

Design and measurements for PSI-Trieste linearizer

M. Dehler (plus tons of other contributing people!) PSI, Switzerland

- General remarks
- Electrical and mechanical Design
- Measurements and Performance

A basic remark:

- Every passive electromagnetic pickup (BPM, WCM etcetc) is a wake field monitor!
- Form follows function (the Bauhaus era principle) what are possible functions?
- Amplitude (which time or amplitude resolution, suitable for real time/feedback tasks?)
- Phase (which time or amplitude resolution, suitable for real time/feedback tasks?)
- Position (....)
- Effects on beam quality (e.g. emittance dilution)
- Properties of your structure instead of your beam

In Design, try to concentrate on select feature! I once tried to analyze HOM signals from FLASH – too much information!

PAUL SCHERRER INSTITUT

Combining CG and DDS prinples: the CG part

•Long constant gradient design: 72 cells, active length 750 mm

- •No HOM damping
- •Cooling design for 1 usec/100 Hz RF pulse
- •Use $5\pi/6$ phase advance:
 - Long cells with large mean aperture of 9.1 mm: small transverse wake
 - Intrinsically lower group velocity: Good gradient even for open design with large iris
- •Wake field monitors to ensure optimum structure alignment
- •Average gradient 40 MV/m (30 MeV voltage) with 29 MW input power
- •Group velocity variation: 1.6-3.7%
- •Fill time: 100 nsec
- •Average Q: 7150

Above: field distribution as calculated with ACE3P

Prototype stack

Propagation characteristics of transverse HOM in multicell structures

Dispersion of a typical cell:

Coupling to backward wave

•Synchronous phase of lower (strong kick) band near to π

Lower dipole band versus cell No

From distribution, we see distinct frequency bands

Cell 36 as upstream monitor

Micha Dehler, CLIC towards Readiness Report 2025-26 - Wakefield Monitors, June 2023

Cell 63 as downstream monitor

The DDS contribution: pickup geometry

TE type coupling minimizes spurious signals from fundamental mode and longitudinal wakes

Need only small coupling (Qext<1000) for sufficient signal

Minor loss in fundamental per- formance: 10% in Q, <2% in R/Q

Output wave guides with coaxial transition connecting to measurement electronics

Big advantage: Even accounting for mechanical tolerances, extremely strong suppression of longitudinal signals – precondition for ultra high sensitivity measurements!!

Output signal spectra

Micha Dehler, CLIC towards Readiness Report 2025-26 - Wakefield Monitors, June 2023

Signal envelopes of wake monitors

Can we learn something about internal misalignments?

Micha Dehler, CLIC towards Readiness Report 2025-26 - Wakefield Monitors, June 2023

Comparing random misalignment with systematic offset

Micha Dehler, CLIC towards Readiness Report 2025-26 - Wakefield Monitors, June 2023

Resolution

Comparing random misalignment with systematic offset

Micha Dehler, CLIC towards Readiness Report 2025-26 - Wakefield Monitors, June 2023

•Beam was set to golden orbit. Structure was moved (instead of beam) using the mechanical mover system to have clear picture of emittance dilution.

• Some measurements with high speed scopes (45 GHz bandwidth), some with EO front end

•Questions:

- Leakage of klystron power into monitor outputs
- Wide bandwidth response
- Longitudinal wakes visible (an indication of internal tolerances)?
- Emittance dilution versus optimum WFM alignment

PAUL SCHERRER INSTITUT

Residual signals

Signal without beam shows residual signal coming from X Band RF system (taking account of cable attenuation level ~ 1 V at WFM output)

FFT of signal shows:

•No trace at all of the 20 MW fundamental mode power, which means rejection by WFM in the excess of 130 dB (Making me really happy!)

•Despite considerable attenuation by the 8 m cable quite a bit of signal at 24 and 36 GHz harmonics, probably coming from klystron (or field emission in the structure?).

•24/36 GHz far in the overmoded regions: cannot say anything about real power level inside and near structure

Typical signal output

PAUL SCHERRER INSTITUT

Sensitivity

- Signal levels accounting for cable attenuation of 25 dB at 16 GHz
- Minimum signal x: +200 um
- Minimum signal y: -120 um
- Levels of 10 V/mm roughly OK:
 - CST wake solver gives 4V (full spectrum using relatively long bunch)
 - Eqv. Circuit model 6 V
 - Cannot yet do reasonable comparison to signal shape (pulse distortion by cable etc.)
 - Open question: cross talk between X and Y:
 - Structure is rotated, so should expect signal in both planes, but
 - Signal shapes should be very similar between upstream X and Y, downstream X and Y

Signal spectra

WFM spectrum of horizontal tilt compared to offset

In principle, the spectrum also contains information about bends and random internal misalignments, but current setup is too noisy....

PAUL SCHERRER INSTITUT

Same measurement using a front end

Micha Dehler, CLIC towards Readiness Report 2025-26 - Wakefield Monitors, June 2023

- Measuring vertical emittance versus structure offset
- Quadratic fit gives minimal emittance for offset y = -75 um (WFM predicts minimum at 100 um)

The proof of principle!

Proven that:

- WFM signals predict emittance dilution due to structure
- Signals contains information about internal misalignment (tilt etc.)
- Not easily usable as a BPM (sign of offset would need a kind of I/Q processing, which is quite involved given the bandwidth).

Current state of things

- Structure in operation at SwissFEL, WFMs not part of control system
- WFM signals available in raw/EO form, possibility of parasitic tests

Any use for CLIC project?

Thank you very much for the attention