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“Lattice Boltzmann Method approach for the
simulation of fluid flows on a spherical 

surface”



Motivation

➢Spatial curvature causes peculiar flow 

phenomena

➢Numerical simulations to characterize

such phenomena

➢Employ Lattice Boltzmann methods

(LBM): highly-efficient, parallel

structure → perfect HPC candidate!

Soap bubble

Waves trapped at the Earth’s 
equator



Introduction



Boltzmann Equation:
Continuity and NSE:

𝜌: fluid density
𝒖: fluid macroscopic 

velocity
𝒗: particle velocity
𝑓: particle 

distribution 
function (PDF)

What is LBM?



Mesoscopic to Macroscopic

Moments of the PDF are recovered 

exactly via a Gauss-Hermite 

quadrature procedure:

D2Q16 velocity stencil



Lattice Boltzmann Method

➢ Streaming step:

➢ Collision step:

Based on the Lattice Boltzmann Equation:

BGK 
operator



Method



Approach

We developed a Lattice Boltzmann 

method (LBM) suitable to deal with 

curvilinear coordinates for the 

spherical surface

Density profile of a 2D flow produced by our code



Outline

➢ Extension of LBM to spherical surface using vielbein formalism

➢ Formulation of (axisymmetric) benchmark problems for the spherical 

surface

➢ 2D flows simulations on the spherical surface



Vielbein Field

Construction of a vector field on the spherical surface as a non-coordinate basis

(vielbein formalism)



Boltzmann Eq on the Spherical Surface

➢ Cartesian:

➢ Covariant-vielbein:



Advection on the Spherical Surface

➢We employ finite-difference schemes

(Upwind 1, 2, 3; WENO-5)

➢How to deal with the non-periodicity

along theta?

➢Populate the ghost nodes with:



Numerical Results



Shear Wave Damping

Initial velocity profile:

n = 0 is not damped

1 × 256 grid, D2Q16, 
𝛿𝑡 = 1 × 10−4, 𝜏 = 1 × 10−3, 𝑅 = 1
(WENO-5)



Sound Wave Propagation

The velocity profile of a sound wave

in case of an axisymmetric flow is

accurately recovered

1 × 256 grid, D2Q16
𝛿𝑡 = 2 × 10−5, 𝜏 = 2 × 10−5, 𝑅 = 1
(WENO-5)



Shear Wave Sound Wave

Convergence test



Shock Waves



2D Flows

We reproduce the dynamics of two vortexes at the north pole:



Conclusions & Outlook

➢ Extension of LBM to spherical surfaces using vielbein formalism

➢ 1D benchmark problems and 2D flows

➢ Fully compressible solver (Riemann problem on the sphere)

Possible extensions:

➢ External forcing terms

➢ Rotating spherical surface



Thank you for your attention
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Shear Wave Damping

➢ Cartesian:

➢ Spherical surface:



Sound wave propagation

We consider an initial velocity profile of the type:

Ideal fluid:

Dissipative fluid:
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