
ERIK LINDAHL

AQTIVATE Kick-off
Cyprus 2023-09-29

SUSTAINABLE PROGRAMMINGSOFTWARE ENGINEERING

INTENDED LEARNING OUTCOMES
Help you develop strategies to be systematic in your coding

Awareness of tools, services and documentation that’s available

Improve the quality of your code

Improve your software productivity

Learning how to work in teams on software

Getting other people to trust and use your code

Achieving impact from your work

Improving your career opportunities

- Simulation hardware project, turned software

- Early development based on our own needs

- Turned GPL in 2001, LGPL in 2012

- Organic growth: ~15 core developers, 15-25 contributors

- Currently 2600450 lines of C++17 code

- For certain definitions of “C++17”

- Over the years we’ve used Fortran, C, Assembly

- Lots of old code. Lots of new code. Lots of complicated
(read: bad) code written by scientists

EXPERIENCE FROM 25 YEARS OF GROMACS DEVELOPMENT
2011: Successful,
but increasingly painful
Source code control:
CVS
Build chain:
Automake/autoconf/libtool
Bug tracking:
Bugzilla
Testing:

“The application of a systematic, disciplined, quantifiable
approach to the development, operation and maintenance
of software, and the study of these approaches, that is,
the application of engineering to software.”
PIERRE BOURQUE & ROBERT DUPUIS / IEEE

- Trained in physics,
chemistry, etc.

- Cares about their problem

- Cares about short-term
deadlines (next paper!)

- New code = asset

- Often codes on their own

- Writes more code than
she reads

SCIENTIST MENTALITY SOFTWARE ENGINEER MENTALITY
- Trained in CS/software

- Cares about their code

- Cares about long-term
maintenance (next machine)

- New code = liability

- Often codes in a team

- Reads much more code
than she writes

Without proper software engineering, you are taking on
technical debt that sooner or later will have to be repaid

““Technical Debt is a wonderful metaphor developed by Ward Cunningham to help us
think about this problem. In this metaphor, doing things the quick and dirty way sets us
up with a technical debt, which is similar to a financial debt. Like a financial debt, the
technical debt incurs interest payments, which come in the form of the extra effort
that we have to do in future development because of the quick and dirty design choice.
We can choose to continue paying the interest, or we can pay down the principal
by refactoring the quick and dirty design into the better design. Although it costs to
pay down the principal, we gain by reduced interest payments in the future.””
MARTIN FOWLER

OPEN SOURCE & GOOD SOFTWARE ENGINEERING MATTER

Physics Today, Aug 22, 2018: Recollection of Chandler/Limmer vs.
Debenedetti 7-year fight over supercooled water; turned out to be
algorithm implementation issue in code authors resisted sharing.

“One of the real travesties is that there’s no way you
could have reproduced [the Berkeley team’s] algorithm—
the way they had implemented their code—from reading
their paper. If this had been disclosed, this saga might
not have gone on for seven years.”

LESSER ARTISTS BORROW, GREAT ARTISTS STEAL
https://github.com/IHPCSS/software-engineering

Please DO steal this and use it as a template for your own project!

When the simple repo is not advanced enough, find inspiration from large codes:

https://gitlab.com/gromacs/gromacs

(ADVANCED) SOURCE CODE REVISION CONTROL

Since most of you should be familiar with git,
the first few slides are just included for reference

- 49 commits

- 183 files changed

- 5,375 line insertions

- 3,320 line deletions

What changed in our code
last week?

- 671 commits

- 5,752 files changes

- 157,177 line insertions

- 1,622,410 line deletions
(removed assembly kernels)

How do you start debugging when the code now crashes?
Your program worked last week, but now there’s something wrong…

What if it crashes with -O3, but works fine when you add the debug flag?

What changed in our code
since January 1?

• Handles multiple developers beautifully
• Handles multiple feature branches in parallel

with a stable production-quality one
• Develop based on features, not source files
• Pull/push patches between branches
• Revert a specific stupid thing I did 6 months ago,

without changing subsequent patches
• Bisect changes to find which one of (say) 1,500

patches caused a bug
• Drawback: VERY steep learning curve to move

beyond trivial usage

WHAT GIT WILL GIVE YOU

Git repo on
Erik’s laptop

Erik’s public repo
at gitlab.com

Git repo on
Erik’s desktop

Berk’s public repo
at gitlab.com

Szilard’s public repo
at gitlab.com

GROMACS official
repo at gitlab.com

• The power of public repos
• Share work-in-progress
• Test others’ changes
• Merge / pull requests
• Combine multiple features

under development
• Share our development

histories as small changes -
why did I do things this way?

• To contribute a change to
somebody else, I first ‘clone’
their repo, make the change in
my own version, and then ask
them to merge in my change

GIT CULTURE
Recommendation: Use gitlab.com

http://gitlab.com
http://gitlab.com
http://gitlab.com

- Each feature is a new branch

- Think of the hybrid challenge:

- Common base is the scalar version

- Feature 1: MPI

- Feature 2: OpenMP

- Feature 3: OpenACC

- Imagine that these features have now been
developed/improved over
3 months.

- Each feature branch works great, but major
pains when you need to combine them &
release

GIT WORKFLOWS: BRANCHES & MERGING

- Think of feature commits as work-in-progress
(e.g. on my laptop) that have not yet made it
into our common master branch

- A large project like GROMACS can have
hundreds of such work-in-progress commits;
each of them is independent of all other
feature commits

- When one feature commit is ready & merged
into master, the other features should rebase
to instead be a difference relative to the
updated master state

- You can continue to work with the old base
while developing, but before committing your
feature it has to be rebased

- Advantage: Clean changes, rapid deployment

A BETTER WORKFLOW: CONSTANT REBASING

GitHub Flow:

- Small

- 10-100 lines

- NOT 1000 lines…

- Decomposed as far as possible

- Limited to address a single issue

- Well documented

- Tested to work

GOOD GIT COMMITS ARE…

This type of commit will also
be close to trivial to rebase!

BUILD CHAINS

- Does your code compile on

- windows (MSVC)?

- PGI (Now NVIDIA) Compilers? Pathscale?

- Blue Gene?

- Fugaku (Fujitsu compilers)?

- ARM? AArch64? With the ARM compiler? Clang? Gcc?

- PowerPC (big endian)? OpenPower (little endian)?

- Google NativeClient?

- RISC V?

IS YOUR CODE PORTABLE? DOES IT COMPILE ON…

- Issue compiler commands manually

- Start using Makefiles, edit Makefiles, give up

- Automate the generation of Makefiles

TYPICAL USER PROGRESSION

Think about the edits you had to do just to compile the trivial Laplace program!
Friends don’t let friends write makefiles.

- “Where is the X11 library? MKL? LibXML?” - “Is this the buggy version 3.3.7 of the FFTW library?” - “Is the Intel Math Kernel Library installed?” - “Do we use that buggy gcc version?” - “Does this compiler understand Xeon Phi AVX512?” - “Which flags should be used to enable C++11 for this
compiler?” - “Is this a big or small endian system?” - “Is a long integer 4 or 8 bytes on this host?” - “How do we build a shared library here?” - “How do we turn on OpenMP? OpenACC?” - “What library should I link with to have gettimeofday()
available?” - “What C backend compiler is used with CUDA-8.0?” - “What underscore naming standard does this Fortran
compiler use?” - “Is Doxygen available? Sphinx? Dot?”

CONFIGURING FOR THE REAL WORLD IS HORRIBLE - AND SO IS CMAKE(?)

GROMACS has ~100 CMake tests for features/bugs/libraries/compilers

Optional components (FFT libs) and extensive regressiontests
can be downloaded automatically

Generators: Makefiles, Eclipse, Xcode, VisualStudio,
nmake, CodeBlocks, KDevelop3, etc.

But don’t start with GROMACS: Look at the CMakeLists.txt in the
IHPCSS/software-engineering example: 75 lines and a few modules for
complete detection of compilers, OpenMP, OpenACC, MPI, and
everything else you’ll see on the next few slides!

The complete CMakeLists.txt source for the IHPCSS Laplace code

MAKE A HABIT OF USING OUT-OF-SOURCE BUILDS
/home/lindahl/code/IHPCSS-laplace

source code

OpenACC CPU build

OpenACC GPU build

OpenMP build with clang-4

OpenMP Debug build

MPI build

OpenMP build with gcc-9.1

Make a small change,
run “make” in three build
directories, done.

$ ~> mkdir build-openacc
$ ~> cd build-openacc
$ build-openacc> cmake -DOPENACC=ON ../path/to/source/directory

LIVING WITH YOUR CODE FOR YEARS (OR DECADES):

DOCUMENTATION

IF DOCUMENTATION ISN’T IN THE SOURCE, IT WON’T BE UPDATED

DOXYGEN EXAMPLE - THE GROMACS ‘RANDOM’ MODULE

- Each module/part should have a clear Application Programming
Interface

- An API is a promise to the user/other developers - it cannot change
randomly

- Document the API from the user’s point-of-view, not the
implementer’s!

- What input is valid? Can the user expect a certain algorithm or not?

- Always fully separate interfaces from implementations

- With a well-defined interface, you should be able to change the
implementation
without the interface changing - you should never have to look at
my implementation

- Interfaces need extensive documentation - implementations can
get away with less

API - APPLICATION PROGRAMMING INTERFACES

HIGH-LEVEL NON-SOURCE DOCUMENTATION: SPHINX

Fully integrated into IHPCSS-laplace.
Check out the docs folder, and if you have
sphinx/latex installed you can type
“make sphinx-html” or “make sphinx-pdf”.

Integrated it with readthedocs.org!
Any time a new change is pushed
to the repo, documentation is built automatically
at http://software-engineering.readthedocs.org

http://readthedocs.org
http://software-engineering.readthedocs.org

LANGUAGES

- Productivity, productivity, productivity

- Extremely rapid deployment - but some errors will hit you at runtime instead

- Trivial to import entire modules (numpy, matplotlib)

- Rapidly evolving language and infrastructure

- Extensive collections of machine-learning tools: SciKitLearn, PyTorch, etc.

- Actual low-level code will anyway run highly optimized on the GPU

- Instant running - no compiling or stuff

- Start by writing trivial scripts, evolve to write actual object-oriented programs

- “Programmer time is more expensive than computer time”

THE CASE FOR PYTHON

- 25-year-old C/C++ programs “just work”. Bugs were found already when we compiled them.

- Modern: Threads, atomics, etc. part of C++11

- Very powerful library with containers, algorithms

- Strongly typed language

- Still a low-level language - you control data exactly

- Modern C++ has gotten rid of pointers, memory errors

- Templates avoid code duplication

- Some very advanced parallelization libraries: Intel TBB

- Rapidly developing language, large ISO committee

- Parallel Standard Template Library (STL) in C++17/20

- A lot of momentum from vendors and large-scale projects (e.g. ECP)

- Negative: It is a VERY complex language to master

THE CASE FOR MODERN C++

class Lock {
public:
 explicit Lock(Mutex *pm)
 : mutexPtr(pm)
 { lock(*mutexPtr); }

 ~Lock() { unlock(*mutexPtr) };

private:
 Mutex *mutexPtr;
}

Mutex m;

…

{
 Lock ml(&m);
 …
}

Example: If you have ever worked with mutex:es to make sure only one thread
accesses a critical region, you have likely bumped into race conditions or deadlocks
e.g. when you forget to release a mutex in complex code.
These errors are insanely difficult to debug, since it depends in dynamic
timing events - when you run it in the debugger there won’t be any error!

Definition: Usage in client code:

class Lock {
public:
 explicit Lock(Mutex *pm)
 : mutexPtr(pm, unlock)
 { lock(mutexPtr.get()); }

 ~Lock() { unlock(*mutexPtr) };

private:
 std::shared_ptr<Mutex> mutexPtr;
}

Mutex m;

…

{
 Lock ml(&m);
 …
}

One more problem: What happens if you copy that class? Then the first object to
go out of scope will release the mutex, while the second thinks it’s still locked (=bad)!

Definition: Usage in client code:

Easy to fix in C++11: Just use a reference-counted shared pointer.
Note: no change to the client code.

SURPRISE - C++ CAN BE MUCH FASTER THAN C OR FORTRAN
int
myFunc(obj_t obj, int choiceA, int choice B)
{
 for(int i=0;i<obj.N;i++)
 {
 if(choiceA==1)
 {
 if(choiceB==1)
 {
 kernelcode1;
 }
 else if(choiceB==2)
 {
 kernelcode2;
 }
 }
 else if(choiceA==2)
 {
 if(choiceB==1)
 {
 kernelcode3;
 }
 else if(choiceB==2)
 {
 kernelcode4;
 }
 }
 }
}

calling code in different translation unit:

myFunc(obj,2,3);

template <int choiceA, int choice B>
int
myFunc(obj_t obj)
{
 for(int i=0;i<obj.N;i++)
 {
 if(choiceA==1)
 {
 if(choiceB==1)
 {
 kernelcode1;
 }
 else if(choiceB==2)
 {
 kernelcode2;
 }
 }
 else if(choiceA==2)
 {
 if(choiceB==1)
 {
 kernelcode3;
 }
 else if(choiceB==2)
 {
 kernelcode4;
 }
 }
 }
}

calling code in different translation unit:

extern template int myFunc<2,3>(obj_t obj)
myFunc<2,3>(obj);

This C++ code will
be fully expanded by the
compiler. No conditionals
present in the generated
assembly code.

(Not to mention it is often 100x faster than Python)

GODBOLT.ORG - COMPILER AUTOPSIES

http://godbolt.org

FINDING & PREVENTING BUGS

- Avoid code inter-dependencies

- Have modules doing clearly separate tasks

- Have a clear (documented) API for each module

- Make sure all code is thread-safe!

- Strict code organization:

- One directory per module, e.g. src/foo - with documentation for that module

- The ‘bar’ class is declared in src/foo/bar.h, implemented in src/foo/bar.cpp

- Write unit tests, not only regression tests

- Unit tests for ‘bar’ class are placed in src/foo/tests/bar.cpp

- Design-for-Testability (DFT):
Write unit test first, then the code implementation

- Controversial (?): Move to C++

MODULARIZATION

“It has been discovered that C++ provides a remarkable facility for concealing
the trivial details of a program - such as where its bugs are.” (David Keppel)

Circular dependencies are bad. If a test fails, where is the bug here?

JUST SAY ‘NO’ TO CIRCULAR DEPENDENCIES
Classes

Headers

This is hard, but Doxygen helps you detect it
For GROMACS, our code management system will not allow any
developer to submit a file with a circular dependency.

UNIT TESTING

BE AGGRESSIVE IN TESTING: “TRUST, BUT VERIFY”

Example Gromacs unit tests: The idea is that you should test everything

Do you think it’s overkill to test that hardware rounding works? In March 2014, this very test caught that
IBM Power7 VMX uses different rounding modes for SIMD and normal floating-point to integer
conversions…
Spring 2018: Our unit tests caught that IBM had semi-silently had to change their binary ABI for
Power8/9 since their compiler specifications partly violated the C++ standard. Fedora running all our unit
tests caught it immediately, and a few hours later we had a workaround in the code.

Spring 2019: Our unit tests failed on the specific combination of gcc-7 and Intel AVX-512 hardware, but
only with -O3 flags. Turned out to be a bug in the gcc-7 AVX-512 loop unrolling optimization (Godbolt!)

Good unit tests should isolate bugs to tiny parts of your code

Test that a simple call to a normal distribution random generator returns the expected 10 numbers.

Why? Because we found that libstdc++ and libcxx do not use the same algorithm, so code will not
produce the same results. We now use our own algorithm implementation - make sure it keeps working.

In C++, each method in a class should ideally have exhaustive unit tests

Are you aware of the
peculiarities of rounding
differences depending
on whether your CPU hardware
uses fused multiply-add (FMA)
vs. separate multiply & add?

No need to ask: Of course we have integrated GoogleTest support into the IHPCSS/software-engineering
repo - but I have not had time to write the actual tests. However, as you add more tests, they will all
execute if you just issue “make check”.

Remember: APIs are promises - let’s ensure they are kept!

Imagine a project with ~1000 classes, and that the class diagram below is a small excerpt (it’s from Gromacs).

All classes have close-to-exhaustive unit tests - but your latest build now fails the unit test.
Green means the unit test for this class was OK, red means it failed.

Where do you look for the bug?

If each unit test targets a
small method/function, you
have isolated the bug to
within ~50 lines-of-code
before even opening your
editor.

- Who is allowed to write to your code repository?

- Especially problematic if you suspect some less talented developers
might submit buggy code

- Such as this one:

COMMITS - HOW CHANGES MAKE IT INTO A LARGE CODEBASE

FORMAL CODE REVIEW - NOBODY CAN COMMIT DIRECTLY!

Each new comment on the MR (merge
request) in GitLab opens a “thread”,
which is “resolved” when the
commenter is happy.

Anybody can add comments. When two eligible
developers say OK (Erik + Szilard here), the patch
can be merged into master by a maintainer - but
note how GitLab blocks that until it’s been rebased!

We have a TON of merge requests in flight.
With full dependency tracking, patches can
be rebased onto others by hitting a rebase
button, or even edited on-the-fly in the
window

MAINTAINING QUALITY & AVOID BREAKING STUFF

- Every single merge request is
tested automatically, including
both builds & regression tests.

- Moderate usage is free both on
GitHub (Travis) and GitLab

- For large usage, you can use
your own servers or pay them

- Catches Cmake build errors

- Catches unit test failures

- We have separate nightly,
weekly, monthly and release
pipelines to do even more
advanced checks (of physics)

CONTINUOUS INTEGRATION - PART OF OUR GITLAB ENVIRONMENT

- Unit Tests: Do modules reproduce reference values?
… on x86, Power 9, ARM, CUDA, OpenCL, SYCL CPU & SYCL GPU.

- Integration tests: Does a normal full run work?

- Regression tests: Are previous simulation results identical?

- Clang AddressSanitizer: Catch simple memory errors

- Clang MemorySanitizer: Like Valgrind - memory debugging

- Clang/GCC ThreadSanitizer: Thread synchronization errors

- Clang Static Analyzer: Logical execution dependency errors

- Cppcheck: Another static analyzer

- Clang-format: Proper code formatting, no tabs, brace standards?

- Doxygen: All classes/methods/arguments/variables documented?

- Weekly - physical validation tests: Do we reproduce statistical ensemble fluctuations?

- Weekly - performance tests: Ensure performance has not dropped (even by 1%) since last week

GROMACS CI TESTS FOR EVERY SINGLE COMMIT

Pre-submit GROMACS testing:
Changes cannot be committed until
this entire pipeline is all green

Post-submit GROMACS testing:
Rare hardware and longer-running
performance tests are performed
once each patch has been
approved, or nightly.

TRAVIS CI: YOUR ALTERNATIVE FOR GITHUB
http://travis-ci.com

• Before moving to GitLab, GROMACS used Jenkins which is very
powerful, but you need to set it up yourself to do advanced stuff,
and/or arrange access to special hardware

• If your needs are more modest, Travis-CI is a much simpler environment
that offers free CI testing of open source GitHub repositories

• Enabled for the IHPCSS-laplace repo: Every time I push an update, the
code is built, followed by execution of the unit tests.

• If you look at the two badges at GitHub, green colors mean both the
Travis CI and ReadTheDocs builds are OK.

• Suggested exercise: Clone/rename the repo, and turn on both Travis &
ReadTheDocs automated builds in your version of it!

• Note: You will need to change travis-ci.org references to travis-ci.com

http://travis-ci.com
http://travis-ci.org
http://travis-ci.com

ISSUE/BUG TRACKING

Automatic referencing 
in commit messages!

• Version 1.2.3 has bug X!
• Windows builds broke
• How is the work going on

refactoring module Y?
• Should we improve

scaling by method Z or W?
Why did we decide to modify that loop
in file F in git change Icfca5a?

For IHPCSS/software-engineering, we use the integrated issue tracker in
GitHub, but this too supports automated referencing e.g. for closing bugs.

- In the old days, scientists used double precision and
pretended it was “infinite precision”

- GPUs, cache, memory bandwidth issues and half
precision means you must understand FP

- http://randomascii.wordpress.com/category/floating-
point/

- Series of blog posts by Bruce Dawson about
IEEE754 floating point

- You should read this if you are working with
scientific codes using floating-point!

- Teaser - this might not always produce 0.0:

 x = a * b - a * b

OPENING PANDORA’S BOX - WHAT DO YOU KNOW ABOUT FLOATING-POINT?

http://randomascii.wordpress.com/category/floating-point/
http://randomascii.wordpress.com/category/floating-point/

- Working effectively with legacy code [Michael Feathers]

- Large-scale C++ software design [John Lakos]

- Design Patterns - Elements of Reusable Object-oriented software [Gamma, Helm, Johnson,
Vlissides] “Gang of four”

- Refactoring to Patterns [Joshua Kerievsky]

- Refactoring - improving the design of existing code [Martin Fowler]

- Effective C++ - 55 specific ways to improve your programs and design [Scott Meyers]

- Patterns for concurrent, parallel, and distributed systems [Douglas Schmidt]

- Clean Code [Robert Martin]

- What everybody should know about floating-point math [David Goldberg]

SOME RECOMMENDED ADDITIONAL READING

