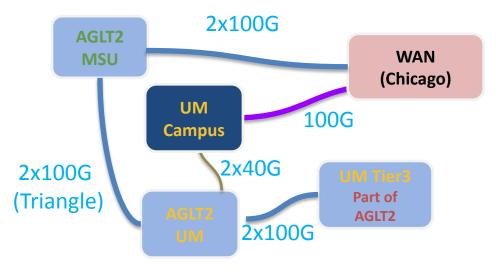


AGLT2 Site Report


Wenjing Wu/University of Michigan Dan Hayden, Philippe Laurens, Shawn McKee

Oct 16, HEPix Fall 2023

AGLT2 Overview

- AGLT2 (ATLAS Great Lake Tier-2) is an LHC Tier-2 Computing Center for ATLAS, located at our UM site (University of Michigan) and MSU site (Michigan State University).
 - What VO(s) we serve
 - ATLAS Tier2/Tier3
 - OSG (ligo, uscms, glow etc.)
 - Resource overview
 - 17.5K cores/226 kHS CPU, 16 PB dCache Storage
 - Resource Usage:
 - Over 92% are constantly used by ATLAS Tier-2 jobs
 - the rest is shared with UM ATLAS Tier3 and other VOs
 - Redundant 100G paths between the 2 sites and to Chicago (ESnet)

AGLT2 Site Report

AGLT2 Server Room (1)

• Finished Networking upgrades at UM site in 2021

- Established separate resilient diverse fiber path 100G MSU-UM inter-site connectivity
- replaced all network switches/cables/PDUs

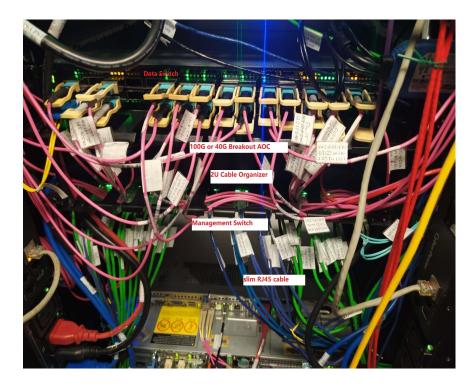
• MSU site migrated to the new MSU data center in 2021

- 12x33kW racks with dual redundant power (Utility&UPS), one management switch plus redundant (EVPN) data switches, 1/10/25/100 Gbps ports in each rack, room for expansion.
- Deep and wide racks: room for 2 PDUs on each side, easy cable management, good airflow.
- MSU data center provides the rack network devices, optics, cabling, switch configuration.

• UM Server Room

- Located at LSA college building, 80KW APC UPS supports 8 Rack, plus one Rack connected to another 80KW UPS shared with LSA IT
- Each Rack has separate data (100 Gbps/port) and mgmt switches (1 Gbps/port)
- Use AOC breakout cables and QSFP->4*SFP+/QSFP28->4*SFP28 transceivers for data switches, and slim RJ45 for mgmt switches.
- All racks installed with Smart PDUs with individual socket meter and control

AGLT2 Server Rooms (2)


MSU Rack Cable/PDU

AGLT2 Server Rooms (3)

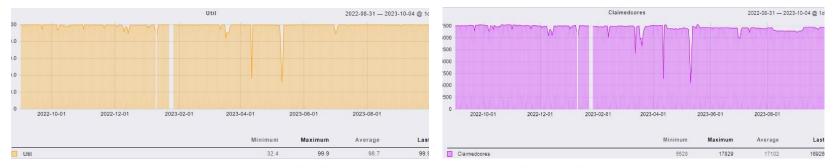
UM Rack Back

UM Rack Switch / Cable

AGLT2 Storage

- dCache (serving ATLAS Tier2)
 - Total capacity 16PB
 - 2 head nodes (@UM, each has postgresql database), with another 2 slave nodes for postgresql hot standby (all postgresql are on ZFS)
 - 6 dCache door nodes (3@UM, 3@MSU)
 - 47 pool nodes (17 @MSU, 30 @UM)
 - 2x25G bonded Ethernet for pool nodes
 - Performance evaluation between hardware RAID6 and ZFS over HBA.
- Lustre (serving UM ATLAS Tier3, mounted on all the UM cluster nodes)
 - Total capacity **2.3PB**
 - Version: Server 2.12.3, Client 2.12.5
 - ZFS 0.7.11 on the OSS, Idiskfs on MGS/MGT
 - 2x25G bonded Ethernet on each OSS
 - 85% storage capacity are on new hardware (R740xD2)
 - New testbed on CentOS Stream 8, 2.15.1

RAID 6 VS. ZFS


We want to understand if we can replace hardware RAID-6 with ZFS

- Configuration
 - PERC H730P, RAID6 over 12 disks
 - Dell HBA330 Mini, ZFS raidz2 over 12 disks, tuned with zfs recordsize=1MB compression=off atime=off xattr=sa ashift=12
 - zfs-0.8.5-1(EL7) vs. zfs-2.1.13-1(EL9)
- Test with root files from ramdisk (file system in memory)
 - /dev/zero does not give accurate result for zfs with compression due to high compression rate
 - choose typical root files from ATLAS storage, compression rate is 1.103
- Conclusion (<u>details</u>)
 - ZFS 2.1.13(LZ4 compression) vs RAID 6: gains 15.6% in Write and loses 20.8% in Read, lose 1.82% in space with Iz4 compression for typical ATLAS files
 - ZFS 2.1.13 vs ZFS 0.8.5: 3-25% improvements in IO Performance.

AGLT2 HTCondor Cluster

- 3 gatekeepers for ATLAS to increase resiliency
- 308 Physical nodes, with cores range in (24,32,40,56,64,96), RAM per core ranges in (2,3,5,6)GB
 - Generations of work nodes: Dell R630->C6420->R6525
- 17.5K logical cores, total of 226 kHS06, average 13.02 HEPSCORE/core
- 2GB to 6.3 GB RAM/core, with 1000 job slots for High Memory Queue (6 GB/core)
- 14GB to 52 GB Disk/core, supports Merge Queue with higher disk requirement.
- All slots dynamical partitioning, and Cluster Utilization rate over 98.7% (including downtime for hardware and software upgrade)
- Continue to run ATLAS@home/BOINC backfilling jobs from 2019 (oversubscribe the CPUs)

Cluster backfilling: BOINC

Motivation

- HTCondor cluster isn't always fully used
 - site downtime
 - storage outage
 - site draining (HTCondor/firmware update, Grid Central Service downtime)
 - not enough single core jobs to fill the dynamically partitioned job slots etc
- CPU utilization is not high (<90%) due to low CPU Efficiency jobs, i.e, analysis jobs, which means free CPU cycles to exploit)
- How backfilling jobs work and are configured?
- Harvest
 - Biggest site contributing to ATLAS@home, Scavenged CPU time from AGLT2 Cluster
 (2313 CPU days per day in the recent 100 days) is equivalent to a site with 3K Cores.
 - Per Cluster, CPU Utilization increase by 7% in long term(83% without BOINC vs. 90% with BOINC), but CPU Efficiency for Grid jobs lose 5% (<u>details</u>)

Software and Technology Details

- AGLT2 runs a number of software packages required for an ATLAS site:
 - OSG 3.6/HTCondor-CE 6.0.0-1/HTCondor10.0.9 (do firmware and HTCondor updates ~every quarter)
 - \circ storage uses dCache 8.2.27 (do firmware and dCache update \sim every quarter)
- VMware cluster
 - VMware 7, Two TrueNAS servers (iSCSI for VMs)
- Other Storage
 - Lustre(2.12.8 on CentOS 7 and 2.15.1 on CentOS 8 stream)
 - NFS(0.5PB), AFS(1.8.7) and have collaborative access to Ceph on OSiRIS (12 PB).
- Site Monitoring
 - CheckMK(2.0.0-p6), Elasticsearch(7.17), Zeek(4.2.0), Elastiflow(5.3.4) and NetDisco, PerfSONAR
 - Recently added dell OME monitoring for all hardware.
- Tape Backup: Amanda 3.5.1 on CentOS 7 (most recent version: 3.5.2 on CentOS 7)
- Provisioning:
 - CentOS 7: Cobbler 2.8.5 on CentOS 7 (most recent version: 3.3.3 on CentOS Stream 8)
 - <u>RHEL9: Satellite 6.12.5.1+Capsule Server 3.3.0 (future focus)</u>
- **Configuration management:** CFEngine 3.7.2 on CentOS 7 and 3.12.4 on CentOS 8 Stream (most recent version : 3.20.0 on CentOS 8 stream)

Transition to RHEL9

EOL for RHEL7 and clones in June 2024 means we need a new OS

- Choice of OS after CentOS 7-> RHEL9.2
 - Both MSU and UM have licenses for RHEL through the University and satellite servers are hosted by IT
 - RHEL9+ gives a modern kernel, compilers, and improvements for data transfers and long lifetime
 - Skipping RHEL8 and clones for longer term solution
- Challenges from transitioning from cobbler to the UM Satellite Server (version 6.12 on EL8)
 - The AGLT2 network is not routed to access the UM College Satellite server
 - The UM College Satellite server is not set up support PXE booting

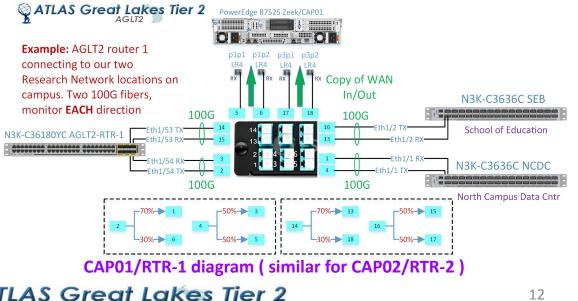
Solution

- We deployed a capsule server (~Foreman SmartProxy) as a proxy between the AGLT2 network and the UM Satellite server
- Settled on using UEFI HTTPboot as the bootstrap mechanism (lots of little bugs and quirks to deal with)
 - Requires BIOS change to UEFI and enabling HTTPboot on the correct NIC but works well
- Lots to do to improve the build and leverage the various Satellite features
 - Ansible or Puppet are potential options for us, if we choose to move off CFengine
 - Lots of security, auditing, monitoring and version control tools to explore in Satellite

Network Security

AGLT2 has been working with the <u>WLCG SOC effort</u> to help secure our networks while maintaining performance and participated in the <u>WLCG SOC Hackathon</u>, Aug 2023.

Our previous network had a Zeek+MISP+Elasticsearch on CentOS 7 setup for dual 40G. Cost to set up was about \$2K plus repurposing an R630


Our new UM network has 2 capture nodes (MSU will have 1):

- Dell R7525, each with two Bluefield-2 NICs (2x100G)
- Installed Zeek on RHEL9

ElasticSearch:

Migration to OpenSearch on RHEL9 in progress.

Need better integration/config with MISP/Elastialert

PTP at AGLT2

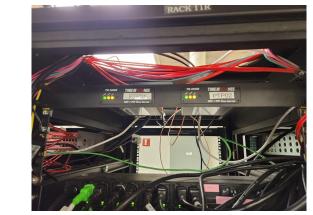
For about \$1500, AGLT2 added dual GPS clocks to enable PTP

Roof antenna added in Fall 2022 (now have excellent lock for GPS)

- PTP provides < 1 microsecond time accuracy, improving the NTP timing of our site services.
- GOAL: make perfSONAR latency much more powerful BUT needs pS mods To do: <u>PTP Clients</u> (NTP ~20 u-secs)

Summary

- Updates of OS, software, firmware and security patches are applied in a timely way to keep AGLT2 updated
- Both Data centers had big upgrades to a next generation infrastructure.
- FUTURE: Migrate site towards RHEL 9, WLCG SOC on EL9


Questions ?

Improving PTP Lock via Antenna

Start of Nov 2022: our antenna installed on the roof of Physics Bldg

 \equiv

How backfilling jobs run

- Backfilling jobs come from ATLAS@home(initially started as a volunteer computing project) and appear as a separate ATLAS PanDA Queue AGLT2_BOINC
- Backfilling means running 2 set of jobs on the cluster simultaneously, and they are controlled by 2 batch systems (HTCondor/BOINC) and different user accounts.
- HTCondor with NICE number 0, BOINC with NICE number 19 (NICE decides process Priority in CPU allocation)
- BOINC jobs are only run when the HTCondor jobs are not using the CPU cycles.
- **cgroup** is also used to control the CPU usage by each set of jobs. Both HTCondor and BOINC jobs are under the system slice, with different cpu.share value (100 vs 2)
- On Work node, if HTCondor is 'Busy', BOINC only instantiates jobs for 50% of the cores, if HTCondor is 'Retiring', BOINC uses 100%

backfilling increases the CPU Utilization

age of the clusters. CPU efficiency ($\epsilon_{\rm CPU}$) is used to measure the efficiency of the jobs, and wall time utilization ($u_{\rm wall}$) and CPU time utilization ($u_{\rm cpu}$) measure how fully these clusters are being utilized. Assuming that in a given period M days, the total wall time (in seconds) of all jobs is $T_{\rm wall}$, the total CPU time (in seconds) of all jobs is $T_{\rm CPU}$, and the total number of available cores of the site is $N_{\rm core}$, then:

$$u_{\text{wall}} = \frac{T_{\text{wall}}}{3600 \times 24 \times M \times N_{\text{core}}} \tag{1}$$

$$u_{\rm cpu} = \frac{T_{\rm cpu}}{3600 \times 24 \times M \times N_{\rm com}} \tag{2}$$

$$\epsilon_{\rm CPU} = \frac{T_{\rm cpu}}{T_{\rm wall}} \tag{3}$$

Compare the CPU Utilization with vs without backfilling (backfilling jobs are cloud_speical)

- between 6/25-9/7/2023, there were no backfilling jobs running due to central service down, the total CPU cores fo ATLAS stays the same from 06/2022-10/2023 (16000 Cores)
- CPU Utilization increase by 7% (83% without BOINC vs. 90% with BOINC)
- CPU Efficiency for Grid jobs lose 5%

AGLT2 S	ite CPU	Utilizatio	n (16000 CPU	cores in 100
Sun Feb	26 23:0	0:00 2023	to Wed Jun	7 00:00:00 20
	cpu_eff	cpu_util	wall_util	
BOINC	0.36	0.12	0.34	
Grid	0.91	0.78	0.87	
A11	0.75	0.90	1.21	

AGLT2 Site CPU Utilization(16000 CPU cores in 74 o Sun Jun 25 00:00:00 2023 to Thu Sep 7 00:00:00 20

	cpu_eff	cpu_util	wall_util
BOINC	0.56	0.00	0.00
Grid	0.96	0.83	0.88
A11	0.96	0.83	0.88

AGLT2 Site Report

ZFS vs RAID Testing Results

	compression= 1.05		compression =1.09		mount -o size=80G -t tmpfs none /mnt/ramdisk/
	zfs-0.8.5-1	zfs-0.8.5-1	zfs-2.1.13-1	zfs-2.1.13-1	dd if=/data/bigrootfile of=/mnt/ramdisk/file
	Read	Write	Read	Write	
ZFS no compression	2200	1600	2400	1650	Read: dd if=/dcache/file of=/dev/null bs=1M
ZFS Iz4 compression	1600	1800	2000	1850	
RAID6	2525	1600	2525	1600	Write: dd if=/mnt/ramdisk/file of=/dcache/file bs=1M
Iz4 vs. no compression	-27.27%	12.50%	-16.67%	12.12%	
ZFS Iz4 vs. RAID	-36.63%	12.50%	-20.79%	15.63%	zfs tuning: recordsize=1MB atime=off xattr=sa ashift=12
ZFS no compression vs. RAID	-12.87%	0.00%	-4.95%	3.13%	Testing Commands

Great Lakes Tier 2

MICHIGAN STATE

AGLT2

UNIVERSITY OF MICHIGAN

ZFS vs. RAID6 IO Performance

ZFS	2.1.3 vs. 0.8.5	2.1.3 vs. 0.8.5	2.1.3 vs. 0.8.5
	Read	Write	compression rate
ZFS no compression	9.09%	3.13%	
ZFS Iz4 compression	25.00%	2.78%	3.81%

ZFS 2.1.3 vs. ZFS 0.8.5

	usable space (TB)	compression	real usable TB	zfs space loss
RAID	200	1	200	
ZFS	178	1.103	196.365	-1.82%

ZFS 2.1.3 vs. ZFS 0.8.5 space usage

AGLT2 Site Report

18