
HEPiX Oct 2023

Configuration Management
in the PDP group at Nikhef

Andrew Pickford

HEPiX Oct 2023 A. Pickford 2

Background
● in 2017:

● used quattor
● upgrading systems to centos 7
● update quattor or switch?
● looked at ansible, puppet, quattor, salt

● chose salt
● python based
● easily extendable
● can test to see what effect changes will

have on a machine
● reclass for storing configuration data

grid batch
system
180 machines

infrastructure
servers

ldap
elasticsearch
icinga
prometheus
salt
...

grid
dcache
18 machines

local batch
system
50 machines

local
dcache
20 machines

250+ machines total

HEPiX Oct 2023 A. Pickford 3

Guiding Ideas
● config system

● well supported/documented
● straight forward to adapt to
● would last 10+ years

● usage
● reuse the same configuration files between production/testing/development as much

as possible
● reduce data replication / improve consistancy
● separate development environment with easy testing
● test without deploying changes
● all changes to production:

● to be tested first
● committed to version control before deployment

not possible with our old
quattor system

lesson from the old setup,
changes were deployed
and the commit sometimes
forgotten

HEPiX Oct 2023 A. Pickford 4

gitlab

Overview

salt nodeclass – configuration data

salt formula
salt formula

salt formula

salt master

salt syndic

salt syndic
salt syndic

production

pre production testing

development

Individual
Git repos

secure file
store

HEPiX Oct 2023 A. Pickford 5

Git Repos I
● one git repo per salt formula

● stored on a gitlab server
● each formula typically manages one service
● encodes the process of managing/configuring a service
● handling software installation, configuration and service management
● easy to add new formulas (easy development requirement)
● easy to add external formulas and replace them if required
● separates out service configuration into smaller, more managable/understandable

chunks
● production and development machines all use the same formulas (reuse

requirement)

HEPiX Oct 2023 A. Pickford 6

Git Repos II
● multiple branches for each repo

● each branch maps to a salt environment
● production + development branch for each admin (separate prod/devel requirement)
● each machine is in one (and only one) environment
● prod env

● all salt masters access files via gitlab
● all changes must be commited before being visible to production machines (commit

requirement)
● pre-prod env: checkout of prod env

● final test of changes before moving to production (prod test requirement)
● dev envs: access files via a git repo checkout on salt master

● changes can tested/developed before being committed (easy development requirement)

HEPiX Oct 2023 A. Pickford 7

Salt – The Good
● very flexible, highly configurable
● deploy configuration across multiple machines
● running commands across multiple machines
● test changes before deploying
● already written formulas for numerous services

● easy to write new formulas

● easily extendable
● written in python
● straight forward to write new python modules

● for services
● for handling config data

● override core modules while waiting for fixes in releases

In common with pretty much all
modern configuration managers

diff:
 @@ -13,7 +13,7 @@
 pnfsmanager.enable.acl = true
 pnfsmanager.limits.list-chunk-size = 1000
 pnfsmanager.limits.list-threads = 24
 - pnfsmanager.limits.threads = 8
 + pnfsmanager.limits.threads = 32

https://github.com/saltstack-formulas
https://github.com/salt-formulas

Early on we added modules
for torque and maui

Added a secure file store
module for x509 key files
and later an encrypted
passwords module

HEPiX Oct 2023 A. Pickford 8

Salt – The Bad
● lots of moving parts

● how configuration data translates to changes on a
machine it not always clear

● multiple ways of doing to same thing
● different formulas solve similar problems in different ways
● increases the knowledge required to use the system

● machines with 100s of states takes 10 minutes to run a deploy
● very slow with 100s of client machines

● deploys to all production used to take several hours
● started to plan days around deploys to production

● some error messages miss usefull information

2023-02-27 17:37:03,061
[salt.utils.decorators:717]
[WARNING][58006] The function
"module.run" is using its
deprecated version and will
expire in version "Phosphorus".

HEPiX Oct 2023 A. Pickford 9

Salt - Mitigations
● python 3.11

● significant speed improvements over python 3.6 (standard centos 7/rocky 8 python
3 version)

● syndics – move the majority of the cpu load onto dedicated machines
● ex worker nodes, 24 cores
● only cached data on syndics – easy to replace
● one syndic for production machines

● full deploy to all production now take 20 minutes
● export data shared to syndic via stunnel encrypted nfs

● more parts, more complexity - but reliable

HEPiX Oct 2023 A. Pickford 10

Nodeclass I
● Used to store data describing a machine

● organised into yaml files, each file called a class
● classes can:

● include other classes
● define parameter values
● reference other values
● add to list of salt formulas to run

● values definied multiply are merged together
● scalars simply replace the previous value
● lists are appended
● dictionaries are merged together recursively

● parameters become the salt pillar data for a machine

role/server/bdii/init.yaml
classes:
 - service.bdii

parameters:
 bdii:
 ram_disk:
 enabled: true
 site_name: ${_cluster_:bdii:site_name}
 rootpw: ${_cluster_:bdii:rootpw}
 zone: ${_cluster_:bdii_zone}

service/bdii/init.yml
applications:
 - bdii

parameters:
 bdii:
 enabled: true

original reclass: https://reclass.pantsfullofunix.net/index.html
nodeclass: https://github.com/AndrewPickford/nodeclass

nodeclass is our in house much extended
and rewritten version of reclass

HEPiX Oct 2023 A. Pickford 11

Nodeclass II
● node file

● where nodeclass starts when evaluating the data for a
machine

● can include/define/reference values as a class
● also defines the environment a machine is in

● our conventions:
● node files include four classes: a hardware, os, role and

cluster class describing the machine
● these classes are hierarchies, each including the class

above it until the top of hierarchy is reached
● allows some mixing and matching of machine types
● allows prod,dev and testing machines to use the same role,

os and hardware classes (reuse requirement)

dev elasticsearch machine node file
classes:
 - cluster.ndpf.andrewp.elasticsearch
 - hardware.vm.xen.storage
 - os.linux.redhat.centos.7
 - role.server.elasticsearch.cluster.universal

environment: andrewp

parameters:
 hardware:
 network_interfaces:
 eth0:
 mac_address: "aa:bb:cc:dd:ee:ff"
 address: "AAA.BBB.CCC.DDD"

service/torque/server/init.yaml
parameters:
 torque:
 server:
 settings: ${_cluster_:torque:settings}
 queues: ${_cluster_:torque:queues}

HEPiX Oct 2023 A. Pickford 12

Nodeclass Hierarchies I

os

os.linux

os.linux.redhat

os.linux.redhat
.rocky

os.linux.redhat
.centos.7

os.linux.ubuntu

os.linux.redhat
.centos

os.linux.redhat
.rocky.8

os.linux.redhat
.rocky.9

os.linux.ubuntu
.18

os.linux.ubuntu
.20

● organise data into hierarchies
● with increasing specificity down the

hierarchy chain
● every class includes the class above in

the hierarchy
● parameters set higher up in the

hierarchy are replaced/added to if the
same parameter is set lower down

HEPiX Oct 2023 A. Pickford 13

Nodeclass Hierarchies II
● The Good

● prod/pre-prod/dev machines as similar as possible
● minimal unexpected changes moving from testing to production
● one change effects all required machines
● minimal data repetition

● The Bad
● increases interconnectedness in the data structure
● finding the correct place for a value can be difficult

● there may not be one correct place
● finding values later can take some searching

● changes to one system can cause unexpected changes on other system
● not necessarily a bad, as changes may be required for consistancy

only need to change
cluster class from one
dcache to another

local dcache production machine
classes:
- cluster.ndpf.opn.dcache-stoomboot
- hardware.vm.xen.standard
- os.linux.redhat.centos.7
- role.server.dcache.ha.local.admin

HEPiX Oct 2023 A. Pickford 14

Nodeclass Inventory I
● allows for data to be shared (exported) between nodes
● improves consistancy

● when adding a new machine, very easy to forget to add it to a list of machines to monitor
● inventory scheme generates these types of lists automatically

● exported data is visible/usable for all other nodes
● works by defining values to export then querying which nodes export a given piece of

data
● increases complexity and required knowledge to use the system
● scaling issues

● need to generate the exports for all nodes to answer any inventory query
● solve by caching high cpu use operations and only computing the minimum possible

to get an answer

HEPiX Oct 2023 A. Pickford 15

Nodeclass Inventory II
● how to handle nodes with broken config data (errors in yaml, missing

references,…)?
● in principle one broken node makes any inventory query broken as the answer for

that node cannot be calculated
● handle by making inv queries for prod nodes only query prod nodes, any errors here

are errors in prod nodes and should be flagged
● for dev nodes, just ignore inv query errors

inv query example

flag a machine running bind
exports:
 bind: true

generate a list of machines running bind
parameter:
 bind_nodes: $[exports:bind == true]

HEPiX Oct 2023 A. Pickford 16

Process Issues
● final check before deploying to production goes through a git checkout

on disc
● only one person at a time can make changes
● accidents could, and minor ones have, happened
● blocks other changes

● overly flexible
● a change on a machine can be done in multiple ways
● not always clear what the best way is – if there is a ‘best’ way
● have to look in multiple places to see how a particular configuration is done
● we write short flight rules describing how to do tasks

● it’s not a bad thing to write documentation
● but it is bad that things are not more obvious

HEPiX Oct 2023 A. Pickford 17

Bad Habbits I
iptables:
 ipv4:
 chains:
 DCACHE-CLUSTER-INPUT:
 rules:
 - rule: '-p tcp --dport 11111 -j ACCEPT'
 ipv6:
 chains:
 DCACHE-CLUSTER-INPUT:
 rules:
 - rule: '-p tcp --dport 11111 -j ACCEPT'

nftables:
 open:
 dcache_clust:
 tcp:
 - 11111

● overly tight coupling between config data and a
(potentially) generic service

● iptables firewall configuration is the literal text to insert into
the iptables config file

● ties the configuration to iptables
● makes it to use other firewalls
● have to repeat rules for both ipv4 and ipv6

● reworked this for nftables
● firewall description is technology agnnostic now
● reduces the amount of config data
● adds an assumption:

● ipv4 and ipv6 have the same access rules
● adds a layer of complexity in how the formula

translates the config data into firewall rules

HEPiX Oct 2023 A. Pickford 18

Bad Habbits II
● overly complex data flow

● mostly doing things in the config data that are best

done elsewhere
● config data is not a good place to implement logic

● activating an rpm repo and using a specific repo mirror

version happend over 5 classes
● set the repo version to use
● set the os version
● setup an os independent

parameter with the repo version
● copy the snapshot version into the dictionary

of active repos
● copy the active repos dictionary to be visible to

the salt formula

os:
 repo_snapshot: ${_cluster_:repo_snapshots:redhat_${_os_:major_version}}

cluster:
 repo_snapshots:
 redhat_7:
 zookeeper: 20220201

os:
 major_version: 7

repos:
 active: ${_system_:repos}

system:
 repos:
 zookeeper: ${_os_:repo_snapshot:zookeeper}

HEPiX Oct 2023 A. Pickford 19

Summary
● the system meets our needs

● all changes to production go through a set of test servers
● need to be checked into git before deployment
● high confidence changes do what is expected
● and test for unexpected changes
● separate development environment for each person

● but
● it’s more complex than we’d like
● that’s a trade off, it could be simpler – but we would then have aother problems -

more repetition or less built in consistancy or ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

