Coffea-Casa Analysis Facility at the University of Nebraska-Lincoln

HEPiX Fall 2023

Garhan Attebury, Carl Lundstedt, John Thiltges Oksana Shadura, Andrew Wightman, Sam Albin, Brian Bockelman

Holland Computing Center @ UNL in brief

Red (USCMS Tier2 cluster)

- ~372 nodes, 16k job slots (threads)
- 10PB Ceph storage

Swan (HPC cluster)

- ~340 nodes, 16k cores
- Mellanox IB
- 5.4PB lustre on ZFS

Anvil (Openstack cloud)

- 76x 20 core 256GB nodes
- 349TB Ceph storage (Jewel! Yikes!)

Flatiron (CMS Analysis Facility)

- 832 cores + V100 + 2x P100 GPUs
- ~100TB Ceph on NVMe

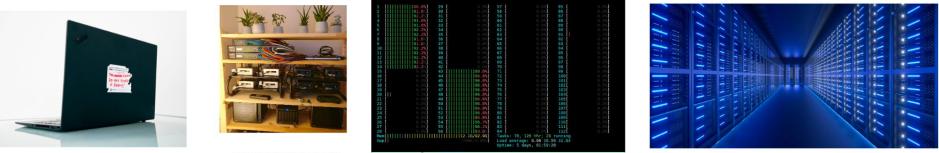
Common (shared storage)

• 1.9PB BeeGFS on ZFS

Attic (archival storage)

• 2PB ZFS

External projects


- NRP
 - 3072 cores
 - 195 GPUs
 - 14TB RAM
- PATh
 - 1.5k cores
 - 1PB storage

3x datacenters

600 kW in use

Analysis Facilities (from a non physicist PoV)

How the physicists see "Analysis Facilities"

Homelab (https://domalab.com)

"Analysis Facilities" could be any type of resource from laptop to Tier-2

HEP data access	Number of cores to scale	Recipe how to run code	Disk space	Favorite analysis frameworks available
-----------------	--------------------------	---------------------------	------------	---

Slide shamelessly stolen from Brian Bockelman

26th International Conference on Computing in High Energy & Nuclear Physics

Analysis Facilities: What the physicist users dream about

- **Quick** <u>interactive</u> analysis turnaround: "I want to get my preliminary plots to be ready over coffee break"
- User improvement experiences (UX): let's help physicists focus on the physics
- Methods for efficient data scaling, caching at AFs: more challenges with data-intensive analysis pipeline
- **Data reusability:** AF should support extraction of user defined experiment data formats to migrate them onto other facility, laptops or workstations at home institutions or at home

Analysis Facilities: What the resource managers dream about

- **Easy deployment and reproducible setup:** Kubernetes can help to facilitate an easy AF deployment within Tier-X facilities (e.g. co-locating next to existing computing resources)
- **Modularity:** Kubernetes is ideal for demanding applications that require complex configurations (focusing on modular orchestration)
- "Self-healing": easy rollback with Kubernetes

Building blocks for analysis facilities

Columnar analysis and support new pythonic ecosystem

Efficient data delivery and data management technologies

Machine learning services and tools

Efficient data caching solutions

Support for object storage

Easy integration with scalable computing resources

Modern authentication (IAM/OIDC), tokens, macaroons

Modern deployment and integration techniques

What we built: Flatiron

12x Dell R750

- 2x Xeon 6348 (56C/112T)
- 512GB RAM
- 10x 3.2TB NVMe drives
- 2x100Gb

2x Dell S5232F-ON switches

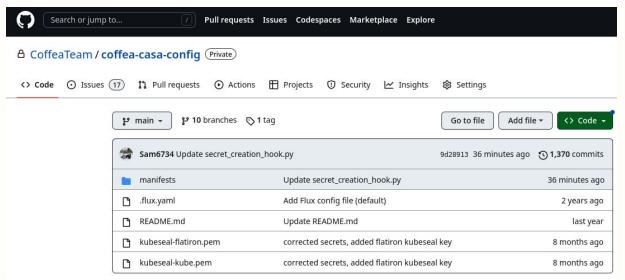
• 200+Gbps path to Internet2/ESnet

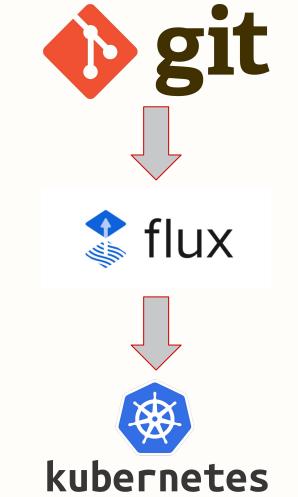
Bonus GPUs

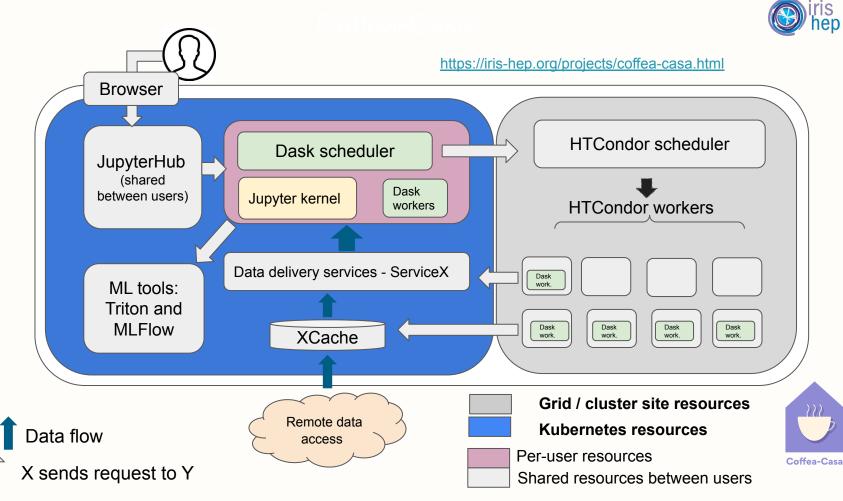
- 1x NVIDIA V100S
- 2x NVIDIA P100

Bonus CPUs

16x 8C i7 3.0GHz desktops w/GTX 980s

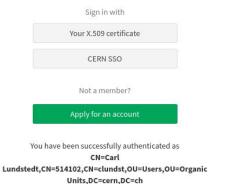



Flatiron Kubernetes Cluster


- AlmaLinux 8.7
- Kubernetes 1.27.6
- 3x master/etcd nodes, keepalived + HAProxy
- Calico + BGP and MetalLB
- Ceph via Rook.io (106TB 3x replica NVMe, 5x OSD per drive)
- Ceph via Skyhook (9TB testing)
- Dex + CILogon for API access
- Jupyter auth : OpenID Connect (OIDC)
 - CMS with CERN IAM
 - CILogon with COmanage for Opendata facility
- Traefik, Flux, Git, CVMFS, Dask, etc...

Casa Infrastructure & Management

- Configs for casa are kept in GIT
- Changes follow gitops techniques
- Changes are applied in-situ via a Flux agent



Slide shamelessly stolen from Carl Lundstedt

The Four Casa Instances

Welcome to **cms**

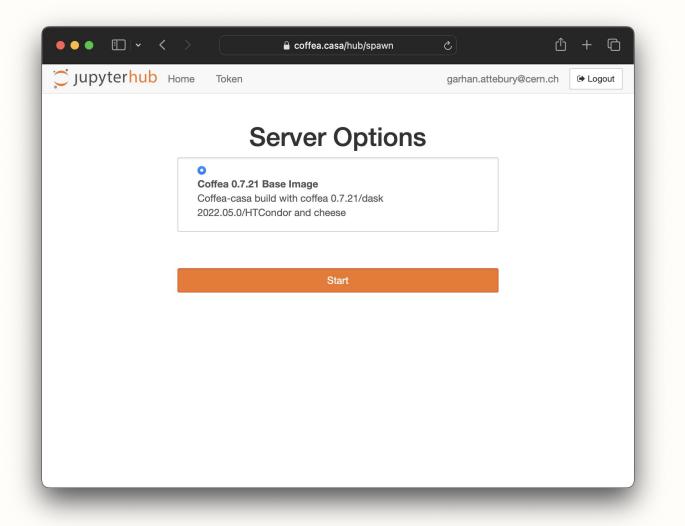
• CMS-Prod (<u>https://coffea.casa</u>)

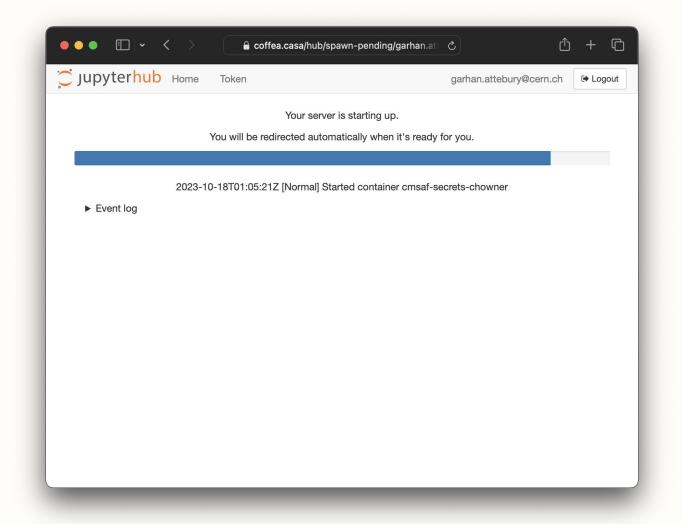
• CMS-Dev

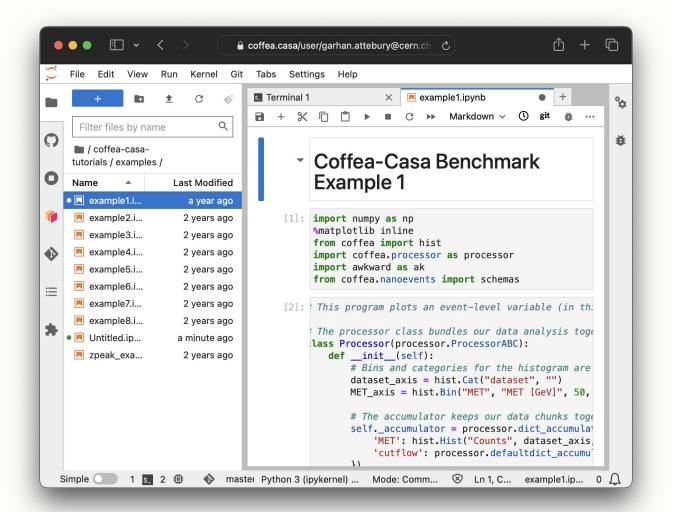
Opendata Analysis Facility @ T2_US_Nebraska

Useful Links

Coffea-Casa Support Page Coffea-Casa Docs


News

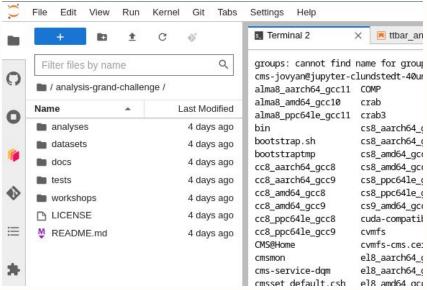

Watch here for announcements!


Register for access

Authorized Users Only: Sign in with OAuth 2.0

- Opendata-Prod (https://coffea-opendata.casa)
- Opendata-Dev

Workflow Scale Out


Scale out is accomplished with a custom Dask-Jobqueue Class that deploys Dask worker nodes in either our T2 resource or in an condor cluster running inside the Flatiron kubernetes.

name	address	nthreads	сри	memory	limit	memory %	managed	unmanaged	o unmanageo		# fds
Total (26)	jų.	52	11 %	9.9 GiB	150.1 GiB	6.6 %	70.7 KiB	1.8 GiB	8.2 GiB	0.0	974
htcondor1	1879 tls://red-c7123.unl.edu:33963	2	12 %	395.1 MiB	5.7 GiB	6.7 %	2.6 KiB	100			
htcondor1	1879 tls://red-c7124.unl.edu:37153	2	12 %	393.1 MiB	5.7 GiB	6.7 %	2.6 KiB	Red			IUUI
htcondor1	1879 tls://red-c7125.unl.edu:34933	2	10 %	402.2 MiB	5.7 GiB	6.9 %	2.6 KiB	1 Marsh	High Th	roughput	Computing
htcondor1	1879 tls://red-c7122.unl.edu:45901	2	14 %	359.6 MiB	5.7 GiB	6.1 %	2.6 KiB	55.0 MiB	304.6 MiB	0.0	37
htcondor1	1879 tls://red-c7127.unl.edu:45173	2	8 %	399.3 MiB	5.7 GiB	6.8 %	2.6 KiB	55.6 MiB	343.7 MiB	0.0	37
htcondor1	1879 tls://red-c7126.unl.edu:36439	2	14 %	362.5 MiB	5.7 GiB	6.2 %	2.6 KiB	55.7 MiB	306.8 MiB	0.0	37
htcondor1	1879 tls://red-c7123.unl.edu:38615	2	14 %	400.6 MiB	5.7 GiB	6.8 %	2.6 KiB	57.8 MiB	342.8 MiB	0.0	37
htcondor1	1879 tls://red-c7124.unl.edu:40741	2	12 %	398.5 MiB	5.7 GiB	6.8 %	2.6 KiB	55.7 MiB	342.8 MiB	0.0	36

Storage & Data Access

- Each user give 10GB of persistent storage on login
- XCache via Tokens issued at login
- cern.ch CVMFS mounted in the user pods
- dasgoclient / rucio / EOS access
- User's T2 /store/user mounted in the user pod

Slide shamelessly stolen from Carl Lundstedt

Triton Inference Service

- To leverage the few GPUs we have an inference service is deployed
- Training sets are able to be stored in an S3 bucket deployed for just this task.

s3://rook-ceph-rgw-my-store.rook-ceph.svc:80/triton-c9adf042-ffb8-4221-bd42-e385efb1d0e2

Option	Value	
*		
server_id	triton	
server_version	2.25.0	
server_extensions	<pre> classification sequence model_repository model_repository(unload_dependents) schedule_policy model</pre>	
<pre> model_repository_path[0]</pre>	s3://rook-ceph-rgw-my-store.rook-ceph.svc:80/triton-c9adf042-ffb8-4221-bd42-e385efb1d0e2	
<pre> model_control_mode</pre>	MODE_EXPLICIT	
startup_models_0		
<pre> strict_model_config</pre>	0	
rate_limit	OFF	
<pre> pinned_memory_pool_byte_size</pre>	268435456	
<pre>cuda_memory_pool_byte_size{0}</pre>	67108864	
response_cache_byte_size	0	ח
<pre> min_supported_compute_capability</pre>	6.0	
strict_readiness	0	
exit_timeout	30	

How it's going...

"We have a Tier-2 cluster!" "Great! Lets do kubernetes too." "We now have a Tier-2 and kubernetes!" "Great! Lets integrate the two."

"We now have a Tier-2, k8s, and a boatload of technical debt..."

Ok, not that bad. We have other kubernetes clusters for other projects. Enough expertise locally that we're not *not* going to do it.

Wishlists...

- Dask workers as HTCondor jobs on our Tier-2 (done)
- Dask workers with native access to the Ceph storage on our Tier-2 (technically possible, but *no*)
- Skyhook on the Tier-2 Ceph storage (custom images, technically possible, but again *no*)

- All roads lead to \rightarrow k8s it seems
- USCMS Tier2 native in Kubernetes? Why not?

Future plans

- Continue iterating to make user experience more pleasant
 - CVMFS available within notebooks (exists)
 - EOS access and dasgoclient/rucio clients (exists)
 - Custom image support via Binderhub (not yet)
- Performance, especially latency
 - Ideally not on 13 year old hardware this time.
 - GPUs (more, and MIG-able ones would be nice)
- Reproducibility at other sites
- Expanded / refreshed / new kubernetes clusters (Cilium?)
- IPv6 (sorry Dave!)
 - Tier-2 Ceph and k8s are v4 only at present
- Rather than integration of Flatiron with Tier-2, recreate Tier-2 natively within Flatiron

... and now to tear it all down

SOUTH STADIUM REPLACEMENT 270 DEGREE CONCOURSE VERTICAL CIRCULATION UPGRADES NORTH STADIUM RENOVATIONS

Analysis Facility Lives Here

Thanks to the others involved: Carl Lundstedt, John Thiltges Oksana Shadura, Andrew Wightman, Sam Albin, Brian Bockelman

https://iris-hep.org/projects/coffea-casa.html

<u>Coffea-Casa: building composable analysis facilities for the HL-LHC</u> Presentation from Brian Bockelman at CHEP 2023

<u>AGC Analysis Facility Summary Presentation</u> by Carl Lundstedt at AGC Workshop, May 4, 2023