
Migrating to Slurm from
Grid Engine: Politics,

Partitions and Problems
Murray Collier

Background

• Two clusters: Science & Hamilton
• 15,816 cores 404 GPUs (K80, P100, V100, A100
• RHEL 7
• Univa Grid Engine
• Config management via CFEngine
• Use cases

• Accelerator simulation
• Initial, “live” processing
• Post-processing
• Ad hoc usage

Why change?

• Financial – Grid Engine costly licensing
• Familiarity and community
• API – Kubernetes submission
• Flexibility
• Interoperability
• Cloudbursting submission to STFC Cloud

Hopper
● Hardware verification platform to evaluate workloads on future hardware

and software
● 4 Node cluster

○ 1 CPU Node (76 cores, 9GB RAM/core)
○ 3 A100 GPU Nodes (144 cores, 10GB RAM/core)

● First cluster at DLS to use Slurm/RHEL8
● Used prebuilt RedHat provided Slurm RPMs
● Built on a standard DLS RHEL8 PXE/kickstart build (approx. 1600 base

packages)
● Was configured in part using CFEngine and by hand
● Various user groups tested workloads on it, this informed the decision to go

ahead with the full migration of the Hamilton cluster
● The hardware is due to be integrated into the Wilson cluster imminently

RHEL 8 Upgrade
• The rest of DLS was undergoing a RHEL7 -> RHEL8

migration program, it made sense to take the opportunity to
upgrade the HPC nodes

• Very minimal quick PXE/kickstart build (~500 packages,
minimal requirement to run ansible against).

• Updated firmware needed on Mellanox NICs
• Lots of work done with stakeholders to confirm that their

software, scripts and modules were working on
RHEL8/Slurm.

Switch to Ansible config management
• Why Ansible?

• Widely used, excellent community resources and
documentation

• Existing knowledge in the team to tap into
• Agentless
• Straightforward to learn
• FOSS
• Highly extensible
• Speed and agility
• Idempotency (if correctly understood and written)

Switch to Ansible config management

● Playbooks and roles - post build
■ Auth config
■ GPFS
■ Networking
■ NFS mount point
■ Autofs
■ Package Installation
■ Version/kernel locking

Slurm cluster using Ansible
● We’re using Ansible now – there must

be a way of deploying our Slurm
cluster using it?

● Do we write our own or do we use a
role from a well-respected project?

● Investigation was done and we
decided on a Ansible galaxy role
(https://github.com/galaxyproject/ansi
ble-slurm)

● Define config in Ansible variables,
define hosts in Ansible inventory, run
the playbook. Voila! Working Slurm
cluster

● Needed separate Ansible for
configuring the DB for slurmdbd

● Overall impressions, very happy with
it. Stable, reliable and has caused very
few problems.

https://github.com/galaxyproject/ansible-slurm

Slurm REST API

• One of the main driving forces for move to Slurm
• Heavily used at Diamond for auto/live processing
• Uses JWT tokens for auth.

• User generated with scontrol
• Auto-generated via AWX

• Sits behind NGINX HTTPS proxy
• Seems that development of it moves faster than other

parts of Slurm, this has led to several upgrades already

Tokens, Updates and AWX
● Reboot program triggers AWX

to run update playbook on
cluster nodes (WIP)

● AWX automatically creates and
distributes JWT Tokens for
several key functional data
acquisition accounts

Stakeholder engagement

• Communicate change with lots of notice
• Town hall meetings
• Regular email updates
• Slack channel

• Collaborate with software teams to make change as
transparent as possible to users

• Additional support mechanisms
• Weekly drop-in sessions

• Adapt plans based on user feedback

Recap

• Hopper Cluster
• Hardware verification platform to evaluate workloads on future hardware –

First cluster at DLS to use Slurm/RHEL8
•

• Hamilton Cluster -> Wilson migration
• RHEL 8 Upgrade

• Rebuilt using pxe and kickstart using a very minimal build
• Switch to Ansible config management

• All post build config applied using ansible
• Switch to Slurm for scheduling using ansible for cluster deployment

• Using ansible role (https://github.com/galaxyproject/ansible-slurm) Features
• Applied features to allow users to fine tune their job requirements

• API via HTTPS/nginx proxy
• Configured API via HTTPS nginx proxy to facilitate job submission from Kubernetes

containers

https://github.com/galaxyproject/ansible-slurm

Lessons

• Stakeholder comms and engagement is crucial
• Enforce limits from the outset
• Build own Slurm packages
• API compatibility between versions
• Adding remote resource is straightforward
• Fan noise is much less with RHEL 8!

Future Plans

• Migrate science cluster to Slurm
• Open OnDemand
• Sort out resource limits
• API upgrade to support
• Ansible best practice
• Still need to separate “live” and post-processing

