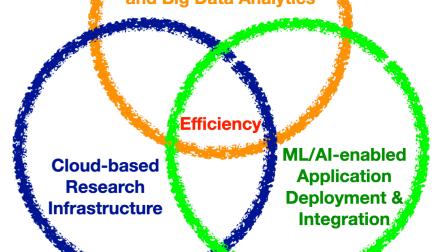


ASGC Site Report


Eric Yen and Felix Lee

Academia Sinica Grid Computing Centre (ASGC) Taiwan

HEPiX Autumn 2023 Victoria, Canada 17 Oct. 2023

ASGC Is Accelerating Discovery and Innovation

- ASGC joined WLCG development and deployment for the Large Hadron Collider grand challenges since 2001
 - ASGC T1 and WLCG Asian Regional Operation Centre has been operational from 2005
 - Reorganized as an ATLAS T2 from Oct. 2023
- ASGC has been supporting multi-disciplinary e-Science applications of Academia Sinica from 2006, based on WLCG core technologies
 - The research infrastructure, platform and services are improved progressively along with growing scientific applications of various disciplines
- System efficiency optimization (including power, thermal, system and applications, etc.) is also a strategic goal of ASGC aided by machine learning technologies
- ASGC becomes the Core Facility for big data and scientific computing of AS & Taiwan from 2023
 Science Applications and Big Data Analytics

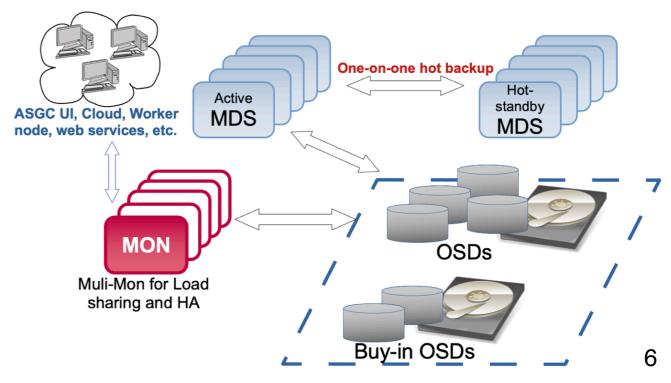
Enabling Innovations by Integrated Research Infrastructure -Connecting Instruments, Data, Minds, and Computing

- Fast growing needs of big data analysis and scientific computing is the primary challenge cloud-based research infrastructure
 - Integrating experiment/instruments and analysis facility
 - Batch and interactive job submission
 - Optimization of Data analysis pipeline and system efficiency
 - Collaborations: ATLAS, CMS, AMS, KAGRA, ICECube, Proton Therapy, CryoEM/Synchrotron Source, Astronomy, Condense Matter, Lattice QCD, NGS, Bioinformatics, Earth Science, Environmental Changes, etc.
- Resources: 20,090 CPU Cores; 236 GPU Cards; 30 PB Disk Storage
- Leverage the WLCG core technology and develop capacity to support broader scientific applications

3

- 24/7/365 services since 2006
 - Data Center availability: 99%+
 - Scientific Computing Service reliability: 97%+
 - Daily average power consumption:10,326 KWH (2023), >20% reduction than 2022
 - Power saving efficiency: ~ 20% (cluster-based)
- Reliability and Performance are the key objective
 - User Scale : (#Groups, #Users) = (90, 350)
 - Finished #Jobs (2023 estimated): > 5,000,000 (40% for WLCG)
 - International Data Transmission (Inbound + Outbound, WLCG): > 21PB (2022)
 - Inside Data Center Traffic (Inbound + Outbound) > 1PB daily
 - Training and workshop: 5 events a year

WLCG Activities

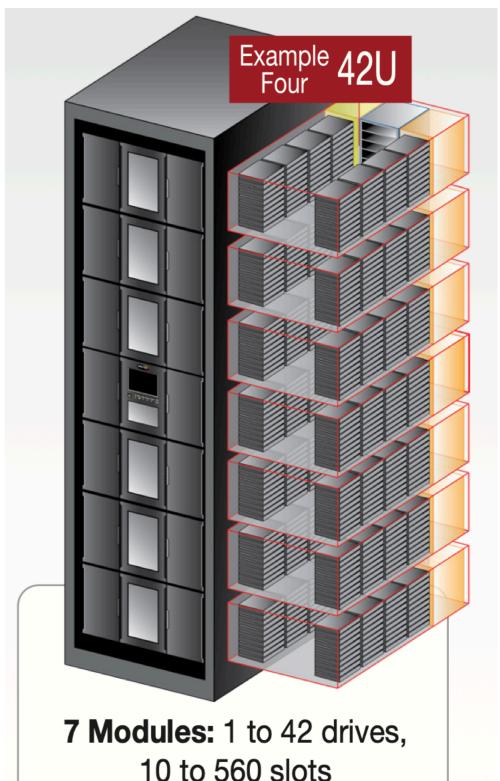

- Migrating to an ATLAS T2 Site
 - WLCG T1 mission ended since 1st Oct. 2023
 - Will associate with USATLAS T1
 - Will have 2,208 cores, ~36k HEPSpec2k6, and 5PB dis storage
 - 1.6x Computing power and 5x disk storage space growth of existing T2
- Migrating storage from DPM (9PB) to EOS
 - Thanks for the great help of ATLAS distribute data sets to other sites
 first and purge dark data as well
 - Will have 5PB after migration
- Networking for LHCONE: supported by USATLAS and ESNet discussion is ongoing
 - Local network service will be provided by Academia Sinica and TWAREN
 - LHCONE services will be supported by ESNet and TEIN/APAN
- Supporting ATLAS High Granularity Timing Detector (HGTD) DB operation and backup
- CMS T3 analysis facility setup and operation are supported at ASGC

Migration From DPM to EOS

- No DPM to EOS direct migration tool is in place
 - Short of disk storages for one-to-one migration of 9PB data
 - Prepared 1PB as buffer on EOS side, then using RUCIO to do high level data transfer from DPM to EOS.
 - Gradually moving disk server from DPM to EOS as long as there are enough space released at DPM side.
- Everything was working just fine until significant high disk failure rates happening at EOS
 - Several zfs RAIDZ-2 crashed due to too many hard disks got failed at once (94 HDDs failed in recent 4 years) —> 15x higher than average failure rates
 - The root cause is still unclear, but vendor(HPE) replaced disk back-plane, and we were forced to replace ZFS by hardware RAID-6.
- Entire migration was delayed because of this disaster..., now, it's still few PB to go

ASGC Science Cloud Storage Architecture

- Scalable and reliable online storage system based on Ceph mainly
- Ceph Configurations: ~9PB
 - 6 MDS + 6 hot-standby (one-on-one backup); 7 MONs
 - 462 OSDs, 51 hosts.
- Services
 - 3 TB/PI Group setup by default; PI could extend the space through management UI flexibly
- Reached 2GB/s R/W throughput so far
- Tape-based remote backup system (4PB) will be established and integrated in late 2023, supported by EOS
- Providing big pool for HPC, HTC, AI and various applications concurrently
- Capacity will be growing to 13PB by end of 2023
 - Plan to procure new 4PB disk servers for Ceph System in 2024 and 2025 respectively

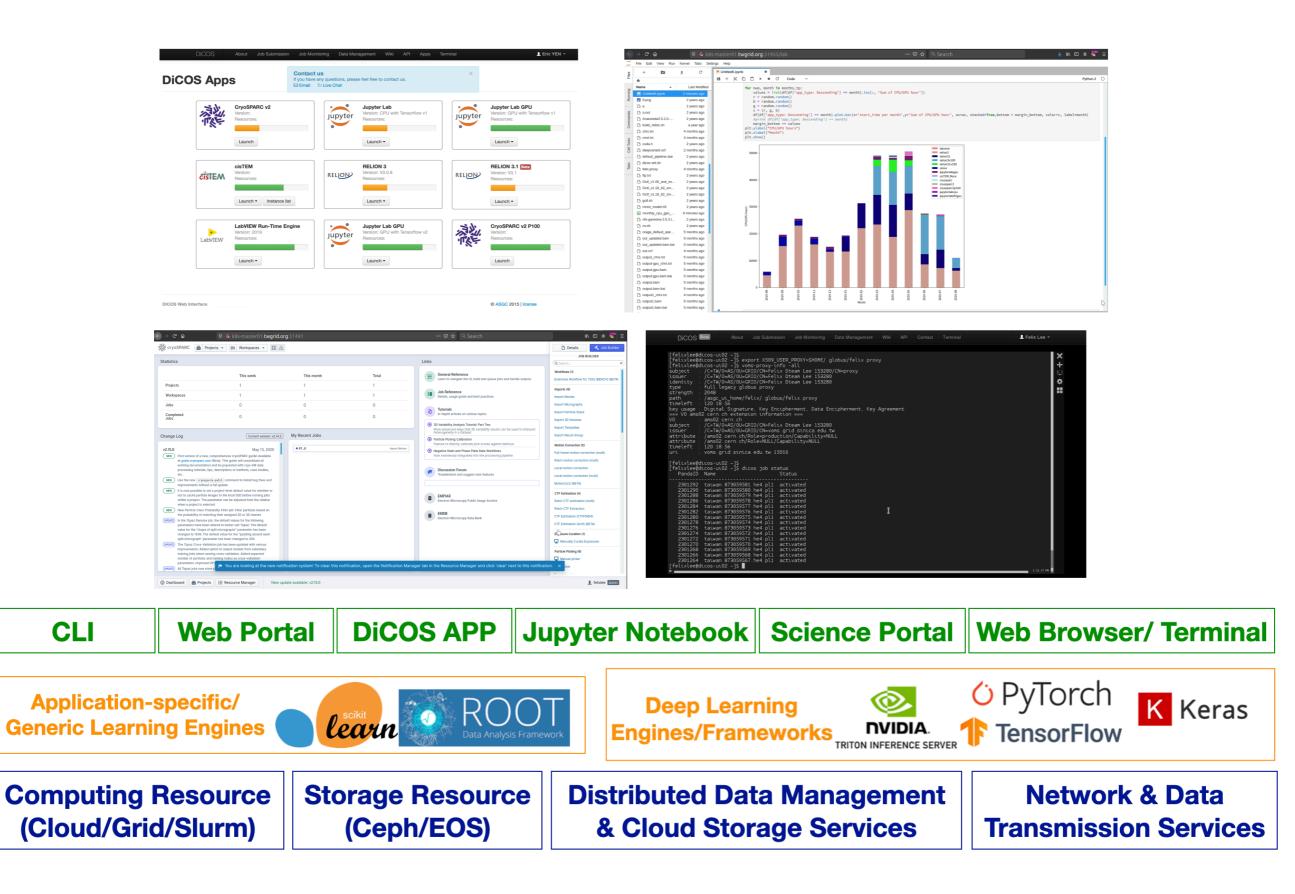


Lessons Learned From Ceph Operation

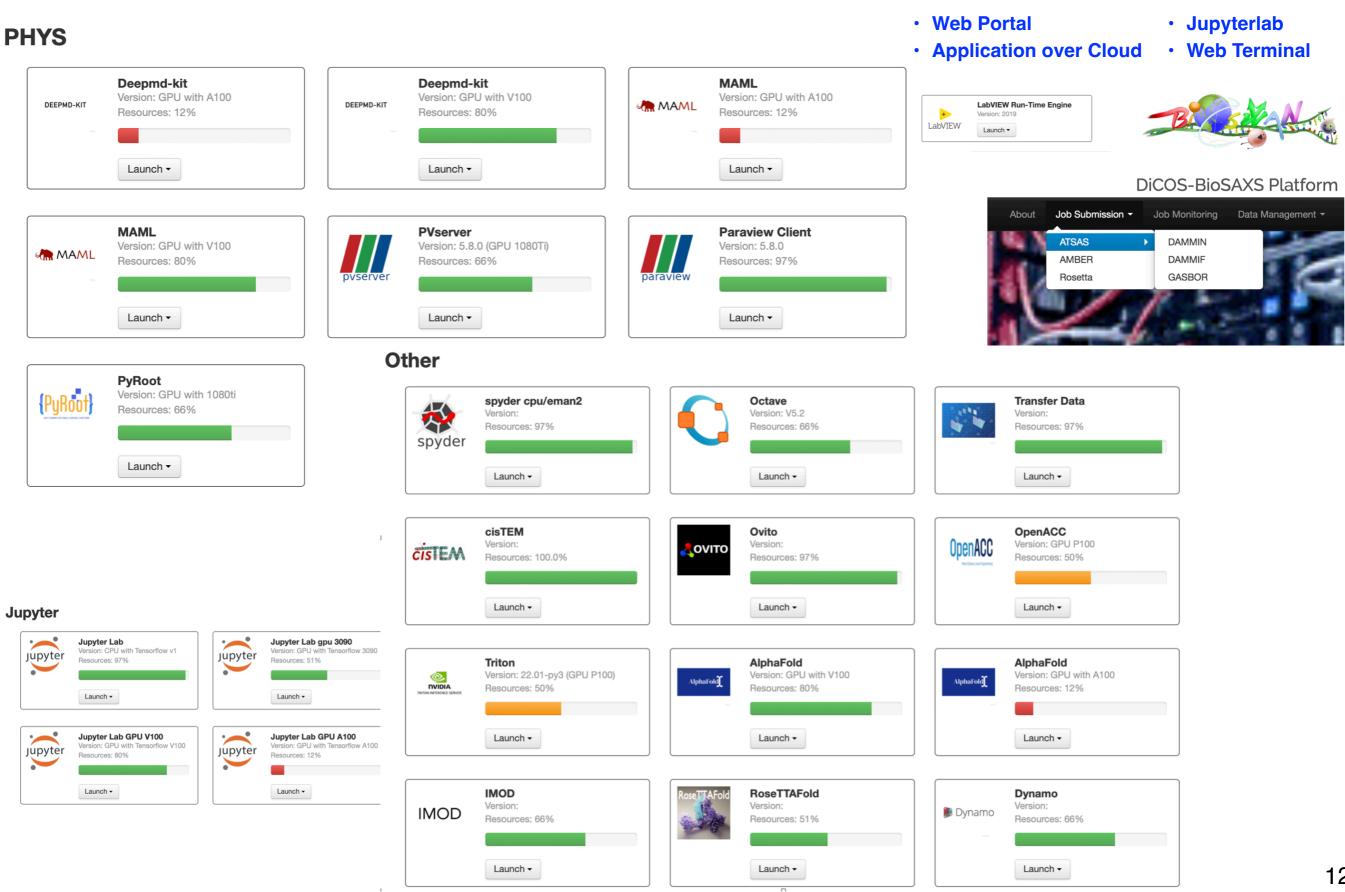
- Customization: for enhanced reliability and HA
 - Increased MDS and hot backup according to utilization/workloads
 - Grouping MDS for specific applications/directories
 - To avoid split/merge subtree across the MDS (performance degradation)
 - Could equip powerful H/W for I/O intensive services. e.g. bigger MDS memory
- ML-enabled analysis of Ceph for improved rebalancing, reliability and performance is under development
- Data lost of CephFS caused by multiple disk failures during recovery
 - The disks were failing one after another and eventually four of them hit a single PG (8+3 erasure coding)
 - Because of insufficient free/safe space especially
 - Remedies
 - Ensure/improve recovery efficiency:
 - Reconfiguring Ceph by smaller-scale storage server and disk drive, larger quantity of storage nodes, in
 order to enhance the reliability and performance of storage services (36x18TB —> 12x12TB/14TB)
 - Maintain 15-20% free capacity (OSD) for automatic recovery and surges of demands
- Bluestore corruption or unable to boot by unknown reason
 - No physical disk failure or what.
 - Purge OSD and recreating OSD from the same disk, then service get recovered
 - Suffered 5 times so far, ever since we switched from filestore to bluestore.
 - Nothing impacted if we have enough acting OSD in PG, but it's annoying

Tape Remote Backup SystemWill be setup by end of 2023

- Serving as 2nd layer remote backup system
 - Plan to setup at a separate data center
 - For cold data, or 2nd-copy backup
 - For backup of users' core data on Ceph
- Scalability: capacity on demand
 - Max 7 modules x 6u, 42 drives, 560 tape slots
 - LTO-9 tape: 1.44PB (native)/3.6PB (compressed) per module (80x 18TB/tapes)
- Tape drive performance: 300 400 MB/s using fibre network
- Integration and services: based on EOS and CTA
- Tape-related data services should be operational by end Q1 2024.
- Will be extended to 12PB capacity in 2024

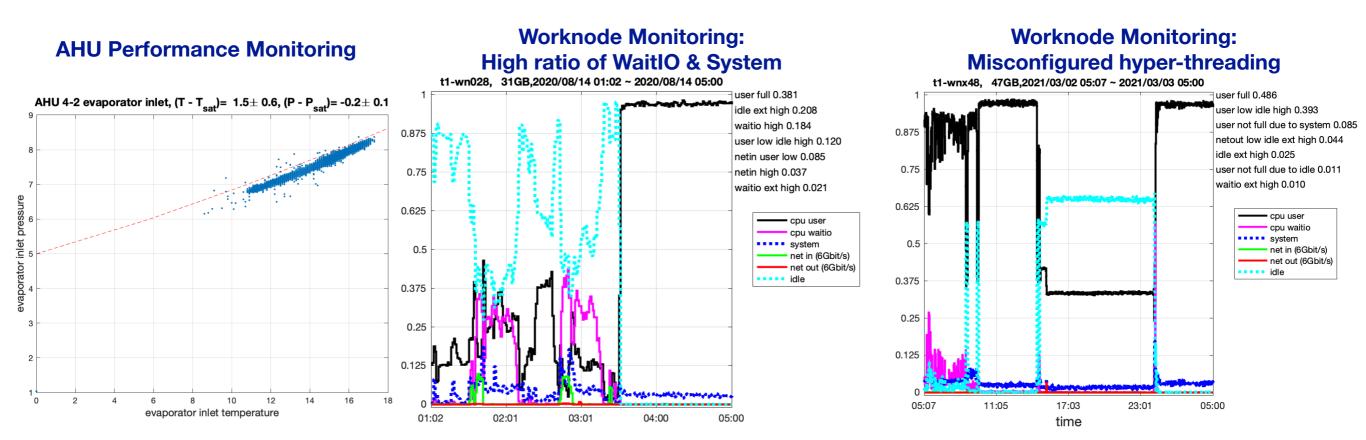

Support and Service of ML-Enabled Data Analytics by ASGC

- ML/AI application platform service is available NOW SW library, HW, integration and application
 - Build up customized ML platforms for user specified projects Deploy <u>ML packages</u> ready environment in order to help ML development smoothly and provide ondemand computing power
 - Upkeep of the application framework
 - Workflow and data pipeline integration
 - Efficiency Improvement
- Potential use cases
 - Users who bring existing source code ASGC could help to setup a virtual environment and confirm source code running normally
- Approaches
 - Supporting Kubernetes/Jupyter lab for development purpose
 - Create Kubernetes/Jupyter lab environment with user specified ML packages ready.
 - Support on-demand scalable CPU/GPU computing power.
 - Supporting containerized environment (e.g, Docker image) for deployment purpose
 - Create takeout images in Docker format as an option for user who wants to train/predict model
 - Docker images could be downloaded from ASGC server and deployed on users' Docker Desktop on Windows/Linux.

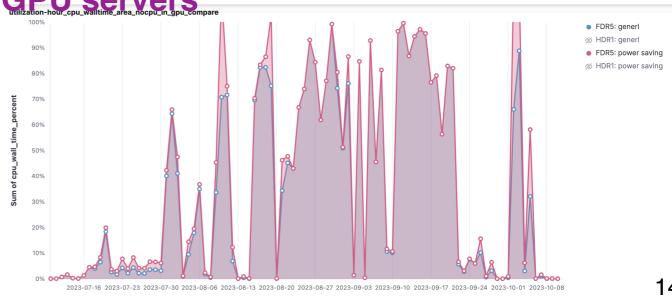

Available Hardware, Software & Use Cases

- GPU Servers (with local SSD enhanced)
 - A100 (8xboards/server, 80GB RAM/board) * 3
 - V100 (8xboards/server, 24GB RAM/board) * 6
 - 3090 (8xboards/server, 11GB RAM/board) * 4
- ML related framework and tools
 - TensorFlow, PyTorch, Keras, NVIDIA Triton, Scikit Learn
- Large-scale storage /file system
 - 9 Petabyte+ disk-based storage system managed by CephFS
 - Tape-based backup storage will be available by end of 2023
- Use Cases
 - CryoEM ML-enabled bioimage processing
 - Deployment of ML-enabled protein simulation tools AlphaFold, RosettaFold & Diffusion, DiffDock
 - Deployment of ML-enabled packages (by IOP PABS group): DeepMD-kit (with interface with LAMMPS)
 - AMS & KAGRA programs developed by local groups
 - Data Center intelligent monitoring & control (ASGC projects): Air Handler, power saving, etc.

Supporting Big Data & Al in Innovations



50+ Web Applications Provided


System Efficiency Optimization

- Goals: maximize application performance by available resources dynamically, in terms of power, thermal and system (Comp, Storage, Network, application) efficiency
- Scope: Power, Thermal, research infrastructure (Compute, Storage, Network), Cloud system, and applications
- Strategy: intelligent monitory and control assisted by ML
- Example: Thermal management, Compute/storage/network anomaly detection, Power saving of work nodes
- AHU monitoring and control
 - Detection of refrigerant operating issues and abnormal components; Efficiency optimization
 - 13 sensors x 16AHU; 18K data points/day;
 - Realtime monitoring, adjustment and diagnostics: refrigerant operating issue; abnormal components detection; efficiency tuning; ML-based automatic detection of critical problems;

Power Saving for Work Nodes

- Shutdown unused machines according to work load —> 10-20% power saved !
- Effective on 3 CPU clusters (> 3,000 CPUCores) from May 2023
- Turn on/off of a single work node
 - **Decision making based on key metrics (e.g, utilization, waiting time)** •
 - Minimize the idle WNs without sacrificing job waiting time
 - according to Resource status, execution job status, queue status, etc., as well • as historical data
 - Check each WNs (whole cluster) in every 15min
- **Future work**
 - Able to apply to other CPU clusters
 - Fine tuning the efficiency ٠
 - Investigate the solutions to control GPU servers •

start_time per day

Welcome To ISGC2024 in Taipei

- Schedule: 24-29 March 2024
- Venue: Academia Sinica, Taipei, Taiwan
- Call for Abstract/ Session will be open on 20 Oct. until 30 Nov 2023
- Event Web site: <u>https://indico4.twgrid.org/event/33/</u>
- Contact: ISGC Secretariat
 - vic@twgrid.org

ASGC Services

- ASGC Web Site: <u>https://www.twgrid.org</u>
- Access to ASGC Resources
 - https://dicos.grid.sinica.edu.tw/
- Contact point: DiCOS-Support@twgrid.org