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CMOS: “Moore’s Law”

Observation [Moore, 1965+1975]

• Time evolution of optimal manufacturing costs for integrated circuits results in
exponential increase of number of components per circuit

• For a longer time period transistor count doubled every 24 month

[Moore, 1965] [Bohr, 2007]
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http://dx.doi.org/10.1109/N-SSC.2006.4785860
http://dx.doi.org/10.1109/N-SSC.2007.4785534


CMOS: Dennard Scaling

• Dennard scaling allowed to
change the following parameters
at constant power:
• Increase of transistor density

(Moore’s law)
• Increase clock frequency
• Reduce supply voltage

• Only remaining option to
improve performance:
Increase transistor density

[L. Chang et al., 2010]

☞ Trend towards increasing parallelism
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http://dx.doi.org/10.1109/JPROC.2009.2035451


CPU Products Trends
[Karl Rupp, 2015]
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https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/


Digression: Multi-Level Parallelism
A Hardware Perspective

• Instruction-level parallelism: Multiple, independent instructions being executed
concurrently in superscalar processing cores

• SIMD parallelism: Certain Single Instructions can perform the same operations
on Multiple Data

• Device-level parallelism: CPUs with multiple cores, GPUs with multiple
streaming multi-processors

• Node-level parallelism: Multiple CPUs and GPUs per node

• System-level parallelism: Multiple compute nodes
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End of CMOS?

International Roadmap for Devices and Systems (2022 Edition): [IRDS, 2022]

Answer: The industry believes in further CMOS scaling thanks to 3-d stacking
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https://irds.ieee.org/images/files/pdf/2022/2022IRDS_ES.pdf


Rent’s Rule

• Rent’s rule:
T = k Gp

• G . . . Number of logic elements (gates)
• T . . . Number of edge connections (terminals)
• k . . . Rent’s coefficient
• p . . . Rent’s exponent

• Problem: typically p ≪ 1 ☞ Difficult to balance communication and compute
• Selected empirical results for Rent’s rule (data from Bakoglu, 1990): [Lanzerotti et al., 2005]

Design type Rent coefficient Rent exponent
SRAM 6 0.12
Gate arrays 1.9 0.50
Chip and module 1.4 0.63
Board and system 82 0.25
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http://dx.doi.org/10.1147/rd.494.0777


Power Efficiency: The Green500 List

• Green500: Rank supercomputers according to power efficiency
• Metric = floating-point performance vs. power consumption
• Supercomputer = system listed in TOP500
• Performance = HPL performance (like for TOP500)

• Current number #1 (Jun’23): 65.4 GFlop/s/W (or 15.3 pJ/Flop)

• Exascale goal: keep below 20MW (or 20 pJ/Flop)

• Exascale system Frontier: 52.6 GFlop/s/W (or 19pJ/Flop)
• Criticism

• The High-Performance LINPACK (HPL) benchmark load is not representative
• Green500 does not cover full system
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The Green500 List (cont.)

Nov’07

Nov’09

Nov’11

Nov’13

Nov’15

Nov’17

Nov’19

Nov’21
0

10000

20000

30000

40000

50000

60000

70000

M
F

lo
p

/s
/W

BG/P BG/Q

PowerXCell 8i

X
eo

n
 P

h
i

GPU P
E

Z
Y

-S
C GPU Z

et
ta

/E
x
as

ca
le

r

G
P

U
A

6
4
F

X M
N

-3
G

P
U

M
N

-3

A
M

D
 G

P
U

N
V

ID
IA

 G
P

U

11 / 38



HPC Market Size

• Non-recurring engineering (NRE)
costs for developing new technologies
and architectures are huge
• NRE costs funding challenge due to th
HPC market being small
• Market for HPC technologies is small
• Need for significant public funding

for new HPC architectures and
technologies

Computing company market
capitalization:

[Reed et al., 2022]
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http://dx.doi.org/10.48550/ARXIV.2203.02544
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Abstract Machine Model
Single Socket, Homogeneous Cores, DDR+NVM or HBM

[Ang et al., 2014]
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http://dx.doi.org/10.1109/Co-HPC.2014.4


Abstract Machine Model
Discrete versus Integrated Accelerator
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Memory Technologies

• HBM

• DDR

• SSD

• Significant differences in terms of

∆t =
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Bmem

Data for selected currently
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CPU Technologies

Feature Xeon EPYC A64FX Grace POWER9

Model Max 7763 – – –
9480

ISA x86 x86 Armv8 Armv8 Power v3
SIMD ISA AVX512 AVX2 SVE (512) SVE2 (128) VMX
Number of cores 56 64 48 72 22
Base clock frequency [GHz] 1.9 2.45 2.2 3 ⋆ 3.07
Perf. Bfp [1012 FP64/s] 3.4 2.5 3.4 3.1 0.5
Memory technology HBM2e DDR4 HBM2 LPDDR5X DDR4

+ DDR5
Bandwidth Bmem [GByte/s] > 1000 204.8 1000 ∼ 500 170
TDP [W] 300 ⋆ 280 210 ⋆ 250 300
Bfp/TDP [GFlop/s/W] 11 ⋆ 9 16 ⋆ 12 2
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Spotlight: Fujitsu A64FX
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[M. Sato, 2019]
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Accelerator Technologies

Feature NVIDIA AMD Intel

Model V100 A100 H100 MI250x Xe-HPC
Base clock frequency [GHz] 1.3 1.1 ? 1.7 ⋆ 0.9
Performance Bfp [1012 FP64/s] 6.7 7.6 30 47.9 29.5
Memory technology HBM2 HBM2e HBM3 HBM2e HBM2e
Bandwidth Bmem [GByte/s] 900 1555 4000 3277 3277
TDP [W] 300 400 700 560 600
Bfp/TDP [GFlop/s/W] 22 19 43 85 20

Caveat: Clocks (and Bfp) can be highly variable making comparisons difficult
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Spotlight: NVIDIA Grace-Hopper
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Compute Node Designs

• Ultra-fat nodes
• Chassis height ≥ 2U
• ≳ 10 CPUs and/or ACCs

• Fat nodes
• Chassis height = 1− 2U
• 1-4 CPUs and 4-6 ACCs

• Thin nodes
• Chassis height = 1U
• 1-2 CPUs

• Ultra-thin nodes
• Special form-factor
• 1 CPU
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Network Technologies and Architectures

• Popularity of interconnect technologies
based on Top100 (June 2023, system count)

• 62%: Infiniband
• 16%: Slingshot
• 6%: TOFU
• 6%: Aries
• 5%: Omni-Path
• 5%: Other (incl. BXI, Ethernet)

• Topologies used for Top5 (June 2023)

• Dragonfly (e.g. Frontier #1, LUMI #3)
• Torus (e.g. Fugaku #2)
• Dragonfly+ (e.g. Leonardo #4)
• Fat-tree (e.g. Summit #5)

Example: JUWELS Booster’s
dragonfly+ network

L1 01 L1 02 L1 N…

N 01 N 02 N 48…

L2 01 L2 02 L2 M…
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EuroHPC Pre-Exascale Systems

• LUMI at CSC (Finland)
• AMD EPYC CPUs
• AMD Instinct MI250x GPUs
• Slingshot interconnect with dragonfly topology

• Leonardo at CINECA (BSC)
• Intel Xeon CPUs
• NVIDIA A100 GPUs
• Infiniband HDR100 with dragonfly+ topology

• Mare Nostrum 5 at BSC (Spain)
• Intel Xeon CPUs (and others)
• NVIDIA H100 GPUs (and others)
• Infiniband with dragonfly+ topology
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Rebooting Computing

IEEE’s Rebooting Computing Initiative considers 4 levels of change: [Conte et al., 2017]

• Level 1: Introducing new transistors
• But: There are no clear candidates beyond CMOS

• Level 2: Other hidden hardware changes
• Examples: New packaging techniques (3-dimensional stacking, interposers+chiplets)

• Level 3: Architectural changes that are exposed to the programmer but do not
require new algorithms ← focus in the following
• Examples: Reconfigurable computing devices like FPGAs

• Level 4: Fundamental changes of the computing stack requiring new algorithms
• Examples: Quantum or neuromorphic computers
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http://dx.doi.org/10.1109/MC.2017.8


Domain-Specific Accelerators

[Dally et al., 2020]

• Opportunities to benefit from specialisation through
• Specialised instructions that take domain-specific

data structures as input
• Increased parallelism while optimising for data

locality
• Optimised memory hierarchy with local memories
• Reduced overheads due to simplified instruction

processing

• Current examples:
• STX stencil calculation accelerator

(Fraunhofer, DE) [EPI]

• Darwin-WGA genomics accelerator
(Stanford, US) [Turakhia et al., 2019]

• DOJO (Tesla, US) [Talpes et al., 2023]

STX:

Darwin-WGA:

26 / 38

http://dx.doi.org/10.1145/3361682
https://www.european-processor-initiative.eu/wp-content/uploads/2019/12/EPI-Technology-FS-STX.pdf
http://dx.doi.org/10.1109/HPCA.2019.00050
http://dx.doi.org/10.1109/MM.2023.3258906


Data-Flow Architectures

[J. Dennis, 1980]

• In data-flow architectures data becomes processed when arriving at actors
• There may be no instructions
• Actors can be moved close to the data

• Particular suitable for reconfigurable hardware (e.g. FPGAs)

• Example numerical task: Addition of 2 vectors

c⃗ ← a⃗+ b⃗
1 #de f i n e N 128
2 f l o a t a [N] , b [N] , c [N ] ;
3

4 i n t main ( ) {
5 f o r ( i n t i = 0 ; i < N; i++)
6 c [ i ] = a [ i ] + b [ i ] ;
7 r e t u r n 0 ;
8 }
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http://dx.doi.org/10.1109/MC.1980.1653418


Near- and In-Memory Computing

• Near-memory computing = processing units placed
closer to the memory
• Challenge: Integration with CPU

• Protocols like CXL will make that easier

• Challenge: Identification of amenable algorithms
• Need, e.g., localised operands

• In-memory computing = augmented memory devices
supporting computational primitives
• Challenge: Computational errors
• Use for scientific computing in the near future less likely

PIM-HBM: [Lee et al., 2021]

BEACON: [Huangfu et al., 2022]
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http://dx.doi.org/10.1109/ISCA52012.2021.00013
http://dx.doi.org/10.1109/MICRO56248.2022.00057
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Drivers: Distributed Research Infrastructures

• Changing needs of existing user communities and new needs of emerging new
science and engineering domains:
• Support of collaborative research
• Wider access to HPC enabled by higher-level services
• Workflows extending HPC data centre (“computing continuum”) and use of

geographically dislocated services
• Ability to deploy domain-specific platform services

• Example: The European brain research community
has started to operate EBRAINS
• Selected use cases from the brain research community

• Simulations at different scales including large-scale, coupled simulations
• Data processing and machine learning in parts involving extreme-scale data sets
• Interactive computing including visualisation of extreme-scale data sets
• Deployment of a science gateway (“collaboratory”)
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Drivers: Science Instruments

• Large-scale science instruments increasingly have a need
for HPC resources
• High-energy physics experiments
• Light sources
• Radio-astronomy

• New initiative of DoE: Integrated Research
Infrastructure (IRI) [Miller et al., 2023]

• Initial identification of “science patterns”
• Time-sensitive: Time-critical workflows related, e.g., to

timely decision making, experiment steering
• Data integration: Analysis of data from multiple

sources
• Long-term campaigns: Need for sustained access to

resources at scale

[Albrecht et al., 2019]

ATLAS disk storage
estimates:

ESCAPE Data Lake:
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http://dx.doi.org/10.2172/1984466
http://dx.doi.org/10.1007/s41781-018-0018-8


Digression: Digital Twins

Physical entity

Virtual entity #1

Virtual entity #N

Physical-virtual twinning

Virtual-physical twinning

Digital Twin(s)

• Virtual entities = models

• Models may require HPC for simulation or ML training
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Drivers: Destination Earth

• Mission: Mission: Destination Earth aims to develop - on a global scale - a highly
accurate digital model of the Earth to monitor and predict the interaction between
natural phenomena and human activities
• Approach: Distributed infrastructure comprising digital twins implemented, in
particular, on HPC systems
• Key components

• Digital twins and a “Digital Twin Engine”
• Data lake
• Service platform

• Development of use cases as end-to-end solutions
• Coastal area flooding: Improved forecasting and assessment of climate adaptation

measures [ECMWF/Deltares]

• Air quality: Forecasts based on extreme weather events forecasts for national and
regional environmental agencies [ECMWF/FZJ]
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https://stories.ecmwf.int/destine-digital-twins-to-anticipate-the-devastating-effects-of-flooding-in-coastal-areas/index.html
https://stories.ecmwf.int/exploring-ecmwfs-digital-twins-applications-for-air-quality-analysis-and-forecasts/index.html


Destination Earth System

[ESA, 2022]
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https://events.ecmwf.int/event/299/contributions/2951/attachments/1607/2905/DE-Information-Day_ESA.pdf


Computing Continuum

• Emerging paradigm referring to a continuum of resources
available from the (cloud) data centre to the edge (and
beyond)
• Edge devices = devices at the edge of the network
• Motivations for edge computing:

• Faster response time between device and application server
• Need for IoT gateways
• Facilitate data reduction at the edge of the network

• An increasing number of usage scenarios have been
identified where HPC resources need to be integrated in a
computing continuum
• Connect observational data from sensor devices to

large-scale simulations
• Facilitate continues training of large-scale models

One of many views on a
computing continuum:

[Villari et al, 2016]
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http://dx.doi.org/10.1109/MCC.2016.124


Computing Continuum: Research Challenge

• Scheduling within a highly distributed and heterogeneous environment

• Workflow systems

• Software deployment in heterogeneous environments

• Server-less computing

• Data management, protection of sensitive data

• Security and privacy

• Trust
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Summary and Conclusions

• Current challenges in HPC will continue to be relevant in the future
• Technology roadmaps indicate further vast increase of parallelism
• Data transport limitations might become even more critical

• The HPC architectures and technologies are becoming increasingly diverse
• More accelerators and non-conventional technologies will become available
• This diversity cannot be hidden to the users

• Trend towards workflows and use cases extending beyond the data centre
• There are multiple strong science (and industrial) drivers
• Transition from HPC as siloed systems to HPC infrastructures
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