Towards a full Run 2 W mass measurement at LHCb

Miguel Ramos Pernas

University of Warwick

miguel.ramos.pernas@cern.ch

EPFL seminar 26/06/2023

European Research Council

Established by the European Commission

Recent evolution of the W mass measurement

The Electroweak theory

Main magnitudes ruling EW interactions are related to each other:

Abdus Salam, Steven Weinberg and Sheldon Lee Glashow

$$
m_W^2\left(1-\frac{m_W^2}{m_Z^2}\right)=\frac{\pi\alpha}{\sqrt{2}G_F}(1+\Delta)
$$

$$
\Gamma_W\propto G_Fm_W^3
$$
 Higher order corrections

The global EW fit

Global fits to EW observables allow to test current (and new) theoretical model(s)

Recent past of the W mass measurement (2018)

LHCb measures the W mass! (2022)

 $m_W = 80354 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}}$ MeV

… and an elephant appeared in the room

[\[LHCB-FIGURE-2022-003\]](https://cds.cern.ch/record/2806574)

The W mass measurement at LHCb

Production mechanism

- A proton-proton collider is a challenging environment to measure the W mass:
	- W bosons are produced in a mixture of positive and negative helicity states
	- Must accurately describe the angular cross-section (larger uncertainties)
	- More backgrounds through heavy-flavour processes
- Profit from a higher total production cross-section and larger calibration samples

Related detector features

- Detector in the forward region with excellent momentum and vertex resolutions
- Coverage is complementary to ATLAS and CMS (with some overlapping at low pseudorapidity)

W and Z production at LHCb **Exercise 2016** [[JHEP01\(2016\)155](https://doi.org/10.1007/JHEP01(2016)155)]

- Z decays constitute the most natural way of controlling muons from W decays and the production cross-section
	- Most of the W mass analyses rely on extrapolating the knowledge from the Z to the W
- Interesting anti-correlation of the PDF uncertainties at the LHC

Analysis strategy

- Carefully measure the muon transverse momentum
- Use plain LHCb Pythia8 simulation and reweight using samples with generator-level information from different models
- Corrections due to the efficiencies of the different selection steps (reconstruction, trigger, topological, offline selection)
- Study and determine background from simulation (except for the contribution from hadrons originating decays-in-flight)
- To obtain the W mass we fit dynamically reweighted simulation histograms to the data with several floating nuisance parameters and the W mass

Selections

- EW physics with leptons in the final state can be studied at LHCb with simple selections based on the transverse momentum, impact parameter, isolation and particle identification
- Selection biases studied in data and simulation for Z and Υ(1S) decays (isolation biases only studied in the former)
	- Associated systematic uncertainties determined by varying the binning scheme, parametrizations and selections

Detector alignment and calibration

- The LHCb trigger changed significantly for Run 2
- Real-time alignment and calibration can be optimized offline for EW studies
- Need to re-process the data using dedicated tools
- Apply corrections and smearing to simulation to account for subtle effects that significantly affect the momenta distributions

Calibration using muons **Calibration**

Charge-dependent curvature biases

- The analysis depends highly on the detector alignment
	- A misalignment of 10µm translates into a O(50MeV) shift
- Default LHCb alignment and calibration not suitable to study candidates with high transverse momentum
- For 2016 we re-run the alignment and calibration offline using Z decays
- Avoid double bias from the momentum resolution using the pseudo-mass method:

$$
M^{\pm} = \sqrt{2p^{\pm}p_T^{\pm}\frac{p^{\mp}}{p_T^{\mp}}}(1-\cos\theta)
$$

Inspired by [Phys. Rev. D 91, 072002](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.072002)

Corrections with the pseudomass method

Fit the asymmetries to the pseudomass and translate this into shifts in q/p

This will be the only curvature-bias correction for the full Run 2 analysis

Smearing the simulation

Determining the efficiencies

Three main sources of acceptance biases:

- Trigger efficiencies
- Muon-identification efficiencies
- **Isolation requirements**

 $+ i/2$

 $\varepsilon_{\text{data}} / \varepsilon_{\text{sim}}$

 $\overline{}$

Trigger efficiency $-\pi < \phi < -\pi/2$ LHCb 1.7 fb $^{-1}$ $= 10, 4.40 \leq \eta \leq 5.00$ $= 9$ 4.12 < $n \le 4.40$ $i = 8, 3.85 < \eta < 4.12$ $i = 7, 3.58 < \eta < 3.85$ $i = 6, 3.30 < \eta < 3.58$ $i = 5, 3.02 < \eta < 3.30$ $i = 4$, 2.75 < η < 3.02 $i = 3, 2.48 < \eta < 2.75$ $i = 2, 2.20 < \eta < 2.48$ $i = 1, 1.93 < \eta < 2.20$ 10^{-1} predominantly at the

Backgrounds

- Most of them modelled from dedicated simulated samples
	- \circ Single-top, quark/anti-quark (t, b, c), Z/W decays, Drell-Yan
	- Cross-sections normalized to W and Z yields
- Description of the QCD background (decays-in-flight) obtained from data
	- Sample with inverted muon-identification requirements
	- Weight and parametrize the data using a Hagedorn distribution
- Accurately describes the Jacobian peak (region with highest sensitivity to $m_{_W}\!)$

22

Modelling the W boson transverse momentum

The limited knowledge on the transverse momentum of the W bosons can be compensated by floating QCD parameters [\[arXiv:1907.09958\]](https://arxiv.org/abs/1907.09958)

Float m_W, α_s, \hat{k}_T in the fit

Simulating signal decays

[\[JHEP 01 \(2022\) 036\]](https://doi.org/10.1007/JHEP01(2022)036), [\[LHCB-PAPER-2021-024\]](https://cds.cern.ch/record/2780004)

- POWHEG + Pythia gave the best description of the unpolarized cross-section and was chosen as the baseline generator for the 2016 analysis
	- Varied success with other generators, used to determine systematic uncertainties
- DYTurbo performs well at reproducing the angular cross-section

Modelling the boson transverse momentum

- The momentum of the outgoing muon is strictly related to that of the boson
- Must ensure the correlation is maintained after the fit
	- Fit *Z* variables simultaneously to the W mass fit

$$
\phi^* \equiv \arctan\left(\tfrac{\pi-\Delta\phi}{2}\right)/\cosh\left(\tfrac{\Delta\eta}{2}\right) \sim \tfrac{p_T}{M}
$$

 $\frac{d\sigma}{d\phi_{\eta}^{*}}$ [pb] \rightarrow $\Theta_{q\rightarrow Q}$ $+00$ $10²$ **LHCb** 5.1 fb^{-1} $O_{4,4}$ \sqrt{s} = 13 TeV $\frac{1}{\alpha}$ 10 $\frac{10}{10}$ **Statistical Uncertainty Total Uncertainty Resbos** Pythia, LHCb tune **POWHEG+Pythia MatchBox** O 10^{-} 10^{-2} 10^{-1} ϕ_n^*

[\[JHEP 07 \(2022\) 026\]](https://arxiv.org/abs/2112.07458)

Polarized cross-section

- The angular part of the cross-section is better described with DYTurbo
- However, the angular coefficients suffer low accuracy at low transverse momentum values [\[JHEP 11 \(2017\) 003\]](https://arxiv.org/abs/1708.00008)
- Uncertainties from DYTurbo mitigated by floating A_2
	- Otherwise the uncertainty would be O(30 MeV)
	- The preferred value in the fit is however consistent with DYTurbo predictions

[\[JHEP 01 \(2022\) 036\]](https://doi.org/10.1007/JHEP01(2022)036), [\[LHCB-PAPER-2021-024\]](https://cds.cern.ch/record/2780004)

Considerations for the future

- Aim at using a single generator to describe the cross-section
- Considering to switch into more modern generators to fully describe the cross-section:
	- \circ We expect that the difference between $\alpha_{\rm s}$ for W and Z is reduced
	- Attempt to move to N2LO, N2LL predictions of both cross-sections
	- Partial calculations at N3LO, N3LL worth to study
	- Exploring the usage of NNPDF 4.0
- Cross-checks to be made with POWHEG + Pythia

Improving the simulation

- Take advantage of the latest developments on the theory side:
	- Switch to more accurate predictors of the boson production
	- Explore new PDF sets (NNPDF 4.0)
- Change the treatment of generators/PDF sets when calculating systematic uncertainties
	- Drop known inaccurate PDF sets or combination of generators
	- Revisit the way to handle the different predictors and the order of the accuracy (NLL, NNLL, …)
- Completely revisit the QED (+FSR) modelling using POWHEG-EW: $NLO(QCD) + NLO(EW)$

Treatment of PDF sets

- PDFs chosen from three different recent sets
	- NNPDF3.1: [\[Eur. Phys. J. C 77, 663 \(2017\)\]](https://doi.org/10.1140/epjc/s10052-017-5199-5)
	- CT18: [\[Phys. Rev. D 103, 014013\]](https://doi.org/10.1103/PhysRevD.103.014013)
	- o MSHT20: <u>Eur. Phys. J. C 81, 341 (2021)</u>
- The result is an average of the three assuming 100% correlation

[\[JHEP 01 \(2022\) 036\]](https://doi.org/10.1007/JHEP01(2022)036), [\[LHCB-PAPER-2021-024\]](https://cds.cern.ch/record/2780004)

Systematic uncertainties

Reducing the systematic uncertainties

(2016)

Cross-checks

Cross-checks are vital to validate different aspects of the analysis:

- Differences in magnet polarity
- Curvature biases in candidates bending in the same direction
- Possible detector biases in different η/φ regions
- W-like Z mass measurement, which validates the fit procedure (agreement at one standard deviation)
- Use of NNLO PDFs to test next-order effects of the PDFs (1 MeV variation)
- Separate W^*/W^- mass measurement, to study charge-dependent biases (results in agreement)

Subset	$\chi^2_{\rm tot}/\rm{ndf}$	δm_W [MeV]
Polarity $=-1$	92.5/102	
Polarity $=+1$	97.3/102	-57.5 ± 45.4
$\eta > 3.3$	115.4/102	
$\eta < 3.3$	85.9/102	$+56.9 \pm 45.5$
Polarity $\times q = +1$	95.9/102	
Polarity $\times q = -1$	98.2/102	$+16.1 \pm 45.4$
$ \phi > \pi/2$	98.8/102	
$ \phi < \pi/2$	115.0/102	$+66.7 \pm 45.5$
$\phi < 0$	91.8/102	
$\phi > 0$	103.0/102	-100.5 ± 45.3

[^{\[}JHEP 01 \(2022\) 036\]](https://doi.org/10.1007/JHEP01(2022)036), [\[LHCB-PAPER-2021-024\] \(supplementary\)](https://cds.cern.ch/record/2780004)

More on cross-checks

- Checks with alternative binning schemes/fit ranges
- Modify the number of nuisance parameters

[\[JHEP 01 \(2022\) 036\]](https://doi.org/10.1007/JHEP01(2022)036), [\[LHCB-PAPER-2021-024\] \(supplementary\)](https://cds.cern.ch/record/2780004)

Fit to extract the W mass

[\[JHEP 01 \(2022\) 036\]](https://doi.org/10.1007/JHEP01(2022)036), [\[LHCB-PAPER-2021-024\]](https://cds.cern.ch/record/2780004)

- 5D-weighted likelihood fit using the Beeston-Barlow approach $(m_w, p_T, y, \vartheta, \varphi)$
- Fit simultaneously *W* and *Z* data
- Floating: W, Z and QCD background yields, m_w , α_s (W), α_s (Z), intrinsic k_T and A_3

The result

- Measurement of the W mass using 2016 data
- Published on January 2022
- Shows the LHCb capabilities of doing high-precision measurements

Towards a combination of the measurements

Comparison of uncertainties

Towards a combination of all the measurements

Combining W mass measurements is not straightforward:

- Measurements are provided at different orders in QCD predictions
- Each experiment gives the results for different PDF sets
- The results are correlated among experiments (e.g. LHCb and ATLAS)

Towards a combination of the measurements

- The most difficult part is transporting the results to a common ground:
	- **D0**: ResBos CP (N2LO, N2LL) with CTEQ66 PDFs (NLO)
	- **CDF**: ResBos C (NLO, N2LL) with CTEQ6M PDFs (NLO)
	- **ATLAS**: POWHEG + Pythia8 (NLO + PS) combined with DYTurbo for A_i (N2LO) with CT10 PDFs (N2LO)
	- **LHCb**: POWHEG + Pythia8 (NLO + PS) combined with DYTurbo for A_i (N2LO) and averaging NNPDF 3.1, MSHT20 and CT18 PDFs (NLO)
- Preliminary results are now under review of the different collaborators (LHC-Tevatron)

Variation of the global EW fit with the CDF II result

 $(*)$ comparison to PDG value, not included in fit as input parameter

Final remarks

Is including 2017 and 2018 data straight-forward?

- It is straight-forward, but we must ask ourselves the following questions:
	- Can we optimize any part of the analysis strategy?
	- Can we use any of the new options available in the market?
	- Are there ways to make the result more accessible/easy to use for people outside the collaboration?
- The result using 2016 data shows the capabilities of the LHCb detector to contribute to this measurement, but it is worth re-considering our strategy before studying the full Run 2 data sample

A few notes on reproducibility

- Reproducibility is one of the main pillars of science
- Some fields are currently facing a crisis, leading to unpublished dead-ends, low research efficiency, biases, ... (see [Is there a reproducibility](https://doi.org/10.1038/d41586-019-00067-3) [crisis in science?\)](https://doi.org/10.1038/d41586-019-00067-3)
- HEP data is hard to reproduce:
	- Unfeasible to fully mimic the experimental conditions
	- Data can not be retriggered
	- Expertise on old tools and data-taking conditions decays over time
- However, things improve drastically at the analysis level (i.e. after basic data-processing)

Long-term plans

- The W mass determination at LHCb with full Run 2 data will allow to clarify the picture about this measurement
- Afterwards, LHCb can provide very useful data to further tune the generators and understand QCD and EW effects
	- Cross-sections at different energies (5 TeV, 13 TeV) of W and Z bosons
	- Drell-Yan studies
	- Weak mixing angle (forward-backward asymmetry)
	- Studies with electrons in the final state
- On Run 3, with a similar detector and analysis environment the precision will increase with the square root of the luminosity
- On Run 4 and beyond, an improved electromagnetic calorimeter system might improve the studies with electron modes at LHCb

[\[LHCB-FIGURE-2022-003\]](https://cds.cern.ch/record/2806574)

comments and suggestions

- The W mass measurement using 2016 data is a big milestone at LHCb
- There is a huge ongoing effort to optimize the analysis and reevaluate systematic uncertainties
- Improvements on the physics modelling are strictly necessary to be competitive
	- Total and polarised cross-section
	- QED and FSR effects

 $m_W = 80354 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}}$ MeV

Summary

Thank you!

Results from other experiments

 $m_W = 80367 \pm 13_{\text{stat}} \pm 22_{\text{syst}} \text{MeV}$ $m_W = 80370 \pm 7_{\text{stat}} \pm 11_{\text{exp. syst.}} \pm 14_{\text{theo. syst.}} \text{MeV}$ $m_W = 80433.5 \pm 6.4_{\rm stat} \pm 6.9_{\rm syst} \rm MeV$

- Barrel-like detectors allow to measure missing transverse energy and the transverse mass
	- Measurement can be done measuring different quantities
- In modern experiments, a similar sensitivity can be obtained measuring the momentum of the outgoing lepton

Anti-correlation of uncertainties from PDFs

[Eur. Phys. J. C 75, 601 \(2015\)](https://arxiv.org/abs/1508.06954v2)

QED corrections (2016 analysis)

[\[JHEP 01 \(2022\) 036\]](https://doi.org/10.1007/JHEP01(2022)036), [\[LHCB-PAPER-2021-024\] \(supplementary\)](https://cds.cern.ch/record/2780004)

Number of candidates per experiment

ATLAS: [\[EPJC 78 \(2018\) 110\]](https://arxiv.org/abs/1701.07240)

LHCb: [\[JHEP 01 \(2022\) 036\]](https://doi.org/10.1007/JHEP01(2022)036), [\[LHCB-PAPER-2021-024\] \(supplementary\)](https://cds.cern.ch/record/2780004)

CDF: [\[Science, 376, 6589, \(136-136\), \(2022\)\]](https://doi.org/10.1126/science.abk1781)

Towards doing an unfolded measurement

[\[JHEP 01 \(2022\) 036\]](https://doi.org/10.1007/JHEP01(2022)036), [\[LHCB-PAPER-2021-024\]](https://cds.cern.ch/record/2780004)

- Ongoing studies to see if we can publish the unfolded transverse momentum distribution
- Facilitate comparing prediction and observables
- Quite challenging from the experimental point of view:
	- Must have a good control of the backgrounds (especially in the selection variables)
	- The systematic uncertainties might turn much bigger with the unfolding methods

Expected sensitivity for the full Run 2 analysis

- We expect to reduce the overall experimental uncertainty to 15 MeV
- The analysis becomes systematically dominated
	- A more careful description of the physics is necessary
- Eager to see the result of combining the measurements of all the LHC experiments

 $m_W = 80354 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}}$ MeV