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Motivation
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• Simulation plays a significant role in the design of 
future experiments but also in the analysis of the 
current ones.


• One single event fully simulated with Geant4 in an LHC 
experiment requires about 1000 CPU seconds. 


• The calorimeter simulation is by far dominating the 
total simulation time. 


• AI generator models are being developed in 
particular for the simulation of calorimeters.



Motivation
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• One particle impacting a calorimeter can lead to thousands of 
secondary particles (called the shower) to be tracked through the 
detector, while only the total energy deposit per sensitive element 
(a cell) is useful. 


• Can we go directly from the impacting particle parameter to the 
cell energy deposits?


• Could this speed up the simulation framework?
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Generative Models
Simplest Example: Box-Muller Method
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1. Generate two uniformly independent, identically 
distributed random numbers .


2. Substitute in:


1. 


2.

U1 and U2

Z0 = f0(U1, U2) = −2 ln U1 cos(2πU2)

Z1 = f1(U1, U2) = −2 ln U1 sin(2πU2)

∫
1

0
dU1Uni(U1)∫

1

0
dU2Uni(U2) = ∫

∞

−∞
dZ1𝒩(Z1 |0,1)∫

∞

−∞
dZ2𝒩(Z2 |0,1) = 1

∫
u1

0
dU1Uni(U1)∫

u2

0
dU2Uni(U2) = ∫

b

a ∫
d

c
dZ0dZ1 |

∂(U1, U2)
∂(Z0, Z1)

|Uni(U1(Z0, Z1))Uni(U2(Z0, Z1))

𝒩(Z0 |0,1)𝒩(Z1 |0,1)

f0(U1, U2)

f1(U1, U2)



Variational Autoencoders



Variational Autoencoders
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qϕ(z |x) pθ(x |z)

X: event


Z: Encoded data


Phi and theta are 
fitting parameters

pθ(z)



Variational Autoencoders
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qϕ(z |x) pθ(x |z)

ℒϕ,θ(x) = ⟨ln pθ(x |z)⟩qϕ(z|x) − ⟨ln
qϕ(z |x)

pθ(z)
⟩qϕ(z|x)

pθ(z)
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Variational Autoencoders
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ℒϕ,θ(x) = ⟨ln pθ(x |z)⟩qϕ(z|x) − ⟨ln
qϕ(z |x)

pθ(z)
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Reconstruction
Regularizer

ℒϕ,θ(x) = ln pθ(x) − DKL(qϕ(z |x) | |pθ(z |x)) ≤ ln pθ(x)

pθ(z)

∇ϕ ∑
ϵ∼𝒩(0,1)

fϕ(z(ϵ))

𝒩(ϵ |0,1) = |
dz
dϵ

|qϕ(z |x)

z = μϕ(x) + σϕ(x) ⋅ ϵ

Reparameterization Trick

⟨ fϕ(z)⟩qϕ(z|x) ∼ ∑
z∼qϕ(z|x)

fϕ(z)

∇ϕ⟨ fϕ(z)⟩qϕ(z|x) ∼ ∇ϕ ∑
z∼qϕ(z|x)

fϕ(z)



Restricted Boltzmann Machine
Why?
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• More expressiveness


• However, this comes at a cost.



Basics

Wij
v1

v2

v3

v4

v5

v5

h1

h2

h3

⟨v | |h⟩

E(v, h) = −
nv

∑
i=1

viai −
nh

∑
j=1

bjhj − ∑
i,j

viWijhj

Restricted Boltzmann Machine
Suppose a data set , such that .


I) An RBM will fit a Boltzmann distribution, , to the data set.


II) The fitting is done by maximizing the log-likelihood, .


III) RBMs are composed by a two-partite graph, where v denotes 
the visible layer and h the hidden layer.

{vα}n
α=1 vi ∈ {0,1}

p(v, h)

ln p(v)

p(v, h) =
exp(−E(v, h))

Z

Z(W, a, b, β = 1) = ∑
v′ ,h′ 

exp(−E(v′ , h′ ))

Boltzmann Dist

Energy

Partition Function
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Wij
v1

v2

v3

v4

v5

v5

h1

h2

h3

⟨v | |h⟩

Restricted Boltzmann Machine
∂ ln p(v)

∂Wij
= ⟨vihj⟩p(h|vα) − ⟨vihj⟩p(h′ ,v′ )
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Wij
v1

v2

v3

v4

v5

v5

h1

h2

h3

⟨v | |h⟩

Restricted Boltzmann Machine
∂ ln p(v)

∂Wij
= ⟨vihj⟩p(h|v(α)) − ⟨vihj⟩p(h′ ,v′ )

p(h |v) =
p(v, h)
p(v)

p(hj = 1 |v) = σ(∑
i

viWij + bj)

p(v |h) =
p(v, h)
p(h)

p(vi = 1 |h) = σ(∑
j

Wijhj + ai)

1.Start with random initial vector:  
2.  
3.  
4.Repeat steps 2 and 3 n times. 

 

|v⟩
|h(1)⟩ ∼ B[σ(Wt |v(0)⟩ + |b⟩)]
|v(1)⟩ ∼ B[σ(W |h(1)⟩ + |a⟩)]

|h(n)⟩ ∼ B[σ(Wt |v(n−1)⟩ + |b⟩)]
|v(n)⟩ ∼ B[σ(W |h(n)⟩ + |a⟩)]
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p(h |v) =
p(v, h)
p(v)

p(hj = 1 |v) = σ(∑
i

viWij + bj)

p(v |h) =
p(v, h)
p(h)
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j
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<— Repeat this a 
number of times equal 
to batch size.

∂ ln p(v)
∂Wij

= ⟨vihj⟩p(h|v(α)) − ⟨vihj⟩p(h′ ,v′ )
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Data setSteady-state(?)

Gibbs Sampling

Backpropagation*



⟨ fϕ(z)⟩qϕ(z|x) ∼ ∑
z∼qϕ(z|x)

fϕ(z)

∇ϕ⟨ fϕ(z)⟩qϕ(z|x) ∼ ∇ϕ ∑
z∼qϕ(z|x)

fϕ(z)

Discrete VAE
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qϕ(z |x) pθ(x |z)

ℒϕ,θ(x) = ⟨ln pθ(x |z)⟩qϕ(z|x) − ⟨ln
qϕ(z |x)

pθ(z)
⟩qϕ(z|x)

Reconstruction
Regularizer

ℒϕ,θ(x) = ln pθ(x) − DKL(qϕ(z |x) | |pθ(z |x)) ≤ ln pθ(x)

pθ(z) Gumbel Trick

z = σ(
l(ϕ, x) + σ−1(u)

τ
)

∇ϕ ∑
u∼Uni(0,1)

fϕ(z(u))

ρ(u) = |
dz
du

|qϕ(z |x)



Why use an RBM in latent space?
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• More expressiveness


• However, this comes at a cost.

Discrete VAE
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• More expressiveness


• However, this comes at a cost.


• But we might be able to avoid 
Gibbs sampling…

Why?
Quantum-Assisted Discrete VAE
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Chimera QA Pegasus QA

Wij

v1

v2

v3

v4

v5

v5

h1

h2

h3

2-partite Graph 4-partite Graph

Fully Connected RBM

2-partite Graph

Topologies
Quantum Annealer



Quantum Annealer
Basics

• QA relies on the Adiabatic Approximation.


• The goal is to find the ground state of a 
Hamiltonian . This can be done by initializing the system in the ground state of some 
Hamiltonian , which is easy to prepare both theoretically and experimentally. 


• In addition, by design the commutator . Then one interpolates between the two Hamiltonians via 
, such that  and  and  \cite{hauke2020perspectives}. 


• In practice, quantum annealers have a strong 
interaction with the environment which lead to 
thermalization and decoherence. 


• Research suggests that in the case of D-
Wave's quantum annealers, the culprit are the 

 operator which couple to the environment 
\cite{benedetti2016estimation}.

H0
H1

[H1, H0] ≠ 0
H(t) = A(t)H1 + B(t)H0 A(0) = B(t0) = 1 A(t0) = B(0) = 0 t ∈ [0,t0]

σz
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H0H1

Occupation probabilities during the annealing calculated by using the 
Redfield formalism (circles) and the Boltzmann distribution (solid lines), 
assuming T = 40 mK and ta = 20 μs. All probabilities follow the Boltzmann 
distribution in the quasistatic region (green) until they start freezing in the 
freezing region (yellow) and stay constant in the frozen region (blue). All 
final probabilities are close to the Boltzmann probabilities at the freeze-out 
point s∗, marked by the vertical (red) dashed line. 

ci



CaloChallange Dataset
Kaggle Challenge Fast Calorimeter Simulation Challenge 2022
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Dataset

Particle type Electron showers

Layers 45

Voxels per layer 9 radial * 16 angular

Incident energies Log-uniform distribution (1GeV-1TeV)

N. of events 100,000

https://calochallenge.github.io/homepage/


Results

• Chimera Topology


• RBM
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Results

• Pegasus Topology


• QPU & RBM
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Results
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Wall time to generate 1024 samples

Geant4

GPU A100

QPU

2.19 ± 0.14 s
∼ 0.180 s

∼ 1000 s

QPU ~12x faster than GPU

Geant4 time per sample

O(1) s

QPU ~ x faster than Geant4104



First thoughts on infrastructure
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•Task specific partial information routing.

•Particle type

•Energy of incidence

•Location

•Etc.


•Dedicated QPU + GPU resources + 
networking.

•Event merging back to Geant4 record.

•Batch zipping

Conclusions
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