NET2: a first example of OpenShift/OKD for Tier 2 provisioning and cluster management in US ATLAS

Eduardo Bach (UMass)

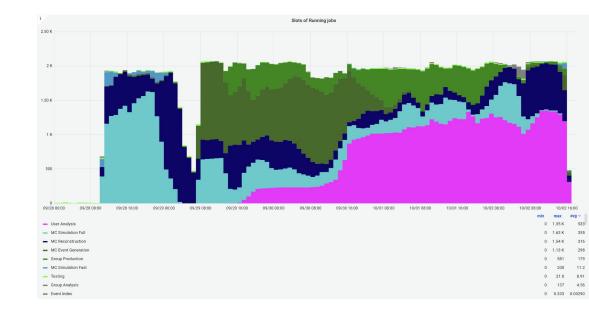
Will Leight (UMass), Rafael Coelho Lopes de Sá (UMass), Verena Martínez (UMass) Fernando Barreiro Megino (UTA)

HEPiX Autumn 2023, University of Victoria, Canada

The Northeast Tier 2 (NET2) is a new Tier 2 cluster at the Massachusetts Green High Performance Computing Center (MGHPCC), a zero-carbon data center near UMass Amherst

- NET2 is built as a native Kubernetes site using OKD/OpenShift
- We present the first results of NET2 in production
- We discuss the advantages of using OKD/OpenShift to deploy a Tier 2 site
- We describe the essential steps for achieving production readiness and the next steps.

NET2 is a US-ATLAS site with a pure OKD cluster


Not a traditional system

- No CE, Condor, PSB, or Slurm
- OKD: the community distribution of Kubernetes that serves as the upstream project for Red Hat OpenShift.
- Direct submissions to Kubernetes API;

Now in production

- Request for new queue: Sep/20
- First HammerCloud jobs: Sep/27
- Different types of jobs: Sep/28
- Began production: Sep/29

From opening the queue to production in less than 2 weeks.

NET2 operates completely as an OKD cluster. No subclusters!

Preliminary results

The new Tier 2 has started operation with good efficiency, comparable to other Tier 2 in the US

100%

80%

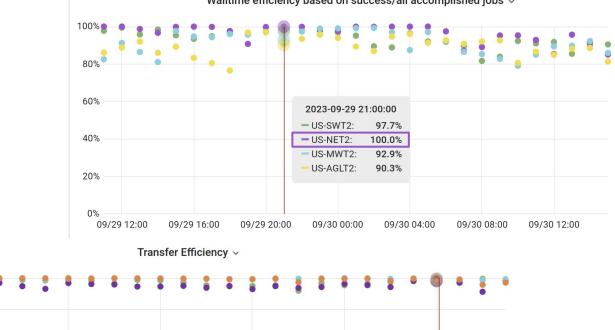
60%

40%

20%

0%

09/29 12:00


•

09/29 16:00

09/29 20:00

09/30 00:00

09/30 04:00

Walltime efficiency based on success/all accomplished jobs ~

2023-09-30 12:00:00 - US-SWT2:

- US-NET2:

- US-MWT2:

- US-AGLT2:

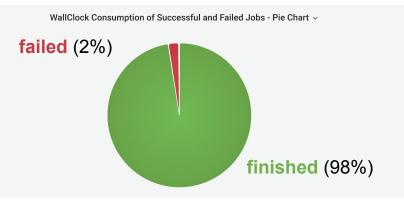
09/30 08:00

98.5%

98.0%

99.8%

99.3%


09/30 12:00

Oct 17th, 2023

4

Queue name	Queue type	Region	Status	Job type	Resource type	¢	N running slots	N jobs total ∳	% 🔒	assigned	activated	running	transferring	merging	finished	failed
AGLT2_MERGE 🖄 🛱 🔣	production	US	online	prod	all		20	323	0.7	0	4	13	3	0	298	2
BNL_PROD_INTEL 🚳 🐼 🔣	unified	US	online	analy	all		16	657	0.8	0	0	2	0	0	650	5
MWT2_VHIMEM_UCORE 🖄 🛱 🔣	production	US	online	prod	all		642	847	1.1	0	4	82	8	0	743	8
NET2_Amherst 🎋 🏠 🔣	unified	US	online	prod	all		720	2059	1.4	0	973	265	382	0	429	6
NET2_Amherst 🎋 🏠 🔣	unified	US	online	analy	all		1,334	3472	1.5	0	1585	648	0	0	859	13

Panda is reporting comparable results.

All the problems after launch are unrelated to the use of Kubernetes/OKD.

Container-native batch computing

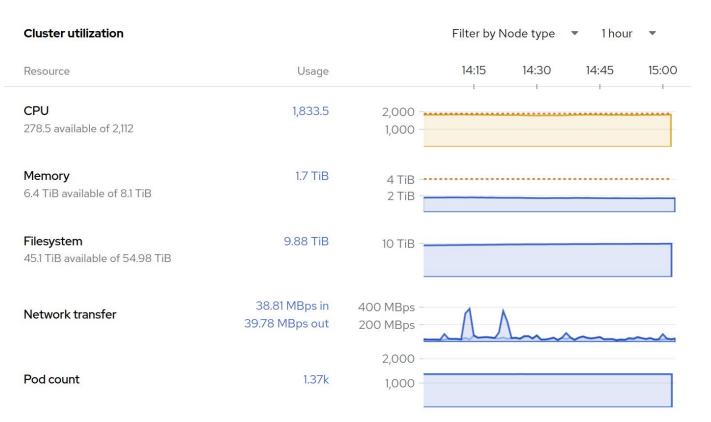
- NET2 employs Kubernetes for streamlined batch computing.

Harvester & Kubernetes API

- Harvester submits ATLAS grid jobs directly to Kubernetes API.
- Jobs run as containerized pods.

Kubernetes job resource

- Utilizes the "job" resource type for pod control.
- Ensures successful pod termination, offloading tracking responsibility from Harvester.


Resource allocation

- Harvester sets specs like memory and CPU for each job.
- Kubernetes handles scheduling based on resource availability.

Credential management

- Regular updates of X509 proxies as Kubernetes secrets.
- Enables pilot jobs to authenticate with grid services.

This week NET2 is currently providing approximately 2000 cores.

After S&C week, new racks are being added to the cluster, which will quickly ramp up to a size comparable to other US Tier 2 sites.

OKD: Tool to manage it all, including bare metal


```
piVersion: v1
baseDomain: net2.mghpcc.org
 name: compute
 - cidr: 69.16.44.0/24
 networkType: OVNKubernetes
 name: worker
ontrolPlane:
 name: master
   baremetal: {}
   bootstrapOSImage: http://69.16.44.252:8080/fedora-coreos-37.20221127.3.0-gemu.>
   bootstrapExternalStaticIP: 69.16.44.32
   bootstrapExternalStaticGateway: 69.16.44.1
   bootstrapExternalStaticDNS: 8.8.8.8
   provisioningDHCPRange: 172.20.174.33,172.20.174.254
   provisioningNetworkCIDR: 172.20.174.0/23
   clusterProvisioningIP: 172.20.175.252
   bootstrapProvisioningIP: 172.20.174.2
   externalBridge: baremetal
   provisioningBridge: provisioning
     - 69.16.44.30
     - 69.16.44.31
     - name: node034
       role: worker
         address: redfish://172.20.173.34/redfish/v1/Systems/System.Embedded.1
         isableCertificateVerification: True
       bootMACAddress: B0:7B:25:D4:E0:AA
```

The cluster is defined using a single yaml file

Single node OKD cluster will bootstrap the control planes (using Ironic/Terraform)

BMH node069	Externally provisioned	N node069	control-plane, master	redfish://172.20.173.6 9/redfish/v1/Systems /System.Embedded.1
BMH node070	 Externally provisioned 	N node070	control-plane, master	redfish://172.20.173.7 0/redfish/v1/Systems /System.Embedded.1
BMH node071	 Externally provisioned 	Node071	control-plane, master	redfish://172.20.173.71 /redfish/v1/Systems/ System.Embedded.1

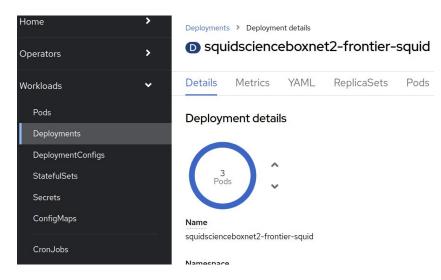
MachineHealthChecks	BMH node044	Provisioned	N node044	worker	redfish://172.20.173.44/redfish/v 1/Systems/System.Embedded.1
Bare Metal Hosts	BMH node045	🛛 Available		-	redfish://172.20.173.45/redfish/v1 /Systems/System.Embedded.1
MachineConfigs	(BMH) node046	 Inspection error 			redfish://172.20.173.46/redfish/v
MachineConfigPools	Indeo40	• Inspection error	-	-	1/Systems/System.Embedded.1
	Bare Metal Hosts > Bare Metal Host details				
	(EMH) node044				Actions 🝷
	Overview Details YAML Networ	k Interfaces Disks Events			
	Details View all	Status		Activity	View events
	Host name node044	Provisioned S Hardw	vare 😧 Powered on	Ongoing	
	Role worker			There are no ongoing activi	
	Node	Utilization	1 hour 💌	Recent events	Pause
	N node044	Resource Usage	19:30 19:45 20:00 20:15	There are no recent events.	
	Inventory				
	199 Pods	CPU 62.4	50 -		
	1 Disk	Memory 112.8 GiB	100 GiB		
	7 NICs	138.5 GiB available of 251.3 GiB			
	64 CPUs	Filesystem 115.8 GiB 1.63 TiB available of 1.75 TiB	100 GiB		
		45.38 KBps in Network Transfer 53.6 KBps out			
Oct 17th, 2023		Pod count 45	50 -		9

Single tool to manage all the aspects of a Tier 2 cluster

- Provision directly from bare metal (using the embedded Ironic features)
- Used to deploy resources (Squid, CVMFS) needed for grid computing
- Provisioning/recovering from disasters fully automated: from erasing the nodes disks to starting to receiving jobs in less than 3 hours!

Potential to save a considerable amount of admin labor

It can unify computing resources from different systems under the same administration: often important in large data centers (like the MGHPCC, where the NET2 cluster is located).

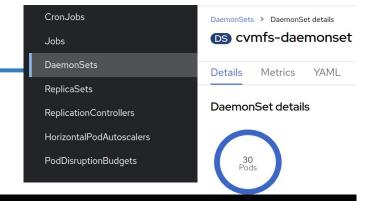

Helm chart by CERN's ScienceBox:

Ryan's (UVic) contributions to the image made it nearly working out of the box

Setup is (easily) highly scalable

We plan to suggest modifications to facilitate adoption across other OKD clusters

WIP: exploring the new CVMFS proxy sharding feature (different namespace)


helm repo add sciencebox
https://registry.cern.ch/chartrepo/sciencebox

Local installation on nodes can present a problem in future automated maintenance

A similar result (performance-wise) can be achieved using a daemonset strategy. We used the CERN provided Docker Container:

registry.cern.ch/cvmfs/service:latest

Proper test of the CSI driver is scheduled for the near future

NOTE

Optionally you can also set the 'CVMFS_REPOSITORIES=unpacked.cern.ch,...' and 'CVMFS_QUOTA_LIMIT=<cache limit in MB>' environment variables

[INF] using CVMFS_QUOTA_LIMIT='4000' [INF] mounting cvmfs-config.cern.ch atlas-condb.cern.ch atlas-nightlies.cern.ch atla CernVM-FS: loading Fuse module... done CernVM-FS: mounted cvmfs on /cvmfs/cvmfs-config.cern.ch CernVM-FS: loading Fuse module... done

Tasks to be accomplished in the near future

Setting up (K)APEL (<u>https://github.com/rptaylor/kapel</u>) for accounting.

Write documentation so that other sites can use the same system

Ramp up the system with more servers

Special thanks for the help received from **ATLAS colleagues**:

Fernando Harald Barreiro Megino, Ryan Taylor, Fabio Luchetti, Rodney Walker, Doug Benjamin, Hironori Ito, Petr Vokac, Frederick Luehring, Ofer Rind, Lincoln Bryant, Rob Gardner

And also from the **RedHat research colleagues**:

Heidi Dempsey, Lars Kellogg-Stedman, Christopher Tate, Michael Zink

Questions?