

#### 📕 🛑 NRC.CANADA.CA

#### A Square Kilometer Array Regional Centre: Scaling Digital Research Infrastructure for Astronomy in Canada

Stephen Gwyn Science Lead, Canadian Astronomy Data Centre



National Research Conseil national de Council Canada recherches Canada

### Canadian Astronomy Data Centre

#### Preserving and distributing astronomical data

- The CADC archives and distributes the data from all Canadian telescopes, including JWST, HST, and NEOSSat in space, and CFHT, Gemini on the ground
- Holdings:
  - o 2.3Pb
  - 300 million files
- 3 copies:
  - 2 on hardware provided by Digital Research Alliance of Canada
  - 1 on NRC hardware
- Annual downloads:
  - 100 million files
  - 4.9 Petabytes
  - $\circ$  ~10,000 users worldwide

By promoting data reuse, a good telescope archive can double to triple the impact of a facility for minimal cost



### Canadian Astronomy Data Centre

#### Preserving and distributing astronomical data

- The CADC archives and distributes the data from all Canadian telescopes, including JWST, HST, and NEOSSat in space, and CFHT, Gemini on the ground
- Holdings:
  - 2.3Pb
  - 300 million files
- 3 copies:
  - 2 on hardware provided by Digital Research Alliance of Canada
  - 1 on NRC hardware
- Annual downloads:
  - $\circ$  100 million files
  - 4.9 Petabytes
  - $\circ$  ~10,000 users worldwide

By promoting data reuse, a good telescope archive can double to triple the impact of a facility for minimal cost

#### Storage:

- Ceph Object Store
- Storage Inventory ~ dCache
  - syncs data between the three sites
  - files are retrieved from any of the sites for redundancy and availability
  - allows seeks within a file: image sub-raster cutouts very important
  - Comprehensive metadata system:
    - CAOM2 (Common Archive Observation Model)
    - Allows users to find images from 216 different telescopes and instruments





Workflow #1: VERTICO (Virgo Environment Traced in CO)

- Raw data transferred to data centre
- Data downloaded to the CADC and processed
- generic software (CASA) but specialized parameter choices
- generic hardware
- relatively small data sets (10s of Tb)



Nearby galaxy as seen in a carbon monoxide (a tracer of star formation



Workflow #2: OSSOS (Outer Solar System Origins Survey)

- Telescope observes sky at night
- Images are transferred automatically in minutes to CADC
- Basic calibration is done by astronomer A, using software specific to instrument
- Images are searched for moving objects by astronomers B,C and D using software specific to the project
- Generic hardware
- Selected objects are queued for follow up observation that evening



Detection triplet of Kuiper Belt Object

Workflow #2: OSSOS (Outer Solar System Origins Survey)

- Telescope observes sky at night
- Images are transferred automatically in minutes to CADC
- Basic calibration is done by astronomer A, using software specific to instrument
- Images are searched for moving objects by astronomers B,C and D using software specific to the project
- Generic hardware
- Selected objects are queued for follow up observation that evening



Detection triplet of Kuiper Belt Object

Workflow #3: SDSS (Sloan Digital Sky Survey)

- Telescope spends multiple years observing northern sky with imager and spectrograph
- Data is processed by a team of astronomers, developers and operations staff
- Specialized data pipeline
- Dedicated hardware
- Individual astronomers (or small teams) interact with processed data as database queries plus (maybe) spot checking the original images/spectra



Distribution of galaxies in the Northern Galactic Cap, showing large scale structure

- Astronomy data is fairly heterogeneous
- Astronomy use cases are also heterogeneous
- Astronomy data management is similarly heterogeneous
- There are a few large, multi-purpose/ generic software packages, but a lot of astronomy software is more "artisanal", tuned to a specific instrument or a specific use case
- While computer scientists are extensively employed in the infrastructure development, they are extremely rare in the scientific software development
  - Code is optimal for scientific analysis
  - Less than optimal for performance and maintainability

973 1010



### **CANFAR:** Canadian Advanced Network for Astronomical Research

- Runs on Digital Research Alliance of Canada infrastructure
- User data storage
  - Tb-scale storage for astronomy
  - Fine-grained access control
  - Browser and python client interaction
- User controlled computing infrastructure
  - Version 1: (2008)
    - VM-based
    - powerful, but steep learning curve for users
  - Version 2: (2021)
    - Container-based
    - Jupyter notebooks
    - Browser-based VNC desktops
    - Data visualization
    - Ability to share containers
    - Very successful: 3x growth in 2021
    - ~½ of Canadian astronomers are users





### **Square Kilometer Array**



#### SKAO Science Working Groups





Extragalactic Spectral Line

Among the broadest science cases for observatories worldwide

High Energy Cosmic Particles

Our Galaxy

Pulsars

Gravitational

Waves

Solar, Heliospheric & Ionospheric Physics

Transients

HI Galaxy Science

VLBI

Magnetism

، Slide from Phi / Diamond





#### Among the broadest science cases for observatories worldwide

Our Galaxy

Pulsars

Solar, Heliospheric & Ionospheric Physics

Transients

VLBI

# Atomic gas (HI) in disk galaxies



The HI content, morphology and kinematics of galaxy populations probe cosmological galaxy formation



The cosmic **HI** census SKA KSP, 10,000 hrs (~2030-35) AM buildup across cosmic time HI out to  $z \sim 2$ ,

HI out to  $z \sim 2$ , map HI disks  $[log(M_{HI}/M_{o}) >$ 10] to  $z \sim 1$ .





# **Square Kilometre Array Observatory**

Intergovernmental organization

9 Member States 2 Acceding 5 Observers

Construction underway

First science data in 2026

Shared-risk observations in 2028

Fully operational in 2029/30



January 2023: Canada announces intention to join the SKA Observatory with a 6% share

May 2023: Treasury Board approves budget to NRC (\$270 million)

🔲 SKAO Partnership - includes SKAO Member States\* and SKAO Observers (as of June 2022)

African Partner Countries

### **SKA Regional data Centres (SRCs)**

- Raw data is processed at Science Data Processors (SDPs) in South Africa and Australia
- Data is transferred to SRCs for user-driven science analysis
- Long term archiving will be federated; no single site will have a copy of all the data
- At the end of proprietary period, other astronomers should be able to schedule processing
- Code-to-data: Avoid unnecessary data movement -> A job should be able to run everywhere



Image credit: SRCSC and SKAO

### **CADC** and **SKA**

#### The CADC has been making a strategic investment in SKA since 2012

- 2012-2017: Design of Delivery Subsystem of the Science Data Processor
- **2016–2018**: Member of SRC Consultation Group
- 2017-2019: Participant in the AENEAS Horizon 2020 project on SRCs
- **2018–**: Member of the SRC Steering Committee
- 2018–: Supporting CIRADA (Canadian Initiative for Radio Astronomy Data Analysis)
- **2020**–: Participation in the SRC Requirements, Design and Prototyping phases
  - Leading the SRCNet demonstrator epic being deployed at 3+ sites (3 FTE)
  - Contributing software for data management, metadata management, science platform, user storage
- 2023: Official SKA Canada including SRC Canada budget approved

# Vera Rubin Observatory Legacy Survey of Space and Time



- Time variable sky: observe the sky repeatedly and note what changed in brightness or moved
- Add all the images together to produce a deep map of the sky on an annual cadence
- Canada will host an alerts database
- We will host 2 copies of the static sky: the latest data release, plus the latest public data release
- The CADC is currently the only group planning a public interface
- Total archive data volumes:
  - 3Pb database
  - 10Pb of images
- Extension to science platform:
  - 6000 cores
  - 4Pb of user storage



# **CADC** expansion

#### Hardware expansion

- CADC currently:
  - 2.3Pb (x3 replication) on-line
  - $\circ$  3000 cores
- CADC in 2030 and beyond
  - 100Pb on-line
  - 60Pb/year growth of nearline
  - 42000 cores
- All new hardware will be managed by the Digital Research Alliance of Canada
- Most (all?) will be here in Victoria







### Interoperability

#### Need to interoperate with other SRCs

- "A job should be able to run everywhere"
- Interoperability but at what level?
- Hardware? OS? Software/Middleware? API?

#### Need to interoperate with other CADC archives

- CADC data volumes:
  - SKA 90%
  - LSST 9%
  - Everything else 1%
- CADC users:
  - SKA 20%
  - LSST 20%
  - Everything else 60%

The CADC's goal is to build and run one system to serve all communities



### Summary

- The CADC is a Pb scale astronomy data centre serving Canada and the world
- Canada is joining SKA at the 6% level
- The CADC is building an SKA Regional Centre
- To support the SRC and LSST, the CADC will have to grow by a factor of x100 by 2030
- Our aim is to build a single system that will support a variety of astronomy computation
- The CADC is here to learn from the HEP community

Any questions? Answers please



#### extra slides



# **Square Kilometer Array**

#### SKA-Mid

- South Africa
- 197 dishes (15m across)
- 350Mhz-15.4Ghz
- 150 km across

#### **SKA Low**

- Australia
- 130 000 dipoles
- 50-350Mhz
- 75km across



SKA2\_MID 2500 Dishes

SKA2\_AA Mid Frequency Aperture Array Stations (N=250) 30 million individual elements

SKA2\_LOW Low Frequency Aperture Array Stations 3 million antennas

### **Square Kilometer Array**

