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* Starting point: Quantum TEA library (Current main developers: Alice Pagano, Marco Ballarin, Nora Reinic,

)

Quantum
TEA
LEAVES

Quantum
TEA

O

* Tensor networks are a classical way of simulating systems at low entanglement — useful for quantum
hardware simulations (superconducting qubits, trapped ions, Rydberg atoms, etc.)

« Master thesis serves as an introduction for my PhD project (Project 8: Quantum computing and tensor
networks for (2+1)D and (3+1)D QED)
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Intfroduction

« Quantum many-body physics
* Many systems do not have analyfical solutions

» Exponential Hilbert space growth problem — storing a state
vector of 60 qubits already requires 290~ 107 GB of memory

* Numerical solutions using tensor networks (TNs) — time
evolution and statics (such as ground state search)

Tensor networks example

Image source:
https://en.wikipedia.org/wiki/Tensor_network
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Tensor networks basics

 Mathematical framework for working with tensors

» Used in guantum many-body physics as a class of variational
wave functions

 Easier to work with due to their intuitive diagrammatic notation

« Bond dimension: parameter controling the specific expressivity of
a tensor network (TN)
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Image source: https://tensornetwork.org/mps/

AQTIVATE




Tensor network notation basics

 LOow order tensors:

vector Uj ?

matrix M?;j i —.— J

3-index .
.. ] k
tensor T"'Jk '
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Tensor network notation basics

« Contractions examples:

—0-0 = ZMijUj
L j 4 —+—.— = zk:Tijlekm
—0—-0O— = = AB

E 81 82 83 S84
ADH BC'.El X CO!Q 3 DC.E3
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Tensor network notation basics

» Tensor decompositions:

- -@

identity

m’
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u11 ui2 uis\ fA1 0 O V11 V12 V13

U1 U9 U23 0 X O Va1 V22 V23

U3l U329  U33 0 0 A3/ \v31 w32 w33
A3 K 1
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0 0 V11 V12 W13
Ao 0 U21 V22 Up3
0 O V31 V32 Up3

(2x2)x(2x2)x(3x2) => (2x2)
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Matrix product state (MPS)

e factorization of a tensor with N indices into a chain-like
product of three-index tensors
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Image source: https://tensornetwork.org/mps/
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Isometry cenfter

* [sometrizing is done through a series of tensor decompositions
and contractions

* [someftry centers have useful properties for simplifying many
algorithms

 [sometrized TN = there is only one non-unitary tensor
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Moving the isometry center from A to B Splitting the isometry center from A into B
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Tree Tensor Networks (TTNs)

« Algorithms developed for this thesis are for manipulating TTNs

V) W H [¥)

Hamiltonian expectation
3 layer TTN value calculation via TTN
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1D Quantum Ising model

» Theoretical model to study phase transitions
« A lattice is modeled as a chain of spins with an external magnetic field

« Hamiltonian has terms which correspond to neiéghboring spin interactions and
effects of the external fransverse magnetic fiel

— A 4
H = _JZ’I@%H —ﬂzﬂl
i i
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Serial algorithm TTN groundstate search (starting point for parallel)

e Start with a random state TIN

* The operator used here is the quantum Ising model
Hamiltonian

» Perform a series of single tensor updates (using Lanczos) by
doing a sweep through the TIN (i.e. minimize fensors one by
one while keeping the rest of the TTN constant)

* [terate the previous step until converging 1o a result
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TTN optimization sweep, the isometry center is moved to the tensor currently being optimized
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Parallel algorithm TTN groundstate search

« Start with a random state TTN
» The operator used is the quantum Ising model Hamiltonian
« Split the isometry center into all of the TTN tensors

« Perform simultaneous single tfensor updates (using Lanczos) on
all fensors on different threads.

« Update the TTIN with the information coming in from all cores
* [terate the previous 2 steps until converging to a result
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Algorithm for the thesis was developed for a situation Future algorithms should be able to combine both
where each tensor is assigned its own thread. approaches because real-world computers have a
limited number of available threads.
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2-qubit example

« Simplest example
« 1D quantum Ising model Hamiltonian:
H=—-Jo, ® oy —910z®f2 _9212 R T,

 This Hamiltonian is easily diagonalized => gives the exact
ground state energy

* Also easily solvable using a serial algorithm
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2-qubit example
() b
b a i
v =, = :>© o0
\ J ) C d SVD
@ Paralingle—
tensor

Until convergance optimization
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Conclusion

« Parallel algorithms have potential advantages over serial
algorithms in solving many problems using tensor networks

« Further development of parallel algorithms should let us
simulate guantum systems with tensor networks faster than
ever before
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Thank youl!
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Effective operators

« Contractions of (large)parts of a tensor network
» Usually done after isometrizing
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Lanczos algorithm

* [ferative algorithm
* [t can be applied to the eigenproblem

* Applying an operator to a vector many times makes it
converge to the operator’s eigenvector

» The algorithm can be efficiently used to find some of the most
extreme eigenvalues (useful in QM problems like ground state

search)
* [t can be applied to higher rank tfensors by reshaping them to
vectors
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Serial algorithm TTN groundstate search (starting point for parallel)

e Start with a random state TIN

* The operator used here is the quantum Ising model
Hamiltonian

 [sometrize towards the top left tensor
 Build effective operators (from bottom to top)

« Perform a series of single tensor updates (using Lanczos) by
doing a sweep through the TTN

* [terate the previous step until converging to a result

AQTIVATE




|
|
|
I
|
S -

1 2|

/ \ | 1 2
|

Building the effective operators in the TTN optimization sweep

TTN by using the effective operators
from the layer below
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Parallel algorithm TTN groundstate search

« Start with a random state TTN

» The operator used is the quantum Ising model Hamiltonian
* [sometrize towards the top left tensor

» Split the Isomeftry center into all of the TTN tensors

» Build effective operators (from bottom to fop in one direction
and in the other direction while updating)

* Perform simultaneous single tensor updates (using Lanczos) on
all tensors on different threads/cores

» Update the effective operators
e [tferate the previous 2 steps until converging to a result
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TTN with the isometry centers split to each tensor, ready for parallel single

tensor updates.
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