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• Starting point: Quantum TEA library (Current main developers: Alice Pagano, Marco Ballarin, Nora Reinić, 
...)

• Tensor networks are a classical way of simulating systems at low entanglement – useful for quantum 
hardware simulations (superconducting qubits, trapped ions, Rydberg atoms, etc.)

• Master thesis serves as an introduction for my PhD project (Project 8: Quantum computing and tensor 
networks for (2+1)D and (3+1)D QED)



Introduction

• Quantum many-body physics

• Many systems do not have analytical solutions

• Exponential Hilbert space growth problem – storing a state 
vector of 60 qubits already requires 260 ~ 109 GB of memory

• Numerical solutions using tensor networks (TNs) – time 
evolution and statics (such as ground state search)

Tensor networks example
Image source:
https://en.wikipedia.org/wiki/Tensor_network



Tensor networks basics

• Mathematical framework for working with tensors

• Used in quantum many-body physics as a class of variational 
wave functions

• Easier to work with due to their intuitive diagrammatic notation

• Bond dimension: parameter controling the specific expressivity of 
a tensor network (TN)



Tensor network notation basics

• Low order tensors:

Source of images: https://tensornetwork.org/diagrams/



Tensor network notation basics

• Contractions examples:

Source of images: https://tensornetwork.org/diagrams/



Tensor network notation basics

• Tensor decompositions:

Source: https://docs.nvidia.com/cuda/cuquantum/23.06.0/cutensornet/overview.html





(2x2)x(2x2)x(3x2) => (2x2)



Matrix product state (MPS)

• factorization of a tensor with N indices into a chain-like 
product of three-index tensors

Image source: https://tensornetwork.org/mps/



Isometry center

• Isometrizing is done through a series of tensor decompositions 
and contractions

• Isometry centers have useful properties for simplifying many 
algorithms

• Isometrized TN = there is only one non-unitary tensor

Image Source: 
https://tensornetwork.org/mps/algorith
ms/dmrg/

T = T* =



Moving the isometry center from A to B Splitting the isometry center from A into B



Tree Tensor Networks (TTNs)

• Algorithms developed for this thesis are for manipulating TTNs

3 layer TTN
Hamiltonian expectation 
value calculation via TTN



1D Quantum Ising model

• Theoretical model to study phase transitions

• A lattice is modeled as a chain of spins with an external magnetic field

• Hamiltonian has terms which correspond to neighboring spin interactions and 
effects of the external transverse magnetic field



Serial algorithm TTN groundstate search (starting point for parallel)

• Start with a random state TTN

• The operator used here is the quantum Ising model 
Hamiltonian

• Perform a series of single tensor updates (using Lanczos) by 
doing a sweep through the TTN (i.e. minimize tensors one by 
one while keeping the rest of the TTN constant)

• Iterate the previous step until converging to a result



TTN optimization sweep, the isometry center is moved to the tensor currently being optimized



Parallel algorithm TTN groundstate search

• Start with a random state TTN

• The operator used is the quantum Ising model Hamiltonian

• Split the isometry center into all of the TTN tensors

• Perform simultaneous single tensor updates (using Lanczos) on 
all tensors on different threads.

• Update the TTN with the information coming in from all cores

• Iterate the previous 2 steps until converging to a result



Algorithm for the thesis was developed for a situation 
where each tensor is assigned its own thread.

Future algorithms should be able to combine both 
approaches because real-world computers have a 
limited number of available threads.



2-qubit example

• Simplest example

• 1D quantum Ising model Hamiltonian:

• This Hamiltonian is easily diagonalized => gives the exact 
ground state energy

• Also easily solvable using a serial algorithm



2-qubit example

SVD

Until convergance

Parallel single-
tensor 

optimization



Conclusion

• Parallel algorithms have potential advantages over serial 
algorithms in solving many problems using tensor networks

• Further development of parallel algorithms should let us 
simulate quantum systems with tensor networks faster than 
ever before



Thank you!









Effective operators

• Contractions of (large)parts of a tensor network

• Usually done after isometrizing



Lanczos algorithm

• Iterative algorithm

• It can be applied to the eigenproblem

• Applying an operator to a vector many times makes it 
converge to the operator’s eigenvector

• The algorithm can be efficiently used to find some of the most 
extreme eigenvalues (useful in QM problems like ground state 
search)

• It can be applied to higher rank tensors by reshaping them to 
vectors



Serial algorithm TTN groundstate search (starting point for parallel)

• Start with a random state TTN

• The operator used here is the quantum Ising model 
Hamiltonian

• Isometrize towards the top left tensor

• Build effective operators (from bottom to top)

• Perform a series of single tensor updates (using Lanczos) by 
doing a sweep through the TTN

• Iterate the previous step until converging to a result



Building the effective operators in the 
TTN by using the effective operators 
from the layer below

TTN optimization sweep



Parallel algorithm TTN groundstate search

• Start with a random state TTN

• The operator used is the quantum Ising model Hamiltonian

• Isometrize towards the top left tensor

• Split the isometry center into all of the TTN tensors

• Build effective operators (from bottom to top in one direction 
and in the other direction while updating)

• Perform simultaneous single tensor updates (using Lanczos) on 
all tensors on different threads/cores

• Update the effective operators

• Iterate the previous 2 steps until converging to a result



TTN with the isometry centers split to each tensor, ready for parallel single 
tensor updates.
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