AQTIVATE

Machine Learning for Computational Fluid Dynamics

Kiwon Um

🛞 IP PARIS

Machine learning

- Artificial intelligence (AI)
 - The use of technologies to realize intelligent behavior
 - Build systems that simulate intelligent behavior

- Machine learning (ML)
 - A subset of AI
 - Enable a machine (or system) to learn from experience (e.g., observed data)

- Deep learning
 - A machine learning technique (a class of algorithms)
 - "Deep" neural network in which multiple layers are used

Machine learning methods

- Supervised learning
 - Mapping from input data to an output prediction
 - Usually, the output labels are available.
- $\begin{array}{c} 124\\ 140\\ 156\\ 128\\ 142\\ 157\\ \vdots \end{array} \rightarrow \begin{array}{c} 124\\ 140\\ 0.00\\ 0$

[Prince, 2023]

- Unsupervised learning
 - Constructing a model from input data without corresponding output labels
 - Describe or understand the structure of the data

- Reinforcement learning
 - Modeling an agent that performs certain actions in a given environment
 - Actions change the state and produce rewards
 - Learn to choose actions for high rewards

Applications

- Computer vision, natural language processing, speech recognition, etc.
- Why not for physics-based simulations? Particularly for computational fluid dynamics (CFD)?
 - High-dimensional
 - Nonlinear
 - Non-convex
 - Multi-scale
 - ...
- Naive (yet straightforward) approach
 - Learn to fit the data for the given objective
- To do better: Enforce prior physical knowledge in learning
 - Conservation of mass, momentum, and energy
 - Symmetries, invariance, and equivariance

$$rac{\partial \mathbf{v}}{\partial t} = -
abla \cdot (\mathbf{v} \otimes \mathbf{v}) - rac{1}{
ho}
abla p +
u
abla^2 \mathbf{v} + \mathbf{g}$$

 $abla \cdot \mathbf{v} = 0$

ML for CFD

Accurate coarse simulation

- Substantially reduce the computational cost
- [Bar-Sinai et al., 2019] "Learning data-driven discretizations for partial differential equations," PNAS
 - Estimate spatial derivatives, $rac{\partial^n v}{\partial x^n} pprox \sum_i lpha_i^{(n)} v_i$, in low-resolution grids

Accurate coarse simulation (cont'd)

- [Um et al., 2020] "Solver-in-the-loop: Learning from differentiable physics to interact with iterative PDE-solvers," NeurIPS
 - Learn a correction function at coarser simulations
 - Models interact with the solver while learning for the correction
 - Differentiable solver

Accurate coarse simulation (cont'd)

- [Kochkov et al., 2021] "Machine learning-accelerated computational fluid dynamics," PNAS
 - Learn the accurate DNS for coarser simulations
 - Learned interpolation
 - Learned correction

Accelerating numerical simulation

- Replace time-consuming parts with NN
- [Tompson et al., 2017] "Accelerating Eulerian fluid simulation with convolutional networks," ICML
 - Use a CNN to solve the Poisson equation, tackling "pressure bottleneck"
 - Outperform a traditional Jacobi solver

- [Ajuria et al., 2020] "Towards a hybrid computational strategy based on deep learning for incompressible flows," AIAA AVIATION Forum
 - Similar to Tompson's with a multi-scale network

Accelerating numerical simulation (cont'd)

- Decrease the size of the computational domain
 - Replace a section upstream of the domain of interest with an inflow condition
 - Replace part of the far-field region with a suitable boundary condition
- [Fukami et al., 2019] "Synthetic turbulent inflow generator using machine learning," PRF
 - Develop a time-dependent inflow generator for wall-bounded turbulence simulations using an autoencoder with MLP

Turbulence modeling

- Better models for turbulence (e.g., Reynolds stress) with RANS
- [Jiang, 2021] "An interpretable framework of data-driven turbulence modeling using deep neural networks," PRF
 - Used physics-informed residual network (PiResNet)
 - *ResNet* (a.k.a. skip connection)

Subgrid-scale modeling

- [Lapeyre et al., 2019] "Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates," CaF
 - Subgrid flame surface density estimation
 - Predict the subgrid-scale wrinkling of the flame surface

• U-net

Reduced-order modeling

- Rely on the fact that even complex flows often exhibit a few dominant coherent structures
- [Murata et al., 2020] "Nonlinear mode decomposition with convolutional neural networks for fluid dynamics," JFM
 - Use an *autoencoder* to learn nonlinear manifold coordinates

Prior physical knowledge

- [Frezat et al., 2021] "Physical invariance in neural networks for subgrid-scale scalar flux modeling," PRF
 - Use hard and soft constraints based on classical transformation invariances and symmetries derived from physical laws
 - Translation invariance: CNN
 - Rotation invariance: Data augmentation
 - Transport linearity: Individual sub-model for the transported scalar
 - Galilean invariance: Standardizing the velocity per sample
- Rotation invariance
 - [Cesa et al., 2022] "A program to build E(n)-equivariant steerable CNNs," ICLR

New metrics

- Traditional metrics: L2, PSNR, and SSIM
- [Zhang et al., 2018] "The unreasonable effectiveness of deep features as a perceptual metric," CVPR
 - Evaluate deep features across different architectures and tasks
 - Propose the learned perceptual image patch similarity (LPIPS) metric

• [Kohl et al., 2020] "Learning similarity metrics for numerical simulations," ICML

What's next?

- We still have far to go ...
- There exist many potential directions
 - For example, *diffusion model* in CFD
 - [Kohl et al., 2023] "Turbulent flow simulation using autoregressive conditional diffusion models," arXiv
- Missions
 - ESR 5: Francesco Fossella
 - Deep-data assimilation and deep-feature-based metric for turbulent flows
 - ESR 12: André Freitas
 - Large eddy simulation models in a deep machine learning loop
 - ESR 13: Elisa Bellantoni
 - Complex wetting problems using neural networks

Thank you!

