ESR 6:

Data-driven MD: Calculating free energies by learning from QM Potentials & cryo-EM data

The AQTIVATE project receives funding from the European Union's HORIZON MSCA Doctoral Networks programme, under Grant Agreement No. 101072344.

About me

- Lukas Müllender
- M.Sc. Physics, April 2023 RWTH Aachen University, Supervisor: Prof. Paolo Carloni
- ESR6: Data-driven MD: Calculating free energies by learning from QM Potentials & cryo-EM data

Prof. Erik Lindahl

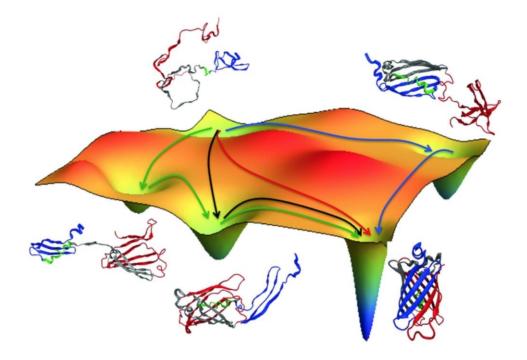
Prof. Paolo Carloni

Prof. Michele Parrinello

- Master's thesis project: Combining HPC-based Simulations in Trajectory Space with Machine Learning to Simulate Rare Events
 - Motivation
 - Methods
 - Iterative Approach to CV Design
- Outlook on PhD project ESR6

Molecular Dynamics for Biophysics Research

Protein Folding



Ligand Unbinding

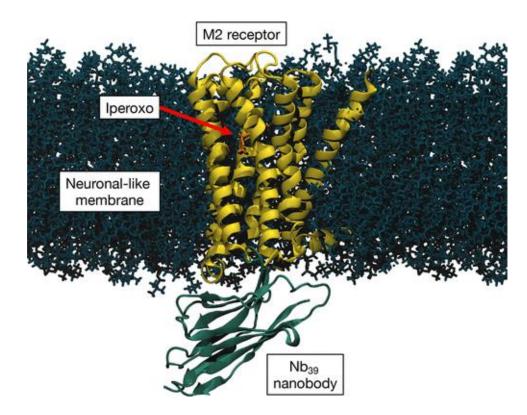


Figure adapted from Capelli et al., J. Phys. Chem. Lett. (2020)

Figure adapted from Reddy et al., PNAS (2012)

Challenges of Simulating Large Molecules

- 1. high-dimensional problem: How to determine important order parameters?
- 2. computationally expensive: How to escape long-lived states?

Solution: collective variables...

- provide reduced representation of a highdimensional problem
- distinguish metastable states, transition state
- reflect the slowly varying degrees of freedom
- enable enhanced sampling

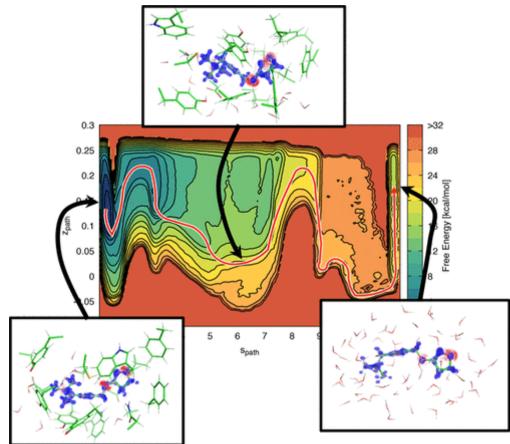


Figure adapted from Capelli et al., J. Phys. Chem. Lett. (2020)

CV-based Enhanced Sampling

- Accelerate sampling along the collective variable s
- Examples: Metadynamics, Umbrella Sampling, Adaptive Biasing Force, ...
- Choice of efficient CVs is not intuitive \rightarrow data-based CV discovery

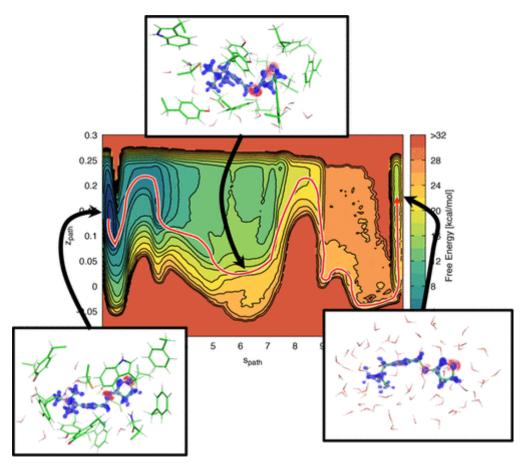
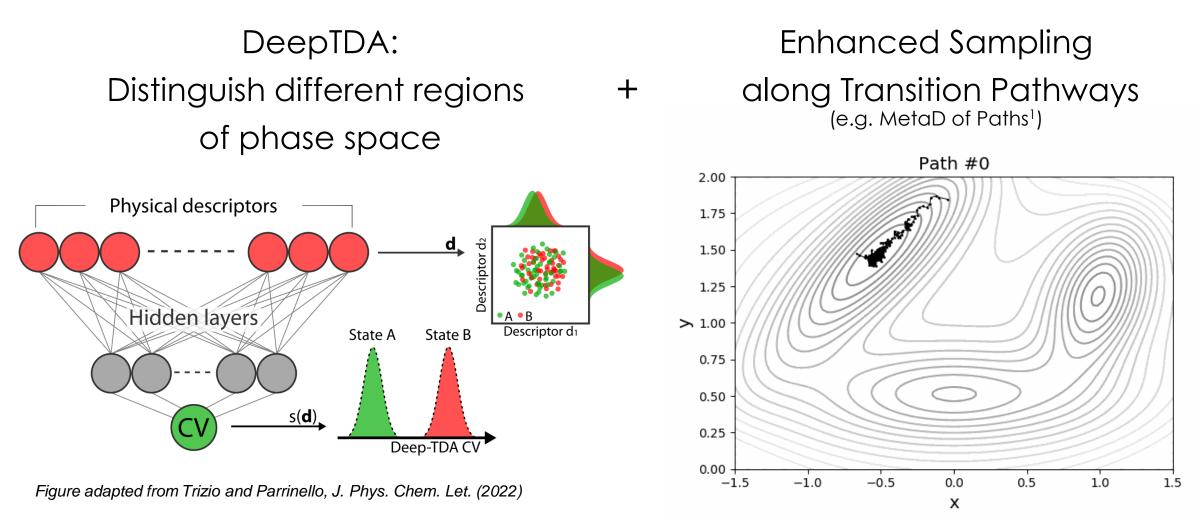


Figure adapted from Capelli et al., J. Phys. Chem. Lett. (2020)

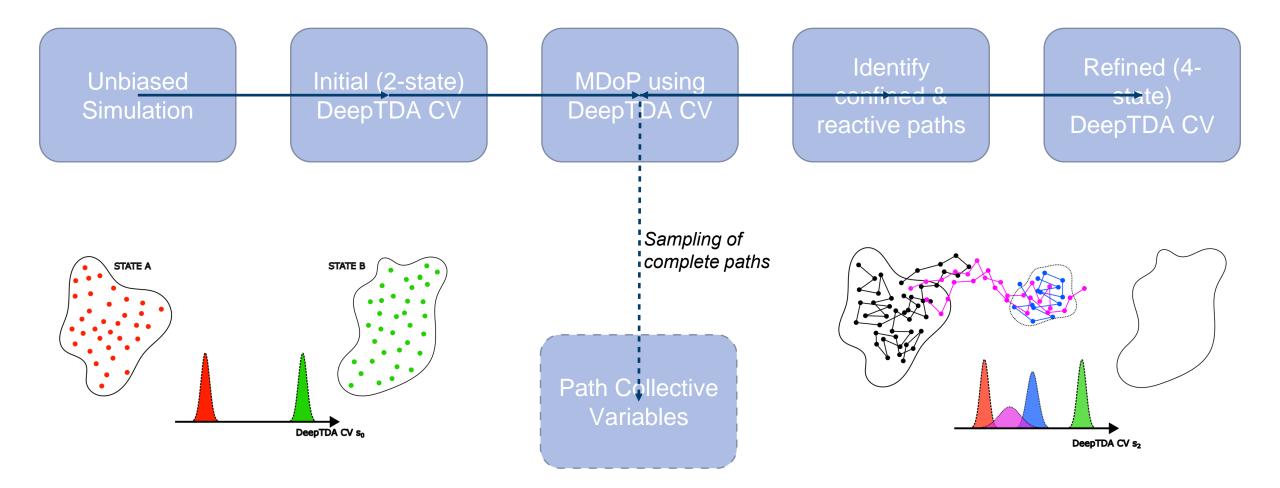
Methods: Deep Learning CVs from Transition Paths

AQTIVATE

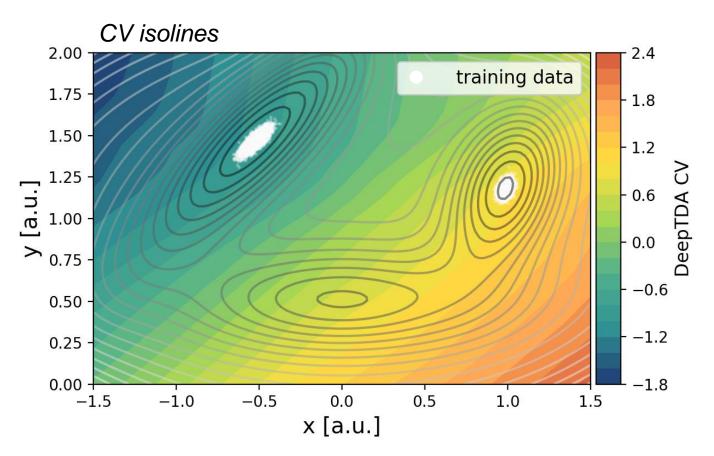


[1] Mandelli, Hirshberg and Parrinello, Phys. Rev. Let. (2020)

Our Workflow: Successive Incorporation of Path Data in DeepTDA Training



Results: Initial CV is suboptimal



AQTIVATE

scatter plot of visited configurations 2.00 - 1.5 1.75 - 1.0 1.50 [.1.25 n. 1.00 > 0.75 2 0.5 DeepTDA 0.0 0.50 -0.50.25 0.00 -1.0 -1.5 -1.0-0.5 0.0 0.5 1.0 1.5 x [a.u.] MetaD of Paths simulation 2.00 1.75 - 10³ 1.50 1.25 ^{10²} no > 1.000.75 - 10¹ 0.50 0.25

-0.5

0.0

Х

0.5

1.0

-1.0

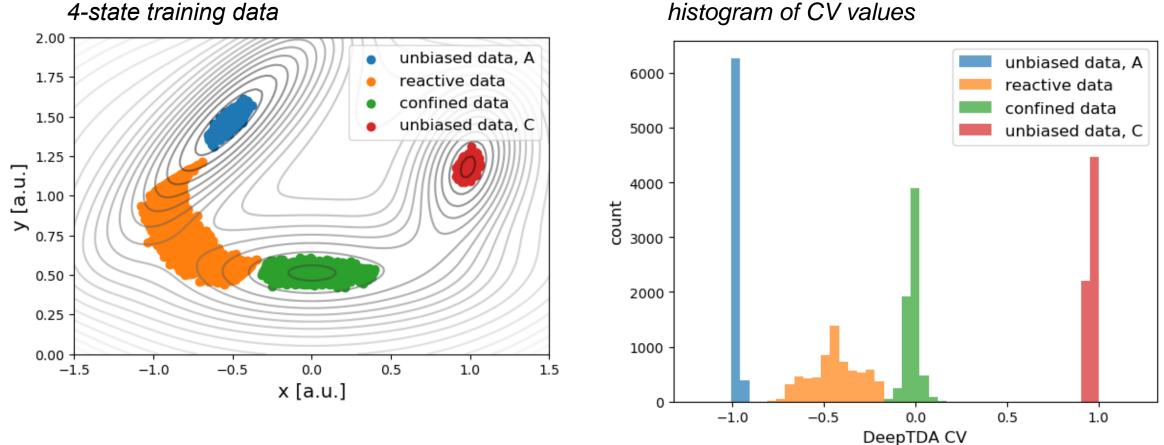
0.00

-1.5

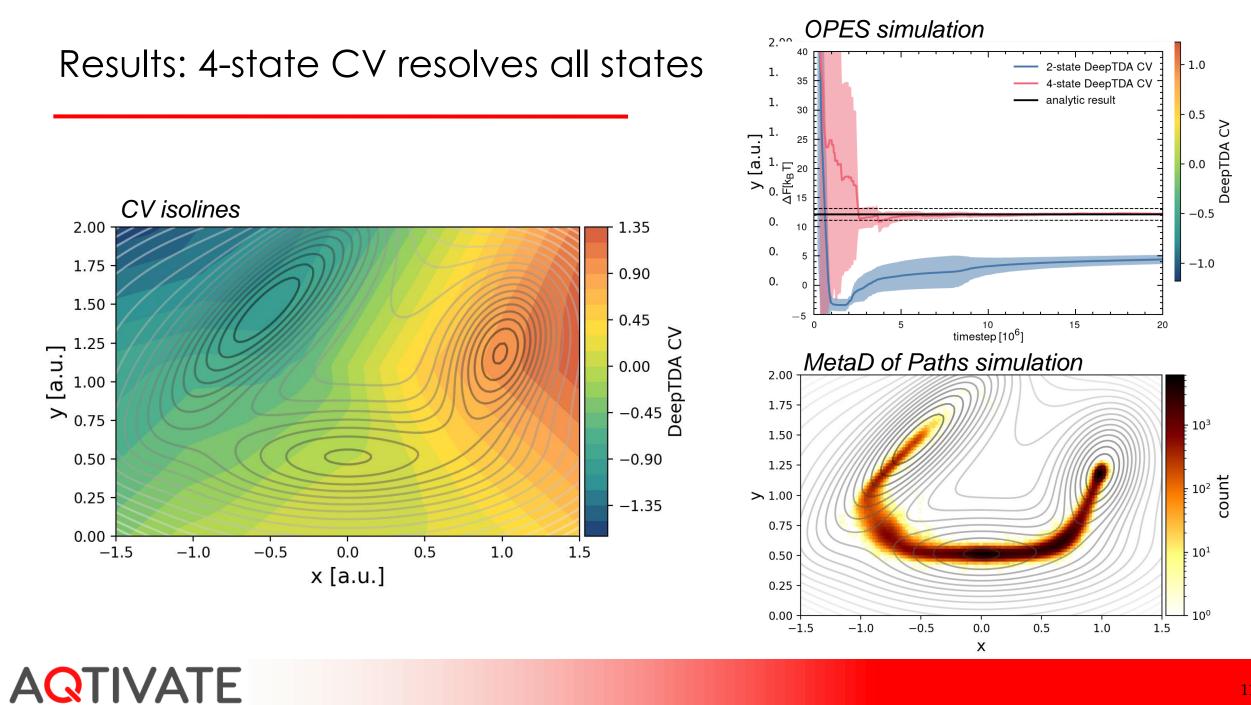
10⁰

1.5

Results: Training of a 4-state DeepTDA CV



histogram of CV values



- Paper: Deep Learning Collective Variables for Enhanced Sampling Simulation (WIP)
 - Application to model potential, Alanine Dipeptide
- Possible applications to larger molecules/proteins: Chignolin, Trp-Cage, NPY, ...
- AQTIVATE PhD project ESR6

- MD simulations are a powerful tool, but slow to explore new regions of phase space (at QM accuracy)
 → explore AI/ML applications to accelerate & improve MD simulations
 - machine learning collective variables
 - machine learning force fields
- Targeted applications: large biomolecules, proteins, ion channels, etc.

ESR6: Learning from ...

Ab initio QM calculations

 $H\Psi = E\Psi$

Generative models (e.g. AlphaFold)

^

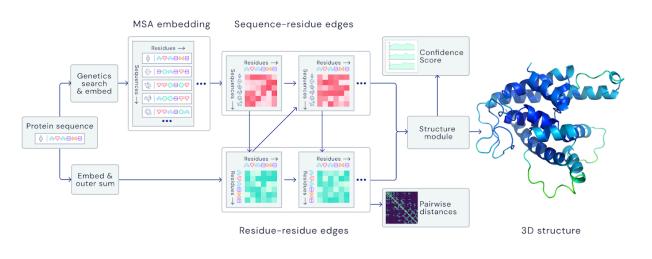


Figure adapted from Jumper et al., Nature (2021)

AQTIVATE

MD simulation data

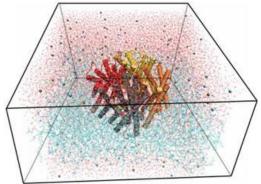


Figure adapted from Cui and Bastien, Int J Biol Sci (2012)

Cryo-EM data

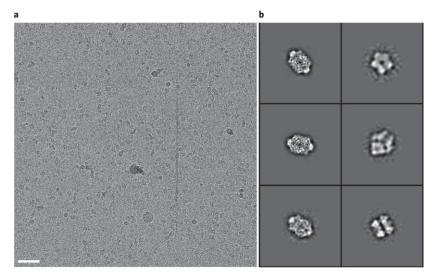


Figure adapted from Kutti R. Vinothkumar, Nature Methods (2021)

Thank you!

