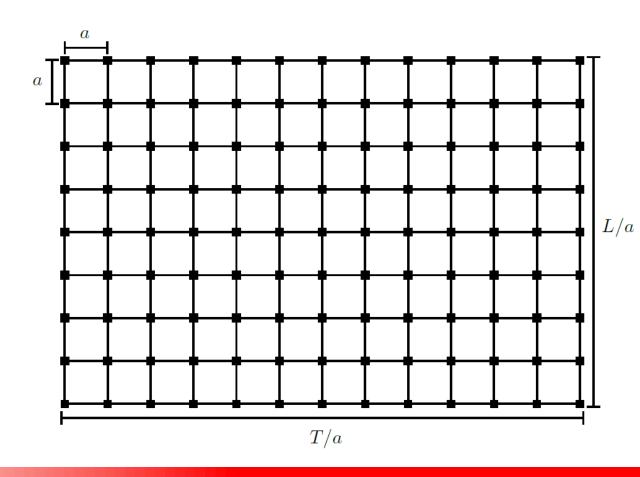
"Gradient flow scale setting with tree-level improvement"

Christian Schneider

Outline

- Scale setting
- Gradient flow and tree-level improvement
- Gradient flow measurements
- Analysis
- Conclusion and Outlook


Scale setting

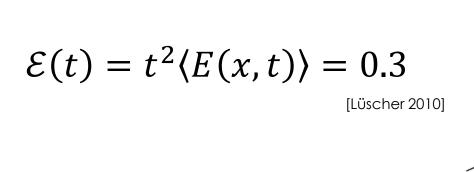
Matching lattice observables to their physical value.

$$a = \frac{am_p}{m_{p,phys}}$$

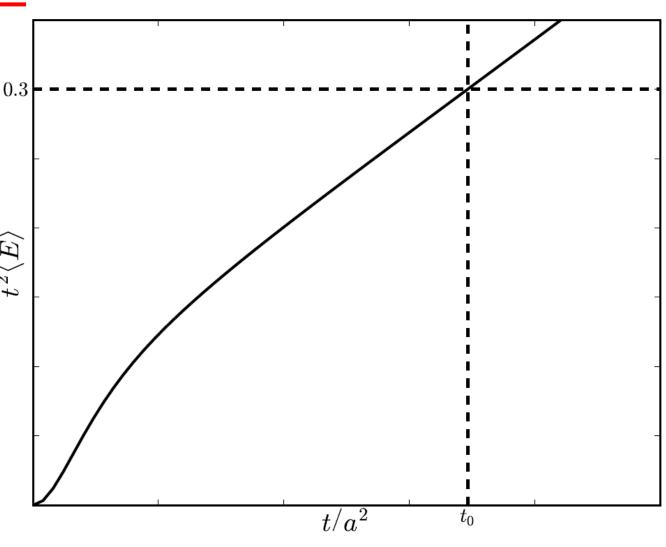
• High precision is required!

- Gradient flow scales:
 - Efficient to calculate and usually very precise.
 - Subject to cutoff effects!

Gradient flow and tree-level improvement


$$\partial_{t}B_{\mu}(x,t) = D_{\nu}G_{\mu\nu}(x,t), \qquad B_{\mu}(x,t) \Big|_{t=0} = A_{\mu}(x)$$

$$G_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + [B_{\mu}, B_{\nu}], \qquad D_{\mu} = \partial_{\mu} + [B_{\mu}, \cdot]$$


• Use two different versions: Wilson & Zeuthen flow.

• Zeuthen flow already $O(a^2)$ improved!

Gradient flow and tree-level improvement

$$t \frac{d}{dt} \mathcal{E}(t) = W(t/a^2) = 0.3$$
[Borsanyi, Fodor 2012]

Gradient flow and tree-level improvement

Perturbative expansion:

$$t^2 \langle E(x,t) \rangle = Ng_0^2 (C(a^2/t) + O(g_0^2))$$
 [Fodor, Nogradi 2014]

- Replace $t^2 \langle E(x,t) \rangle \rightarrow t^2 \langle E(x,t) \rangle / C(a^2/t)$
- Determine C(t, L, T) perturbatively for different [action] [flow] [operator] combinations.
- Notable improvement for determinations of the step-scaling β function for SU(3) with $N_f=4,6,8,10,12$. [Hasenfratz, Rebbi, Witzel 2019 & 2020]

Gradient flow measurements

• RBC-UKQCD's 2+1 flavor Shamir domain-wall fermion and lwasaki gauge field ensembles.

ensemble	β_b	L/a	T/a	am_ℓ	$am_s^{\rm sea}$	am_{res}	$N_{ m cfg}$	trajectories	step
C1 C2	2.13 2.13	$\begin{array}{c} 24 \\ 24 \end{array}$	64 64	$0.005 \\ 0.010$	$0.040 \\ 0.040$	$0.003154(15) \\ 0.003154(15)$	1636 1419	$495-8670 \\ 1455-8545$	5 5
M1 M2 M3	2.25 2.25 2.25	32 32 32	64 64 64	0.004 0.006 0.008	0.030 0.030 0.030	0.0006697(34) $0.0006697(34)$ $0.0006697(34)$	628 889 544	290-3425 272-3824 250-2965	5 4 5
F1	2.31	48	96	0.002144	0.02144	0.0009679(21)	98	4000-7880	40
X1	2.37	32	64	0.0047	0.0186	0.0006296(58)	119	1000-6900	50

0.450.45 tln $\rightarrow t_2$ $\rightarrow t_2$ And 0.40-0.40 0.35 0.35 $\rightarrow t_0$ 0.30 0.30 $\begin{array}{c} (25.0) \\ (25.0$ $\begin{array}{c} 22.0 \\ \bigcirc \\ 62.0 \\ \bigcirc \\ 62 \end{array}$ $\sqrt{t_2}/a$ $\sqrt{t_2}/a$ 0.15 $\sqrt{t_0}/a$ 0.15 $\sqrt{t_0}/a$ 1.7420(11) 2.0951(16) 1.6359(10) 2.0147(16) 0.10 0.10 1.6526(10) 2.0256(16) 1.6147(10) 1.9957(16) 0.05 0.05 1.6196(10) 2.0011(16) 1.6074(10) 1.9893(16) 0.08 $t/\underline{a^2}^{2.5}$ $t/a^{2.5}$ 0.08 3.0 3.5 3.0 2.0 4.0 4.5 0.5 2.0 3.5 4.0 0.5 1.0 1.5 1.0 1.5 0.35_{1} 0.35 tln $\rightarrow w_0$ $\rightarrow w_0$ 0.30 0.30 0.25 0.25 $\rightarrow w_2$ $\rightarrow w_{i}$ $N(t/a^2)$ $02.0 \frac{q^{2}}{4}$ $01.0 \frac{q^{2}}{4}$ w_0/a w_2/a w_0/a w_2/a 0.10 0.10 2.0125(25) 2.0196(25) 1.6505(17) 1.6742(17) 0.05 2.0144(25) 1.6685(17) 2.0112(25) 1.6704(17) 0.05

0.08

0.5

1.0

1.5

2.0084(25) 1.6692(17)

3.5

4.0 4.5

3.0

 $\frac{2.0}{t/a^2}$ 2.5

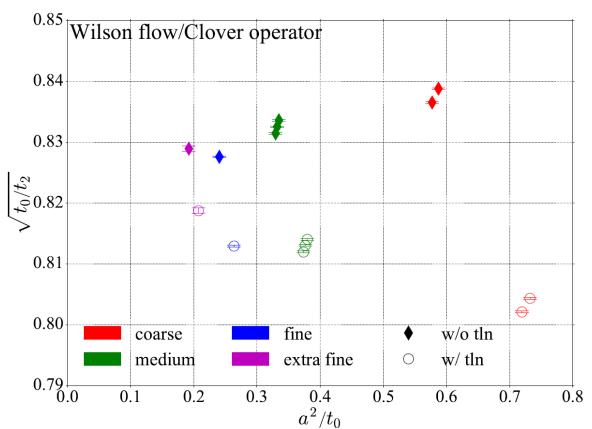
2.0153(25) 1.6749(17)

4.0

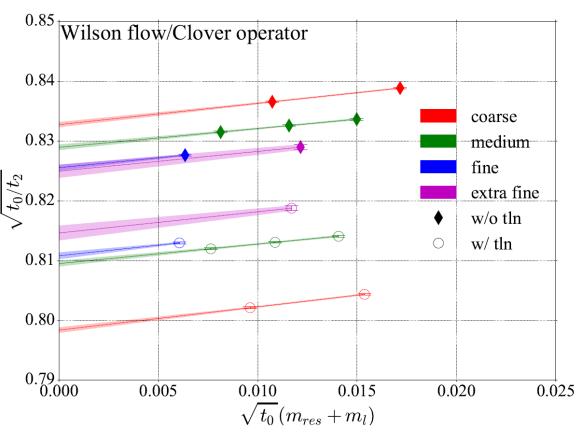
4.5

3.0 3.5

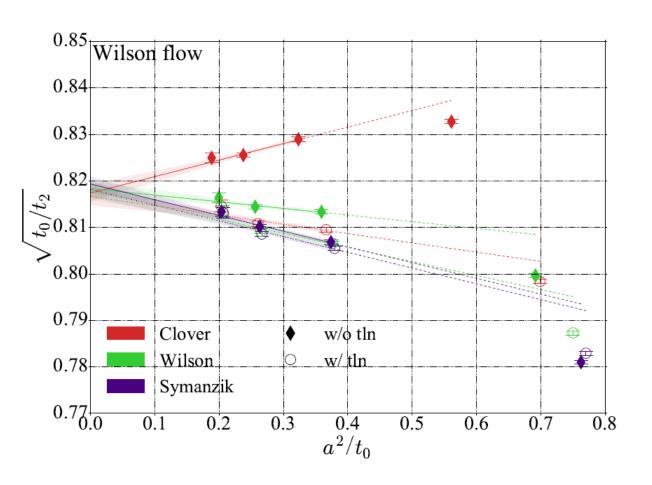
 $\frac{2.0}{t/a^2}$ 2.5

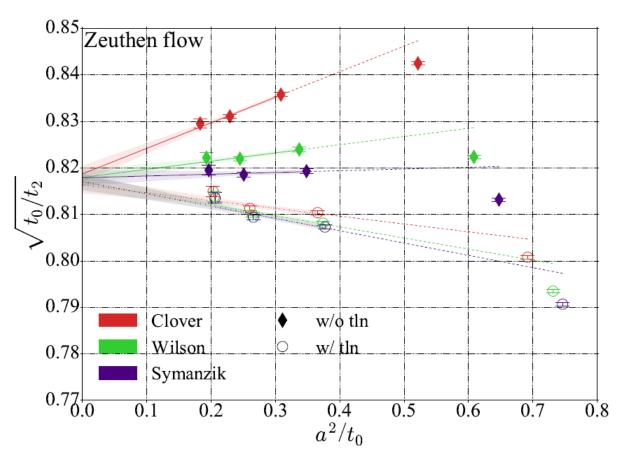

1.5

1.0

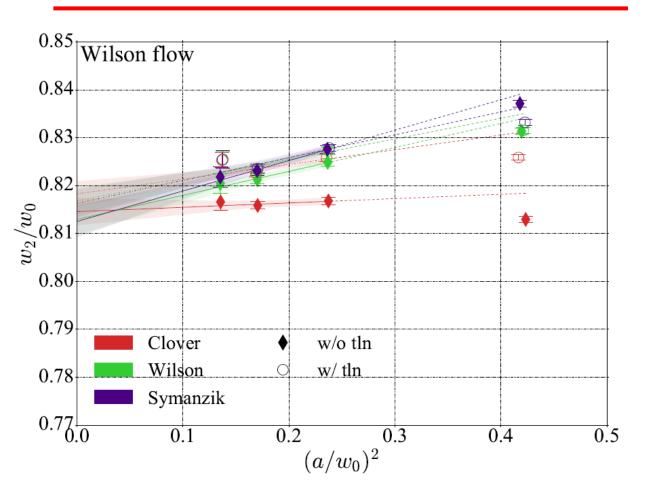


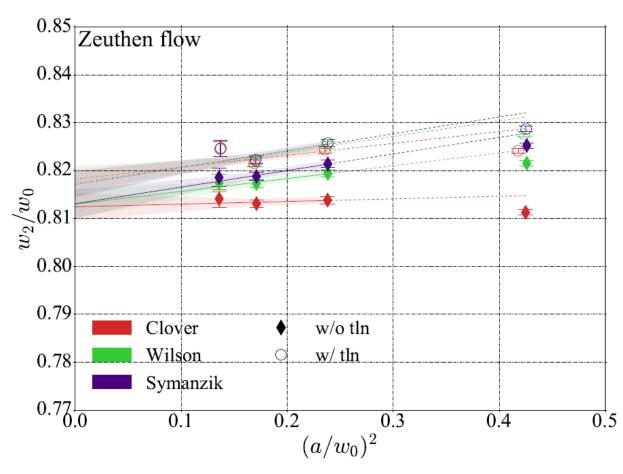
Analysis

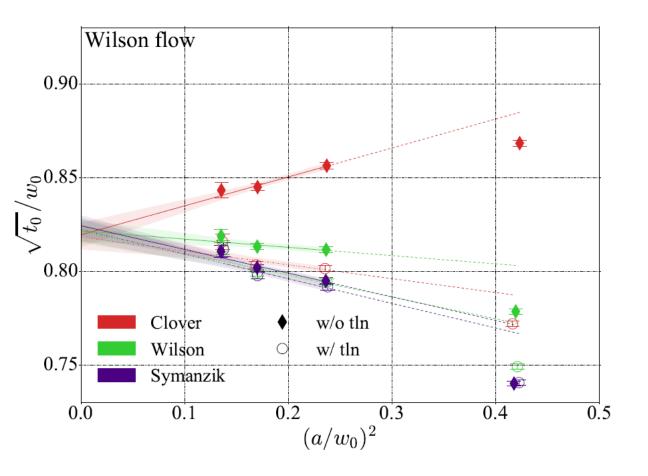


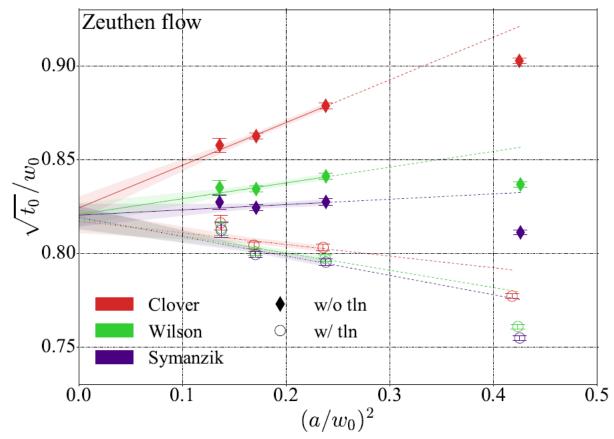

Chiral extrapolation

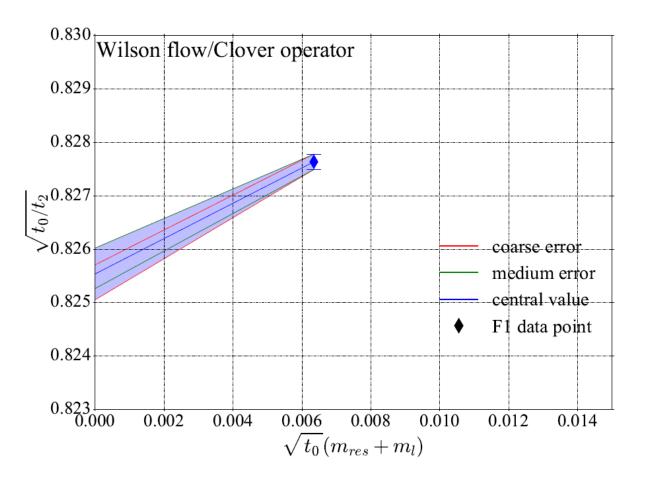
Analysis

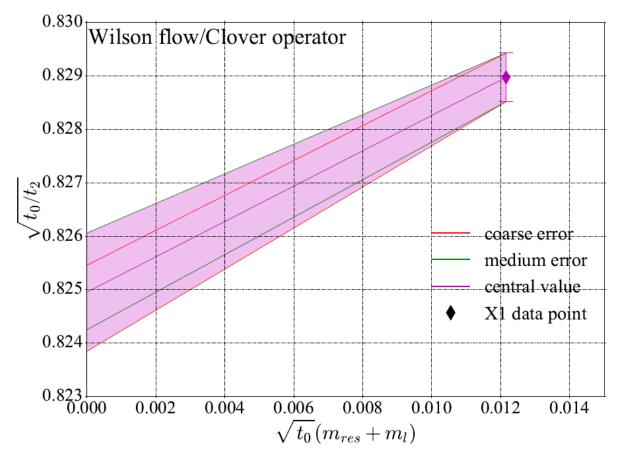

Conclusion and Outlook


- tln reduces the spread between operators but cannot remove cutoff effects from the gauge action.
- Successfully computed tln coefficients, which can be used in future studies!
- Parts to improve on:
 - Crude chiral extrapolation.
 - Insufficient data at different bare gauge couplings.
- Next steps: Repeating this exercise using RBC-UKQCD's three physical point ensembles (C0, M0, F0) with Möbius DWF kernel.


Thank you







lattice volume	$N_{ m Sites}$	$N_{ m flows}$	runtime [h]
$16^{3} \times 32$	2,805	200	0.12
$16^{3} \times 64$	$5,\!445$	200	0.23
$24^{3} \times 64$	$15,\!015$	450	1.65
$32^3 \times 64$	31,977	800	6.24
$48^3 \times 96$	$143,\!325$	1,800	62.9
$64^3 \times 128$	$425,\!425$	1,600	160.9

	V	Vilson flow		Zeuthen flow			
lattice volume	runtime [h]	# nodes	node hrs	runtime [h]	# nodes	node hrs	
$24^3 \times 64$	0.33	1	0.33	1.12	1	1.12	
$32^3 \times 64$	1.85	1	1.85	6.25	1	6.25	
$48^{3} \times 96$	5.70	4	22.8	8.19	8	65.52	
$64^{3} \times 128$	8.36	8	66.88	-	-	_	

