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Outline

* Master’s thesis project:
Combining HPC-based Simulations in Trajectory Space with
Machine Learning fo Simulafe Rare Events

 Motivation

 Methods
* [terative Approach to CV Design

» Qutlook on PhD project ESR6
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Molecular Dynamics for Biophysics Research

Protein Folding Ligand Unbinding
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Figure adapted from Capelli et al., J. Phys. Chem. Lett. (2020)

Figure adapted from Reddy et al., PNAS (2012)
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Challenges of Simulating Large Molecules

I. high-dimensional problem:
How to determine important
order parameterse

2. computationally expensive:
How to escape long-lived statese

Solution: collective variables...

» provide reduced representation of a high-
dimensional problem

» distinguish metastable states, fransition state

» reflect the slowly varying degrees of freedom
» enable enhanced sampling

Figure adapted from Capelli et al., J. Phys. Chem. Lett. (2020)
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CV-based Enhanced Sampling

» Accelerate sampling along the
collective variable s

« Examples: Metadynamics, Umbrella
Sampling, Adaptive Biasing Force, ...

» Choice of efficient CVs is not o
Intuitive — data-based CV discovery | " 5

Figure adapted from Capelli et al., J. Phys. Chem. Lett. (2020)
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Methods: Deep Learning CVs from Transition Paths

DeeplDA:
Distinguish different regions
of phase space
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Figure adapted from Trizio and Parrinello, J. Phys. Chem. Let. (2022)
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Enhanced Sampling

along Transition Pathways
(e.g. MetaD of Paths')
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[1] Mandelli, Hirshberg and Parrinello, Phys. Rev. Let. (2020)



Our Workflow: Successive Incorporation of Path Data in DeepTDA Training

Ident|fy Refined (4-
Conminea & StatE)

reactive paths DeepTDA CV

Unbiased Initial (2-state) MDoP using

Simulation DeepTDA CV DeepTDA CV

 Sampling of
STATE A STATE B E complete paths

Path Collective
Variables

DeepTDA CV s,
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Results: Initial CV is suboptimal

CV isolines

training data
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DeepTDA CV

scatter plot of visited configurations
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Results: Training of a 4-state DeeplIDA CV

4-state training data histogram of CV values
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Results: 4-state CV resolves all states

CV isolines

2.00

175
1:90

— 1.25

o 1.00

> 0.75

0.50

0251

0.00 ¥——
~I.5

0.0
x [a.u.]

— 10 0.5 0.5

AQTIVATE

NN

1.

2.00

1.75

1.50 A

1.25 4

> 1.00 A

0.75 +

0.50 ~

0.25 A

0.00

OPES simulation

T - T T ]
—— 2-state DeepTDA CV ]

——— 4-state DeepTDA CV >
— analytic result

0 5 10 15 20

timestep [1 05]

MetaD of Paths simulation

)

1.0

0.5

0.0

-0.5

-1.0

10°

3 10!

L 100

DeepTDA CV

count




QOutlook

« Paper:. Deep Learning Collective Variables for Enhanced
Sampling Simulation (WIP)

« Application to model potential, Alanine Dipeptide

» Possible applications to larger molecules/proteins: Chignolin,
Trp-Cage, NPY, ...

 AQTIVATE PhD project ESRé6
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ESR6: What's the plan?

 MD simulations are a powerful tool, but slow to explore new
regions of phase space (at QM accuracy)
— explore Al/ML applications to accelerate & improve MD
simulations

 machine learning collective variables
 machine learning force fields

» Targeted applications: large biomolecules, proteins, ion
channels, etc.
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ESRé6: Learning from ...

Ab initio QM calculations

HY = EY¥Y

Generative models (e.g. AlphaFold)

MSA embedding Sequence-residue edges

3D structure

Residue-residue edges

Figure adapted from Jumper et al., Nature (2021)
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MD simulation data

Figure adapted from Cui and Bastien, Int J Biol Sci (2012)

Cryo-EM data

Figure adapted from Kutti R. Vinothkumar, Nature Methods (2021)



Thank you!

AQTIVATE




	Slide 1:  
	Slide 2: About me
	Slide 3: Outline
	Slide 4: Molecular Dynamics for Biophysics Research
	Slide 5: Challenges of Simulating Large Molecules
	Slide 6: CV-based Enhanced Sampling
	Slide 7: Methods: Deep Learning CVs from Transition Paths
	Slide 8: Our Workflow: Successive Incorporation of Path Data in DeepTDA Training
	Slide 9: Results: Initial CV is suboptimal
	Slide 10: Results: Training of a 4-state DeepTDA CV
	Slide 11: Results: 4-state CV resolves all states
	Slide 12: Outlook
	Slide 13: ESR6: What’s the plan?
	Slide 14: ESR6: Learning from …
	Slide 15: Thank you!

