
Image © STFC Alan Ford 

Securing the RAL Site



• Landsape
• Motivations for RAL
• WLCG SOC WG
• Applying the model to RAL
• Positives/Challenges
• Next Steps

Outline

Im
a
g
e
 ©

 S
T

F
C

 A
la

n
 F

o
rd

 



• The current threats for research communities include sophisticated, motivated and well 
funded actors

• A SOC is a powerful tool for monitoring and alerting threats

• SOC augments security capabilities

• Important to share intelligence within the community

Landscape



• General motivation
• Increase in priority of cybersecurity projects within STFC over last few years
• Coupled to modern landscape and clear understanding of potential impact

• Specific motivation
• Work already planned to deploy SOC capabilities for RAL Tier1 following original 

SOC WG design
• Opportunity with modest increase in funding to cover entire campus due to 

network topology
• Intention both to improve cybersecurity posture for Harwell campus (RAL) and act 

as pilot for other STFC sites
• Alongside other SOC development work in the broader UK Research and 

Innovation context

Implementation at RAL

Im
a
g
e
 ©

 S
T

F
C

 A
la

n
 F

o
rd

 



• Workshop 14th – 18th August

• Participants from UKRI, University of Durham, CERN, University of Chicago and 
University of Michigan, JISC

• Docker deployed Misp

• Zeek RPM’s for Rocky9/el9

• Documentation

WLCG SOC WG

Im
a
g
e
 ©

 S
T

F
C

 A
la

n
 F

o
rd

 

https://wlcg-soc-wg-doc.web.cern.ch/


• Admin Network private VLAN behind site firewall
• Internal 100G network
• 4 capture and 4 search nodes

• Some services need to be accessible from the core 
site network to be useful (dashboards…)
• Ports opened to loadbalancers and made 

available from there
• Other services on the Tier-1 VMWare cluster 

and have monodirectional traffic from the SOC 
VLAN

SOC Hardware Layout

Im
a
g
e
 ©

 S
T

F
C

 A
la

n
 F

o
rd

 



Applying the Model: Monitoring Taps

Im
a
g
e
 ©

 S
T

F
C

 A
la

n
 F

o
rd

 

• High performance 100Gb Mellanox SN2700 switch, running Cumulus OS
• Ingests the intercepted Janet and OPN network traffic (with separate Rx and Tx links)
• Load-balances and forwards packets across our Capture hosts for analysis

• Selected ports are grouped into logical interfaces called a ”bonds”, operating in “balance-xor mode”
• A “symmetric” hash value is calculated for each incoming packet, based on source and destination IP 

address >> result determines which physical port of the bond will egress the packet
• The direction a packet travels between two hosts is irrelevant in the generation of its hash value
• Ensures all packets in a given “conversation flow” are consistently routed to the same Capture node 

in our SOC (crucial for Zeek performance)



• MISP hosted in a more permissible network environment than the rest of SOC to allow 
corporate access
• This is because we don't want routing to SOC rack from outside the department
• To be hosted in the Tier1 VMWare cluster.

• Deployed using Docker compose, with each component (web, database, modules) in 
its own container
• https://github.com/JiscCTI/misp-docker

Applying the Model: Misp

Im
a
g
e
 ©

 S
T

F
C

 A
la

n
 F

o
rd

 

https://github.com/JiscCTI/misp-docker


Applying the Model: Zeek (Bro)

Im
a
g
e
 ©

 S
T

F
C

 A
la

n
 F

o
rd

 

• Runs on SOC Capture Nodes: (2x Mellanox ConnectX-6 dual 100Gb NICs, 2x AMD 7H12 64-core CPUs, 1TB RAM)
• Specialized hardware for Zeek monitoring, which we run in ”cluster” mode with 2 main “worker” processes

• Workers each listen on a designated network interface, and reserve processor threads to perform packet analysis
• Two threads per CPU need to be left free for the host’s OS, Zeek’s manager/proxy/logger, other misc. processes

• Network cards have on board encryption compute power and 63 available “ring buffers” for speeding up the pipeline
• Packets symmetrically hashed by network card immediately >> result determines which “Rx ring” packet goes to

• We enable 62 of these ring ”channels” per network interface to match 1-to-1 with the thread count of the Zeek workers
• Channels manage direct storage of packets in system memory, and send out identifying ”interrupt request” (IRQ)
• IRQs are hardware signals that trigger a CPU response, i.e. fetching a network packet to read (via “socket buffer”)
• We then map every channel’s IRQ integer id-value to a specific processor thread, connecting the two elements 
• Zeek’s “af_packet” plugin leverages native features of Linux sockets to load balance the fanned-out traffic across 

multiple processing threads attached to a single worker (standard Zeek workers don’t have multithreading)
• This feature of processing traffic across multiple NIC hardware queues is called Receiver Side Scaling (RSS)
• Linux’s irqbalance service, which normally balances IRQs across CPU threads dynamically, needs to be disabled

• This configuration ensures all packets from any given monitored connection end up being processed by the same 
worker/core, enabling Zeek to benefit from cached memory during analysis of network sessions (increases efficiency and 
quality of monitoring)

• Zeek interprets information from extracted content and transaction data 
• Custom scripting feature lets users modify the default criteria and methods of traffic analysis
• Outputs streamlined, descriptive set of categorized logs



• Result: avg. capture loss very low, mostly << 0.01% 
• Almost no traffic being dropped by switch or 

node interfaces, host kernel, etc
• Still some room to improve certainly
• When very busy and varied Janet traffic comes 

into play, greater challenges are expected
• This will require further analysis, tuning and 

modification of Zeek + host configuration

• Currently monitoring both OPN RX and 
TX taps on a single Capture node host

• Random sample snapshot of network 
levels ⇣ and Zeek’s capture_loss.log ⇢

• Rightmost column 
shows each 
worker’s recent % 
of avg lost traffic, 
calculated using 
TCP sequence 
numbers

• Configured as 
only 2 workers, 
but each separate 
thread acts like its 
own process 



• Kafka collects Zeek logs and can be used to enrich data
• Using Kafka 3 (no zookeeper required) via Bitnami Docker 

image: https://github.com/bitnami/containers/tree/main/bitnami/kafka
• Using zeek-kafka plugin (https://github.com/SeisoLLC/zeek-kafka), a fork of the 

Apache Metron Bro plugin.
• Zeek acts as a producer for Kafka
• Can publish to distinct topics for each type of zeek log
• Offers a range of enrichment possibilities such as custom scripts
• Configuration still in development
• Will run on head node

Applying the Model: Kafka

Im
a
g
e
 ©

 S
T

F
C

 A
la

n
 F

o
rd

 

https://github.com/bitnami/containers/tree/main/bitnami/kafka
https://github.com/SeisoLLC/zeek-kafka


• Since no plugin to write data to OpenSearch directly from Kafka, Logstash is our 
method to bridge the gap.

• Using Docker to deploy
• Using the Kafka input plugin and OpenSearch output plugin
• Configuration still in development.
• Will run on head node

Applying the Model: Logstash

Im
a
g
e
 ©

 S
T

F
C

 A
la

n
 F

o
rd

 



• Runs on search nodes within the SOC rack
• OpenSearch 2.4
• Docker compose deployment
• In production with no data currently
• 2 OpenSearch containers + 1 Dashboards container per host (4 hosts total)
• Role-based access control provided by IRIS IAM (an instance of Indigo IAM)
• How to expose OpenSearch Dashboards from within a private SOC 

network?
• Our solution is to amend firewall rules so that the dashboards port on 

each search node can communicate with only a departmental load 
balancer. This is made available over the RAL VPN to give staff access.

Applying the Model: Opensearch

Im
a
g
e
 ©

 S
T

F
C

 A
la

n
 F

o
rd

 



• Work in progress
• Scripts for

•long-lived network connections
•many repeated connections from same IP
•long dns queries
•larger than normal data-transfers
•Uncommon user-agent strings in http log
•IPs outside of known subnets
•Expired x509 certificates

Applying the Model: Elastalert and Scripts

Im
a
g
e
 ©

 S
T

F
C

 A
la

n
 F

o
rd

 



• Collaborating with other security engineers from NIHEF/CERN
• ..and slowly starting to bring more to the table 

• Learning opportunity in network systems, mostly
• Satisfying to get it up and running at such a high standard, without yet 

breaking or failing (at least for OPN links) 
• Optimistic start

Positive: Zeek

Im
a
g
e
 ©

 S
T

F
C

 A
la

n
 F

o
rd

 



• WLCG SOC Hackathon
• JISC made a new MISP deployment
• Zeek RPM’s for Rocky9/RHEL9/SL9

• Good to have a regular WG for SOC deployments
• (next one maybe at CERN?)

Positive: Hackathon

Im
a
g
e
 ©

 S
T

F
C

 A
la

n
 F

o
rd

 



• Integrating services with Single-sign-on providers
• Had to switch from Indigo IAM to Keycloak to get MISP login working, though was 

ok for OpenSearch.

Challenge: SSO

Im
a
g
e
 ©

 S
T

F
C

 A
la

n
 F

o
rd

 



• SecOps Archetype, minimum trust config
• Not built on configuration management assumptions

• No SSH as root
• Challenging assumptions breaks unexpected things

• Assumption in account creation that the admin is root for ownership of ssh keys 
file
• Config now based on ownership by each user

• Sudo config defined groups differently in different areas

Positive Challenge: Configuration 

Management

Im
a
g
e
 ©

 S
T

F
C

 A
la

n
 F

o
rd

 



• Deploy Misp on VMWare host
• Deploy logstash and kafka to head nodes
• Zeek ingesting Janet links
• Discussions on how to integrate into our existing processes
• Elastalert/zeek scripts
• FIR (Fast Incident Response)

Next Steps

Im
a
g
e
 ©

 S
T

F
C

 A
la

n
 F

o
rd

 



@STFC_matters Science and Technology Facilities CouncilScience and Technology Facilities Council


