Migrating to Slurm from
Grid Engine: Politics,
Partitions and Problems

Murray Collier

.diamond



Background

 Two clusters: Science & Hamilton

15,816 cores 404 GPUs (K80, P100, V100, A100
« RHEL 7

 Univa Grid Engine

« Config management via CFEngine

 Use cases
« Accelerator simulation
* |nitial, “live” processing
» Post-processing
 Ad hoc usage

.diamond



Why change?

* Financial — Grid Engine costly licensing
 Familiarity and community

« APl — Kubernetes submission

» Flexibility

* Interoperability

* Cloudbursting submission to STFC Cloud

.diamond



Hopper

Hardware verification platform to evaluate workloads on future hardware
and software

4 Node cluster
o 1CPU Node (76 cores, 9GB RAM/core)
o 3 A100 GPU Nodes (144 cores, 10GB RAM/core)

First cluster at DLS to use Slurm/RHELS
Used prebuilt RedHat provided Slurm RPMs

Built on a standard DLS RHELS8 PXE/kickstart build (approx. 1600 base
packages)

Was configured in part using CFEngine and by hand

Various user groups tested workloads on it, this informed the decision to go
ahead with the full migration of the Hamilton cluster

The hardware is due to be integrated into the Wilson cluster imminently

.diamond



RH

* The rest of DLS was undergoing a RHEL7 -> RHELS8

8 Upgrade

migration program, it made sense to take the opportunity to
upgrade the HPC nodes

» Very minimal quick PXE/kickstart build (~500 packages,

minimal requirement to run ansible against).
» Updated firmware needed on Mellanox NICs

e L ots of work done with stakeholders to confirm that their

software, scripts and modules were working on

RHELS/Slurm.

.diamond



Switch to Ansible config management

« Why Ansible?
* Widely used, excellent community resources and
documentation
* Existing knowledge in the team to tap into
« Agentless
« Straightforward to learn
* FOSS
« Highly extensible
 Speed and agility
* [dempotency (if correctly understood and written)

.diamond



Switch to Ansible config management

e Playbooks and roles - post build

Auth config

GPFS

Networking

NFS mount point
Autofs

Package Installation
Version/kernel locking

File: includes.yml

- import_playbook:
- import_playbook:
- import_playbook:
- import_playbook:
- import_playbook:
- import_playbook:
- import_playbook:
- import_playbook:
- import_playbook:
- import_playbook:
- import_playbook:
- import_playbook:
- import_playbook:

import_playbook:

import_playbook:
- import_playbook:
- import_playbook:
- import_playbook:

import_playbook:

pb_kernelchange.yml
pb_contentview.yml
pb_fipsfix.yml
pb_packages.yml
pb_versionlock.yml
pb_noexec.yml
pb_bulkadd.yml
pb_cleanprompt.yml
pb_modulefile.yml
pb_sshd_config.yml
pb_limits.yml
pb_sssd.ansible.yml
pb_joindomain.yml
pb_rootkey.yml
pb_cluster-network.yml
pb_autofs.yml
pb_metricbeat.yml
pb_motd.yml
pb_gda.yml

.diamond



Slurm cluster using Ansible

We're using Ansible now - there must
be a way of deploying our Slurm
cluster using it?

Do we write our own or do we use a
role from a well-respected project?
Investigation was done and we
decided on a Ansible galaxy role

(

Define config in Ansible variables,
define hosts in Ansible inventory, run
the playbook. Voila! Working Slurm
cluster

Needed separate Ansible for
configuring the DB for slurmdbd
Overall impressions, very happy with
It. Stable, reliable and has caused very
few problemes.

File: pb_hopper_slurmdeploy.yml

- name: Slurm execution hosts
hosts: all
roles:
- role: galaxyproject.slurm
become: True
vars:
slurm_cgroup_config:
CgroupMountpoint: "/sys/fs/cgroup"
CgroupAutomount: yes
ConstrainCores: yes
ConstrainRAMSpace: yes
ConstrainSwapSpace: no
ConstrainDevices: yes
AllowedRamSpace: 100
AllowedSwapSpace: 0
MaxRAMPercent: 100
MaxSwapPercent: 100
MinRAMSpace: 30
slurm_config:
AccountingStorageHost: "localhost"
AccountingStorageType: "accounting_storage/slurmdbd"
AccountingStorageUser: "slurm”
AccountingStoragePort: 6819
AccountingStoragePass: "/var/run/munge/munge.socket.2"
AccountingStoreFlags: "job_comment,job_env,job_extra,job_script"

ClusterName: "hopper"

DisableRootJobs: yes

GresTypes: gpu

JobAcctGatherType: "jobacct_gather/linux"
MpiDefault: "pmix_v2"

ProctrackType: "proctrack/cgroup"

' W EWLSE B AW W


https://github.com/galaxyproject/ansible-slurm

Slurm REST API

 One of the main driving forces for move to Slurm
» Heavily used at Diamond for auto/live processing

e« Uses JWT tokens for auth.

» User generated with scontrol
« Auto-generated via AWX

» Sits behind NGINX HTTPS proxy

 Seems that development of it moves faster than other
parts of Slurm, this has led to several upgrades already

.diamond



Tokens, Updates and AWX

File: pb_jwt.yml

e Reboot program triggers AWX
to run update playbook on
cluster nodes (WIP)

e AWX automatically creates and

LT VR Y

distributes JWT Tokens for - nane: Generate and copy Jut token for user

several key functional data s

vaU ISItlon accounts ~ - gigii;lgégiEi‘t(;f::i:?l?nguzzogio:lgr\cﬁrtoken username={{ user }} lifespan={{ life }} | sed 's/A[A=
1*=//"

register: token

- name: Copy token to desired location
ansible.builtin.copy:
content: "{{ token.stdout_lines[0] }}"
dest: "{{ path }}"
owner: "{{ user }}"
group: "{{ group }}"
mode: '0440'
delegate_to: cs04r-sc-vserv-118

.diamond



Stakeholder engagement

« Communicate change with lots of notice
 Town hall meetings
 Regular email updates
« Slack channel

» Collaborate with software teams to make change as
transparent as possible to users

« Additional support mechanisms
 Weekly drop-in sessions

» Adapt plans based on user feedback

.diamond



Recap

 Hopper Cluster

« Hardware verification platform to evaluate workloads on future hardware —
First cluster at DLS to use Slurm/RHELS8

« Hamilton Cluster -> Wilson migration

« RHEL 8 Upgrade
* Rebuilt using pxe and kickstart using a very minimal build

« Switch to Ansible config management
« All post build config applied using ansible

« Switch to Slurm for scheduling using ansible for cluster deployment
* Using ansible role ) Features
» Applied features to allow users to fine tune their job requirements

« API via HTTPS/nginx proxy

« Configured API via HTTPS nginx proxy to facilitate job submission from Kubernetes
containers

.diamond


https://github.com/galaxyproject/ansible-slurm

| essons

« Stakeholder comms and engagement is crucial
* Enforce limits from the outset

» Build own Slurm packages

APl compatibility between versions

 Adding remote resource is straightforward

* Fan noise iIs much less with RHEL 8!

.diamond



Future Plans

« Migrate science cluster to Slurm

 Open OnDemand

» Sort out resource limits

APl upgrade to support

» Ansible best practice

 Still need to separate “live” and post-processing

.diamond



