Transport Simulations of Pion Production in Low Energy Au+Au Collisions

Master's Thesis

by

Christian Kummer

Outline

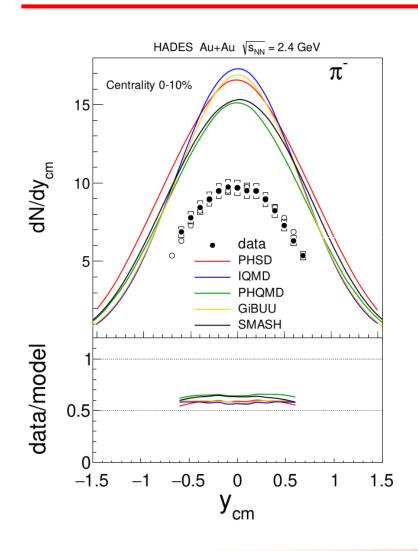
- Motivation
- GiBUU Transport Code
- Proton Rapidty Distributions
- Pion Spectra
- Dileptons
- Conclusions

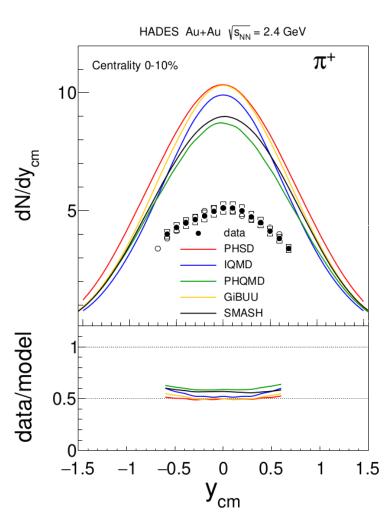
Based on: C. Kummer et al., http://arxiv.org/abs/2309.09042

Motivation

- Strong nuclear force can be studied by Heavy-ion collisions (HIC)
- Transport models simulate HICs
- New experimental data from HADES [1] shows that transport theories produce an excess of pions

Motivation





$$y = \frac{1}{2} \ln(\frac{E + p_z}{E - p_z})$$

GiBUU Transport Code

- Giessen Boltzmann-Uehling-Uhlenbeck Transport Code [2] combines two concepts
- Inclusion of Mean-Field
- Cascade Model

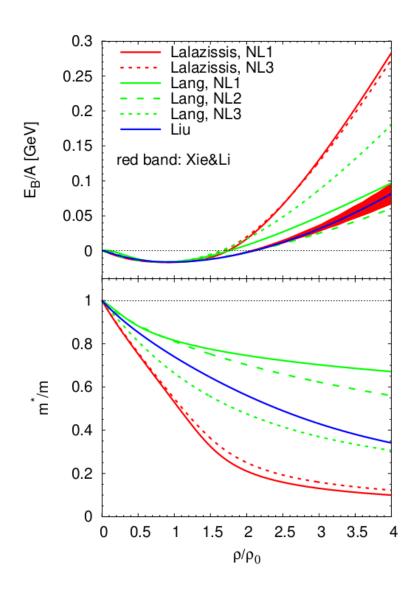
$$\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla}_r f - \boldsymbol{\nabla}_r U \cdot \boldsymbol{\nabla}_p f = I_{\text{coll}}$$

GiBUU Transport Code: Mean Field

- Relativistic Mean Field (RMF)
- Gives equation of state (EOS)
- Meson fields are included

$$m_N^* = m_N + S$$
 $p^{*\mu} = p^{\mu} - V^{\mu}$
 $(p^*)^2 - (m_N^*)^2 = 0$

[3-6]



GiBUU Transport Code: Cascade Model

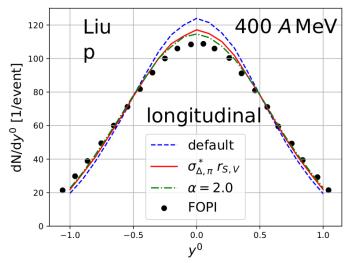
- Checks for Collisions
- Decides on the reaction channel by Monte Carlo (MC)
- Cross sections can be altered by
 - Effective Mass
 - Delta potential modifications
 - Exponential Suppression

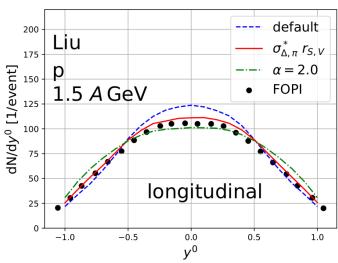
Proton Rapidity Distributions

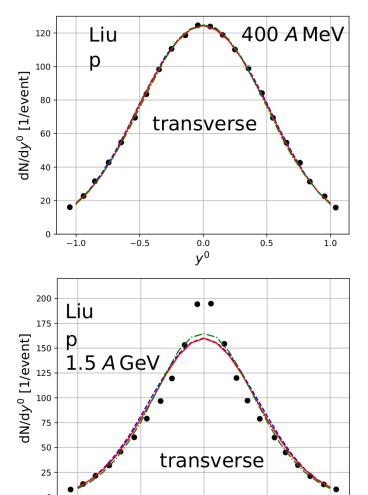
Data from FOPI [7]

$$y_z = \frac{1}{2} \log \left(\frac{E + p_z}{E - p_z} \right)$$

$$y_x = \frac{1}{2} \log \left(\frac{E + p_x}{E - p_x} \right)$$





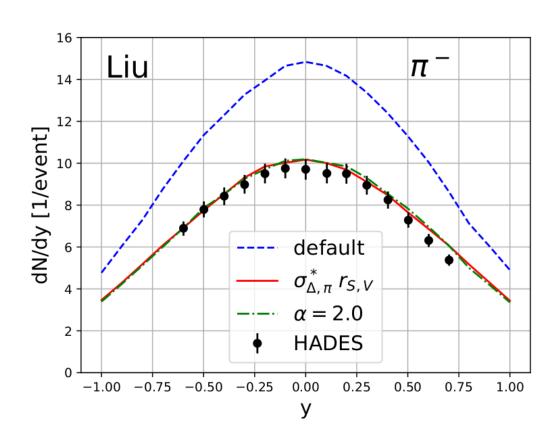


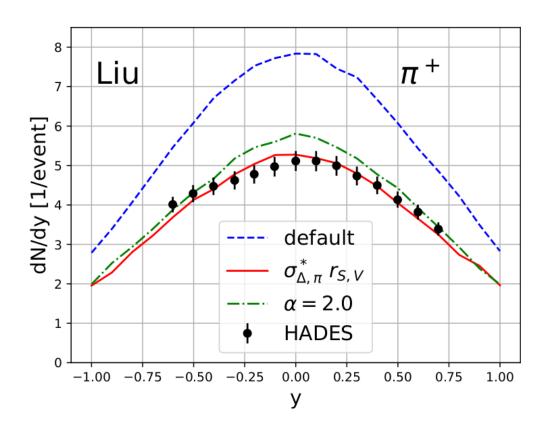
-0.5

0.5

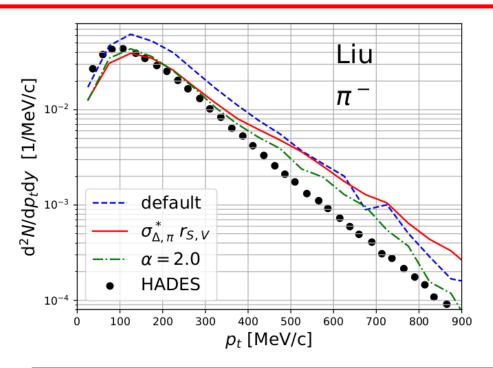
Pion Spectra

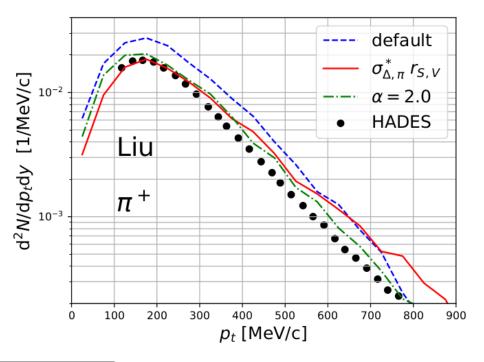
Data from HADES [1]





Pion Spectra

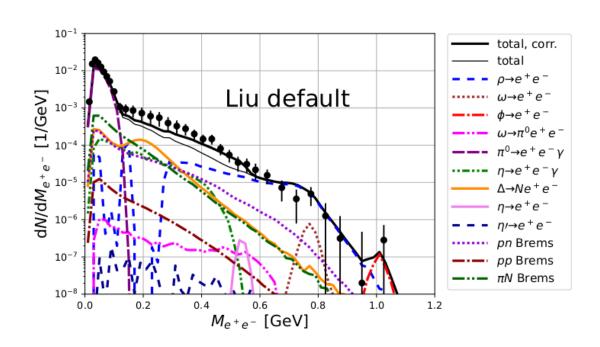


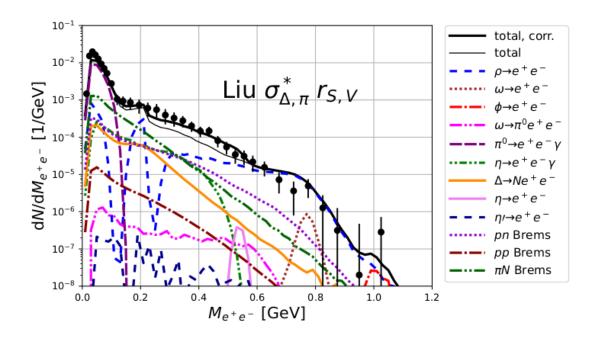


	default	$\sigma_{\Delta,\pi}^* \ r_{S,V}$	$\alpha = 2.0$	HADES
$\mathrm{M}(\pi^-)$	24.462	17.188	16.999	17.1 ± 1.8
$\mathrm{M}(\pi^+)$	13.577	9.2364	9.7266	9.3 ± 1.0
${ m M}(\pi^-)/{ m M}(\pi^+)$	1.8017	1.8609	1.7476	1.83 ± 0.17

Dileptons

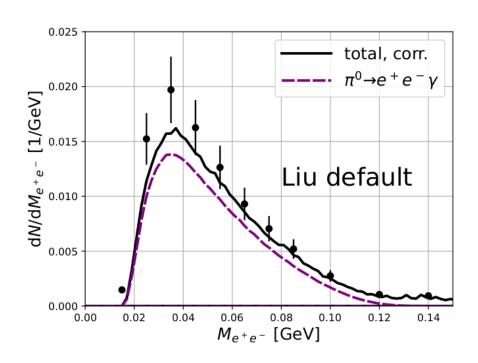
Data from HADES [8]

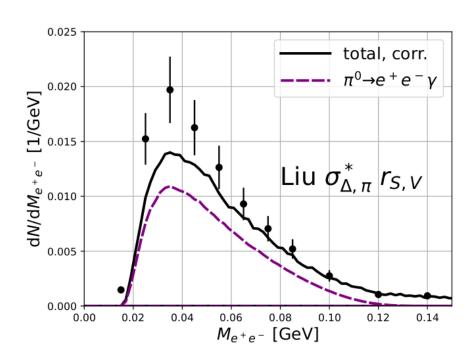




Dileptons

Data from HADES [8]





Conclusions

- Liu EOS describes the mean field well
- Modifications lower pion numbers drasticly
- Modifications are not just motivated by phenomenology
- Some problems remain (transverse momentum spectra and dileptons)
- Overall: Significant improvement and excellent agreement with rapidity spectra

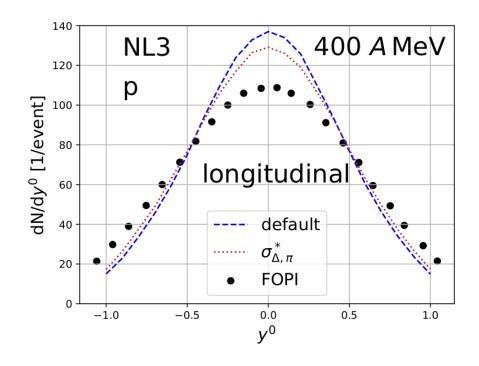
Thank you

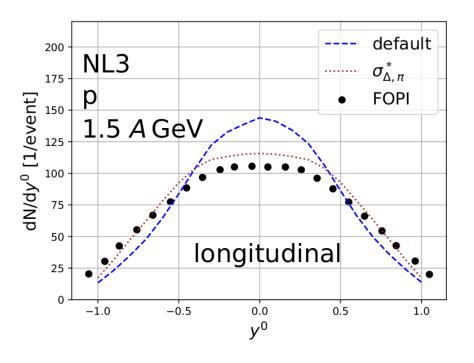
Bibliography

- [1] J. Adamczweski-Musch *et al.*, EPJA 56, 259 (2020)
- [2] O. Buss et al., PR 512, 1 (2012)
- [3] G.A. Lalazissis et al., PRC 55, 540 (1997)
- [4] A. Lang et al., NPA 541, 507 (1992)
- [5] B. Liu et al., PRC 65, 045201 (2002)
- [6] W.J. Xie et al., AJ 899.1, 4 (2020)
- [7] W. Reisdorf et al., PRL 92, 232301 (2004)
- [8] J. Adamczewski-Musch et al., Nature 15.10, 1040 (2019)

BACKUP

Proton Rapidity Distribution, NL3 Lalazissis EOS

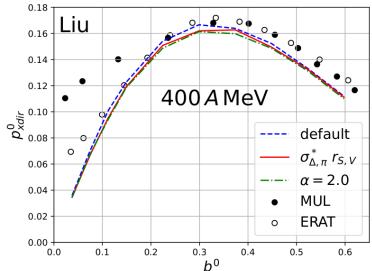


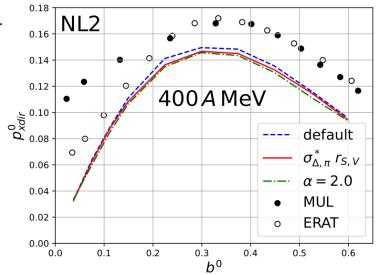


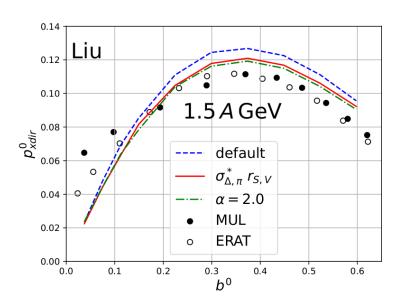
Sideflow

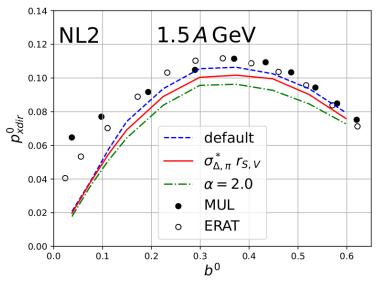
$$p_{xdir}^0 = \frac{p_{xdir}}{u_{1cm}}$$

$$p_{xdir} = \frac{\sum \text{sign}(y) Z u_x}{\sum Z}$$

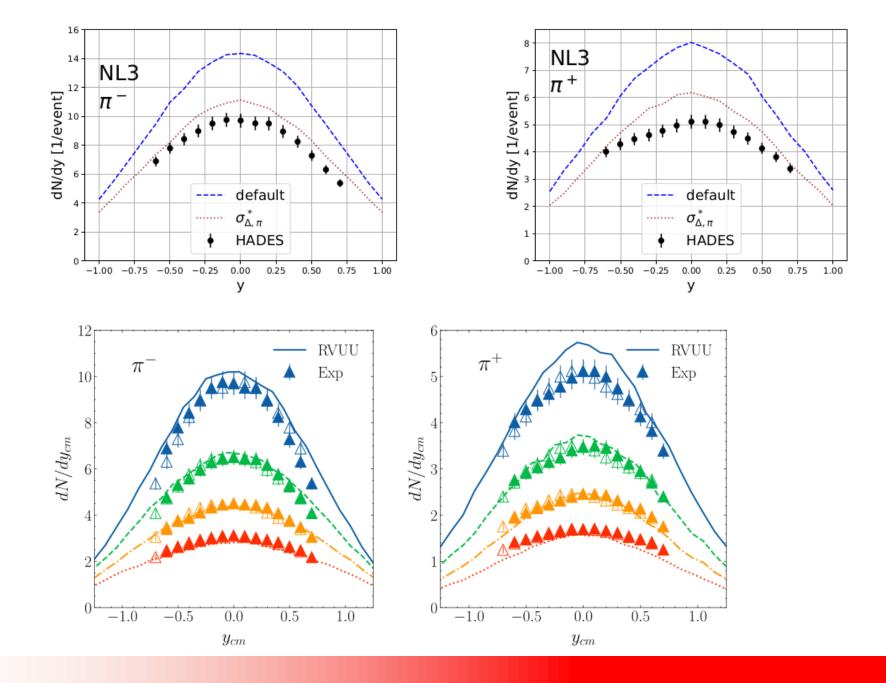








Pion rapidity spectra



$$\mathcal{L} = \overline{\psi} [\gamma_{\mu} (i\partial^{\mu} - g_{\omega}\omega^{\mu} - g_{\rho}\boldsymbol{\tau}\boldsymbol{\rho}^{\mu} - \frac{e}{2}(1 + \tau^{3})A^{\mu}) - m_{N} - g_{\sigma}\sigma]\psi$$
$$+ \frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma - U(\sigma) + \frac{1}{2}m_{\omega}^{2}\omega^{2} + \frac{1}{2}m_{\rho}^{2}\boldsymbol{\rho}^{2} - \frac{1}{16\pi}F_{\mu\nu}F^{\mu\nu}$$

$$\left[\gamma_{\mu}\left(i\partial^{\mu}-g_{\omega}\omega^{\mu}-g_{\rho}\boldsymbol{\tau}\boldsymbol{\rho}^{\mu}-\frac{e}{2}(1+\tau^{3})A^{\mu}\right)-m_{N}-g_{\sigma}\sigma\right]\psi=0$$

$$V^{\nu} = g_{\omega}\omega^{\nu} + g_{\rho}\tau^{3}\rho^{3,\nu} + \frac{e}{2}(1+\tau^{3})A^{\nu}$$
$$S = g_{\sigma}\sigma.$$

$$f = \exp\left(-\alpha \left(\frac{\rho}{\rho_0}\right)^{\beta}\right)$$

$$d\sigma_{12\to1'2'\dots N'}^* = (2\pi)^4 \delta^{(4)} \left(p_1 + p_2 - \sum_{i=1'}^{N'} p_i \right) \frac{n_1^* n_2^* \prod_{i=1'}^{N'} n_i^*}{4I_{12}^*} \overline{|\mathfrak{M}_{12\to1'2'\dots N'}|^2} \times \mathcal{S}_{1'2'\dots N'} \prod_{i=1'}^{N'} A_i(p_i) \frac{d^4 p_i}{(2\pi)^3 2p_i^{*0}} ,$$