AQTIVATE: Advanced computing, Quantum algorithms and data-driven Approaches for science, Technology and Engineering

AQTIVATE KICK-OFF EVENT
Summary of my Master's Project and previous Research work

Sachin Shivakumar
Project 14: Accelerating QM/MM simulations via machine learning FZ Juelich, RWTH, and KTH

An Ab Initio Study of Structural and Electronic Properties of Si (Fd-3m) and FeO (Fm-3m) using Density Functional Theory

Goals

- Study mathematical formalism of DFT
- Gain experience in practical application of DFT by studying Si and FeO crystals

Non-

Ferromagnetic

Magnetic

Antiferromagnetic

- DFT code used: ELK
- Computed ground state energy, lattice parameters, band structure, PDOS and TDOS.
- Results compared between different DFT functionals (LDA vs GGA)
- Results were validated with reported experimental and simulations results

LITESOPH : Layer Integrated Toolkit and Engine for Simulations of Photoinduced phenomena

Application in Photovoltaics, Water-splitting catalysts, opto-electronics.

- TDDFT codes
- parameters
- programming
- experience in linux
- submit job
- monitor job
- extract data
- post processing
- visualizations

spectrum

File Edit Tools View Go Help

Welcome to LITESOPH

Layer Integrated Toolkit
and Engine for Simulations of Photo-induced Phenomena
Create LITESOPH Project
Open LITESOPH Project
About LITESOPH

Design Principles of LITESOPH

LITESOPH STACK

- Maintainability (faster debugging)
- Extensibility (easy to add new features)
- Understandability (easy to collaborate and faster development)

AQTIVATE

LITESOPH: Features and Functionalities

Energy Transfer TCNE*

*Dr. Pramod Verma, R.A Ilser Bhopal

AQTIVATE

Accelerating QM/MM simulations via machine learning

- Enzymatic reactions,
- Transition metal binding to proteins,
- Proton Transfer, and
- Photophysical Processes
- Energy-efficient manufacturing,
- Drug design,
- High-density and Long-lasting batteries, and
- efficient solar cells.

Track electronic and atomic motions, system size > 10000
MM methods can't dynamically describe electrons.
QM methods not feasible or not possible for systems size > 10000

Currently state of art method for studying these systems is a multiscale approach (QM/MM).

The QM/MM approach treats the active site of the system, where electron dynamics are crucial, at the QM level while using classical force fields (MM) to describe the rest.

- Commonly DFT is used at the QM level

AQTIVATE

Accelerating QM/MM simulations via machine learning

DFT QM/MM can access few hundred ps with ~ 100 QM atoms ${ }^{1}$
Limited sampling for free energy estimation.

This high computational cost of DFT QM is reduced using machine learning ${ }^{2}$

$$
\text { DFT QM/MM } \quad \longrightarrow \quad \mathrm{ML} / \mathrm{MM}
$$

By using targeted free energy perturbation (TFEP)

Reference potential +
small number of single point calculations
$+\mathrm{ML}=\mathrm{QM}$ potential ${ }^{3}$

AQTIVATE

Acknowledgement

Master's project: DR. Rajesh Kumar, NIT Hamirpur, India
funding: NIT Hamirpur
LITESOPH: PI: DR. Varadharajan Srinivasan, IISER Bhopal, India
https://aitgcodes.github.io/litesoph-
website/index.html
funding: CDAC Pune through National Supercomputing Mission, India
AQTIVATE- Project 14: Supervisors: Dr. P. Carloni, Dr. E. Lindahl
Dr Davida Mandelli (Researcher), Dr. Andrea Rizzi (Postdoc)
Institutions: FZ Julich, RWTH Aachen, KTH sweden.
funding: The European Union (MCSA)

Thank you

AQTIVATE

