) query-access to s-sparse matrix A ∈ CM×N with ∥A∥ ≤ 1
(2) query-access to u ∈ CN s.t. ∥u∥ ≤ 1
(3) ζ-samplable v ∈ CN s.t. ∥v∥ ≤ 1
(4) even polynomial P ∈ R[x] of degree d (recall: even =⇒ for all x ∈ R, P(x) = P(−x))

Output: estimate ẑ ∈ C s.t. |ẑ − v†P(
√

A†A)u| ≤ ϵ

Proof sketch.

Idea (à la [Tang 2019]): Compute r random entries of ⟨v ,P(
√

A†A)u⟩, take arithmetic mean:

1 Set avg = 0

2 Repeat r ∈ Θ(1/ϵ2) times:
▶ Via ζ-sampling of v , sample index j ∈ {1, . . . ,N} (i.e. w.p. p(j) ≈ |vj |2 / ∥v∥2)
▶ Via query access, compute entry vj

▶ Via s-sparsity of A, compute entry j of w := P(
√

A†A)u (do this recursively)
▶ Update avg = avg + (wjm2)/(vj r)

Correctness: High probability bound obtained via Chebyshev’s inequality

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 64 / 66

Proof sketch for dequantizing SVT
SVT(s, ϵ, ζ) (singular value transform)

Input: (1) query-access to s-sparse matrix A ∈ CM×N with ∥A∥ ≤ 1
(2) query-access to u ∈ CN s.t. ∥u∥ ≤ 1
(3) ζ-samplable v ∈ CN s.t. ∥v∥ ≤ 1
(4) even polynomial P ∈ R[x] of degree d (recall: even =⇒ for all x ∈ R, P(x) = P(−x))

Output: estimate ẑ ∈ C s.t. |ẑ − v†P(
√

A†A)u| ≤ ϵ

Proof sketch.

Idea (à la [Tang 2019]): Compute r random entries of ⟨v ,P(
√

A†A)u⟩, take arithmetic mean:
1 Set avg = 0

2 Repeat r ∈ Θ(1/ϵ2) times:

▶ Via ζ-sampling of v , sample index j ∈ {1, . . . ,N} (i.e. w.p. p(j) ≈ |vj |2 / ∥v∥2)
▶ Via query access, compute entry vj

▶ Via s-sparsity of A, compute entry j of w := P(
√

A†A)u (do this recursively)
▶ Update avg = avg + (wjm2)/(vj r)

Correctness: High probability bound obtained via Chebyshev’s inequality

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 64 / 66

Proof sketch for dequantizing SVT
SVT(s, ϵ, ζ) (singular value transform)

Input: (1) query-access to s-sparse matrix A ∈ CM×N with ∥A∥ ≤ 1
(2) query-access to u ∈ CN s.t. ∥u∥ ≤ 1
(3) ζ-samplable v ∈ CN s.t. ∥v∥ ≤ 1
(4) even polynomial P ∈ R[x] of degree d (recall: even =⇒ for all x ∈ R, P(x) = P(−x))

Output: estimate ẑ ∈ C s.t. |ẑ − v†P(
√

A†A)u| ≤ ϵ

Proof sketch.

Idea (à la [Tang 2019]): Compute r random entries of ⟨v ,P(
√

A†A)u⟩, take arithmetic mean:
1 Set avg = 0

2 Repeat r ∈ Θ(1/ϵ2) times:
▶ Via ζ-sampling of v , sample index j ∈ {1, . . . ,N} (i.e. w.p. p(j) ≈ |vj |2 / ∥v∥2)
▶ Via query access, compute entry vj

▶ Via s-sparsity of A, compute entry j of w := P(
√

A†A)u (do this recursively)
▶ Update avg = avg + (wjm2)/(vj r)

Correctness: High probability bound obtained via Chebyshev’s inequality

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 64 / 66

Proof sketch for dequantizing SVT
SVT(s, ϵ, ζ) (singular value transform)

Input: (1) query-access to s-sparse matrix A ∈ CM×N with ∥A∥ ≤ 1
(2) query-access to u ∈ CN s.t. ∥u∥ ≤ 1
(3) ζ-samplable v ∈ CN s.t. ∥v∥ ≤ 1
(4) even polynomial P ∈ R[x] of degree d (recall: even =⇒ for all x ∈ R, P(x) = P(−x))

Output: estimate ẑ ∈ C s.t. |ẑ − v†P(
√

A†A)u| ≤ ϵ

Proof sketch.

Idea (à la [Tang 2019]): Compute r random entries of ⟨v ,P(
√

A†A)u⟩, take arithmetic mean:
1 Set avg = 0

2 Repeat r ∈ Θ(1/ϵ2) times:
▶ Via ζ-sampling of v , sample index j ∈ {1, . . . ,N} (i.e. w.p. p(j) ≈ |vj |2 / ∥v∥2)
▶ Via query access, compute entry vj

▶ Via s-sparsity of A, compute entry j of w := P(
√

A†A)u (do this recursively)

▶ Update avg = avg + (wjm2)/(vj r)

Correctness: High probability bound obtained via Chebyshev’s inequality

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 64 / 66

Proof sketch for dequantizing SVT
SVT(s, ϵ, ζ) (singular value transform)

Input: (1) query-access to s-sparse matrix A ∈ CM×N with ∥A∥ ≤ 1
(2) query-access to u ∈ CN s.t. ∥u∥ ≤ 1
(3) ζ-samplable v ∈ CN s.t. ∥v∥ ≤ 1
(4) even polynomial P ∈ R[x] of degree d (recall: even =⇒ for all x ∈ R, P(x) = P(−x))

Output: estimate ẑ ∈ C s.t. |ẑ − v†P(
√

A†A)u| ≤ ϵ

Proof sketch.

Idea (à la [Tang 2019]): Compute r random entries of ⟨v ,P(
√

A†A)u⟩, take arithmetic mean:
1 Set avg = 0

2 Repeat r ∈ Θ(1/ϵ2) times:
▶ Via ζ-sampling of v , sample index j ∈ {1, . . . ,N} (i.e. w.p. p(j) ≈ |vj |2 / ∥v∥2)
▶ Via query access, compute entry vj

▶ Via s-sparsity of A, compute entry j of w := P(
√

A†A)u (do this recursively)
▶ Update avg = avg + (wjm2)/(vj r)

Correctness: High probability bound obtained via Chebyshev’s inequality

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 64 / 66

Proof sketch for dequantizing SVT
SVT(s, ϵ, ζ) (singular value transform)

Input: (1) query-access to s-sparse matrix A ∈ CM×N with ∥A∥ ≤ 1
(2) query-access to u ∈ CN s.t. ∥u∥ ≤ 1
(3) ζ-samplable v ∈ CN s.t. ∥v∥ ≤ 1
(4) even polynomial P ∈ R[x] of degree d (recall: even =⇒ for all x ∈ R, P(x) = P(−x))

Output: estimate ẑ ∈ C s.t. |ẑ − v†P(
√

A†A)u| ≤ ϵ

Proof sketch.

Idea (à la [Tang 2019]): Compute r random entries of ⟨v ,P(
√

A†A)u⟩, take arithmetic mean:
1 Set avg = 0

2 Repeat r ∈ Θ(1/ϵ2) times:
▶ Via ζ-sampling of v , sample index j ∈ {1, . . . ,N} (i.e. w.p. p(j) ≈ |vj |2 / ∥v∥2)
▶ Via query access, compute entry vj

▶ Via s-sparsity of A, compute entry j of w := P(
√

A†A)u (do this recursively)
▶ Update avg = avg + (wjm2)/(vj r)

Correctness: High probability bound obtained via Chebyshev’s inequality

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 64 / 66

Summary

Overview of quantum algorithms over the decades

Quantum algorithm for solving linear systems

Quantum Singular Value Transform

Dequantization - beware the power of state preparation

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 65 / 66

References
Harrow, Hassadim, Lloyd. Quantum algorithm for solving linear systems of equations, 2009.

Gilyén, Su, Low, Wiebe. Quantum singular value transformation and beyond: exponential
improvements for quantum matrix arithmetics, 2019.

Tang. A quantum-inspired classical algorithm for recommendation systems, 2019.

Gharibian, Le Gall. Dequantizing the Quantum Singular Value Transformation: Hardness and
Applications to Quantum Chemistry and the Quantum PCP Conjecture, 2022.

Course notes/videos for Intro to Quantum Computation and Quantum Complexity Theory:

See https://groups.uni-paderborn.de/fg-qi/teaching.html.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 66 / 66

https://groups.uni-paderborn.de/fg-qi/teaching.html

References
Harrow, Hassadim, Lloyd. Quantum algorithm for solving linear systems of equations, 2009.

Gilyén, Su, Low, Wiebe. Quantum singular value transformation and beyond: exponential
improvements for quantum matrix arithmetics, 2019.

Tang. A quantum-inspired classical algorithm for recommendation systems, 2019.

Gharibian, Le Gall. Dequantizing the Quantum Singular Value Transformation: Hardness and
Applications to Quantum Chemistry and the Quantum PCP Conjecture, 2022.

Course notes/videos for Intro to Quantum Computation and Quantum Complexity Theory:

See https://groups.uni-paderborn.de/fg-qi/teaching.html.

Sevag Gharibian (Paderborn University) Tutorial: Quantum algorithms QTML 2023 66 / 66

https://groups.uni-paderborn.de/fg-qi/teaching.html

	A brief history of quantum algorithms
	The computational model
	Matrix Inversion (MI)
	MIBQP
	MI is BQP-hard

	Quantum Singular Value Transform (QSVT)
	Dequantization
	Example: Low-precision estimation of ground state energies

