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Machine learning

e Artificial intelligence (AI)
= The use of technologies to realize intelligent behavior
= Build systems that simulate intelligent behavior

e Machine learning (ML)

= A subset of Al

= Enable a machine (or system) to learn Arificial inteligence N
from experience (e.g., observed data)

/ Machine learning \

/ Supervised \ / Unsupervised \ / Reinforcement\
nin

e Deep learning e o
= A machine learning technique Ve i
(a class of algorithms) { J
= "Deep" neural network Qs ),
in which multiple layers are used [Prince, 2023]
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Machine learning methods
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[Prince, 2023]

e Supervised learning
= Mapping from input data to an output pred|ct|on
= Usually, the output labels are available. [EZ=

e Unsupervised learning

= Constructing a model from input data without corresponding output labels
= Describe or understand the structure of the data

e Reinforcement learning SRR A e ol 2000
= Modeling an agent that performs certain actions in a given environment
= Actions change the state and produce rewards
= Learn to choose actions for high rewards

Model input Model Model output Action
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[Prince, 2023]

Kiwon Um AQTIVATE Kick-off @ University of Cyprus




Applications

e Computer vision, natural language processing, speech
recognition, etc.

e Why not for physics-based simulations?
Particularly for computational fluid dynamics (CFD)?

= High-dimensional v 1 ,
= Nonlinear EZ—V°(V®V)—;V]9—I—VV V+g
= Non-convex

= Multi-scale V-v=0

e Naive (yet straightforward) approach
= Learn to fit the data for the given objective

e To do better: Enforce prior physical knowledge in learning
= Conservation of mass, momentum, and energy
= Symmetries, invariance, and equivariance
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ML for CFD
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Machine Learning

Improve
Physical
Understanding

Accelerate
simulations,
Improve Scaling

C) / resolved I \ d) \
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sl T 18% ° °
wavenumber ) }
Direct Numerical  Turbulence Modeling Reduced-Order
Simulation (LES and RANS) Models

[Vinuesa and Brunton, 2022]
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Accurate coarse simulation

e Substantially reduce the computational cost

e [Bar-Sinai et al., 2019] "Learning data-driven discretizations for
partial differential equations,” PNAS

= Estimate spatial derivatives, g;}j DY agn)vi, in low-resolution grids
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Accurate coarse simulation (cont'd)

e [Um et al., 2020] "Solver-in-the-loop: Learning from differentiable

physics to interact with iterative PDE-solvers," NeurIPS
= |Learn a correction function at coarser simulations
= Models interact with the solver while learning for the correction
= Differentiable solver

We demonstrate training Deep Neural Networks with a
Differentiable Physics Solver in the Loop.

Example Scenario

p 0:00/0:29
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Accurate coarse simulation (cont'd)

e [Kochkov et al., 2021] "Machine

learning-accelerated

computational fluid dynamics,”

PNAS

= |Learn the accurate DNS for coarser

simulations

o Learned interpolation
o Learned correction
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Accelerating numerical simulation

e Replace time-consuming parts with NN

e [Tompson et al., 2017] "Accelerating Eulerian fluid simulation with
convolutional networks," ICML

= Use a CNN to solve the Poisson equation, tackling "pressure bottleneck"
= Qutperform a traditional Jacobi solver

e [Ajuria et al., 2020] "Towards a hybrid computational strateqy based

on deep learning for incompressible flows," AIAA AVIATION Forum
= Similar to Tompson's with a multi-scale network
~OJOg DS HEE

Eﬂj D jf[h e

- AFFIIFT 2 | | B
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Accelerating numerical simulation (cont'd)

e Decrease the size of the computational domain

= Replace a section upstream of the domain of interest with an inflow
condition

= Replace part of the far-field region with a suitable boundary condition

e [Fukami et al., 2019] "Synthetic turbulent inflow generator using

machine learning,"” PRF

= Develop a time-dependent inflow generator for wall-bounded turbulence

simulations using an autoencoder with MLP
@
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Turbulence modeling

e Better models for turbulence (e.g., Reynolds stress) with RANS

e [liang, 2021] "An interpretable framework of data-driven turbulence
modeling using deep neural networks," PRF

= Used physics-informed residual network (PiResNet)
© ResNet (a.k.a. skip connection)

Phase L Design [ Cost Function Design ] E [ Turbulence Data Preparation J [ Model Performance Evaluation 1
Domain 1. Frame- & scale-invariant E 1. Collect representative dataset 1. Generalizable accuracy
Knowledge 2. Fairness constraint ! 2. Reformat and compute features 2. Noise-sensitivity
. 3. Robustness constraint i 3. Anunbiased sampling technique 3. Realizability
physics-inform : X
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Subgrid-scale modeling

e [Lapeyre et al.,, 2019] "Training convolutional neural networks to

estimate turbulent sub-grid scale reaction rates,” CaF
= Subgrid flame surface density estimation

= Predict the subgrid-scale wrinkling of the flame surface
© U-net

. Conv 3x3x3, BN, ReLu

32 32 u MaxPooling 2x2x2
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Reduced-order modeling

e Rely on the fact that even complex flows often exhibit a few
dominant coherent structures

e [Murata et al., 2020] "Nonlinear mode decomposition with
convolutional neural networks for fluid dynamics,” JFM
= Use an autoencoder to learn nonlinear manifold coordinates

(" )
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Prior physical knowledge

e [Frezat et al., 2021] "Physical invariance in neural networks for

subgrid-scale scalar flux modeling,” PRF

= Use hard and soft constraints based on classical transformation invariances
and symmetries derived from physical laws
o Translation invariance: CNN
© Rotation invariance: Data augmentation
Transport linearity: Individual sub-model for the transported scalar

o

o

Galilean invariance: Standardizing the velocity per sample

e Rotation invariance
m [Cesa et al., 2022] "A program to build E(n)-equivariant steerable CNNs," ICLR

feature map stabilized vie in feature fields stabilized view
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New metrics

e Traditional metrics: L2, PSNR, and SSIM

e [Zhang et al., 2018] "The unreasonable effectiveness of deep
features as a perceptual metric," CVPR

» Evaluate deep features across different architectures and tasks
= Propose the learned perceptual image patch similarity (LPIPS) metric

e [Kohl et al., 2020] "Learning similarity metrics for numerical
simulations," ICML

Plume (a) eference Plume (b)
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What's next?

e We still have far to go ...

e There exist many potential directions

= For example, diffusion model in CFD

o [Kohl et al., 2023] "Turbulent flow simulation using autoregressive conditional diffusion models,"
arXiv

e Missions

= ESR 5: Francesco Fossella
o Deep-data assimilation and deep-feature-based metric for turbulent flows

= ESR 12: André Freitas

o Large eddy simulation models in a deep machine learning loop

= ESR 13: Elisa Bellantoni

o Complex wetting problems using neural networks £

Thank you!
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