"Data mining investigation of BKT transitions"

Samuele Pedrielli – 29/09/2023 - Nicosia, Cyprus.

The AQTIVATE project receives funding from the European Union's HORIZON MSCA Doctoral Networks programme, under Grant Agreement No. 101072344.

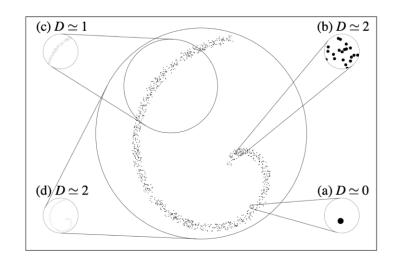
- Using data science tools to study physics problems ^[1,2]
 - Can these methods improve our understanding?
 - What are their (dis)advantages w.r.t. traditional methods (MC)?
- Young research field still in its testing phase
 - Are these techniques able to reproduce known results?
 - Which tools are best suited to study a given problem?

[1] P. Mehta et al., Rep. Prog. Phys., 2019[2] G. Carleo et al., Rev. Mod. Phys., 2019

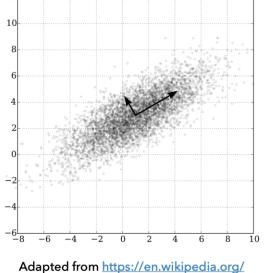
CONTEXT

AQTIVATE

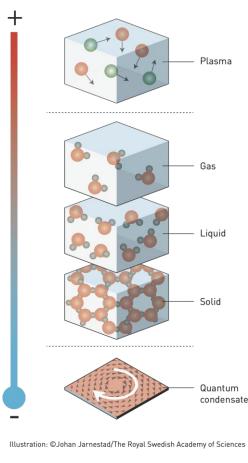
In recent works ^[3,4], promising results were obtained in the context of phase transitions.



Adapted from K. Balázs., NIPS (2002).



wiki/Principal_component_analysis



Adapted from https://www.nobelprize.org/prizes/ physics/2016/press-release/

We focus on Berezinskii-Kosterlitz-Thouless ^[5,6] transitions.

[3] C. Wang et al., Phys. Rev. B, 2017[4] T. Mendes-Santos et al., Phys. Rev. X, 2021

[5] V. L. Berezinskii, Sov. J. of Exp. and Th. Phys., 1971[6] J. M. Kosterlitz, D. J. Thouless, J. Phys. C, 1973

OUTLINE

AQTIVATE

PHASE TRANSITIONS

- Landau-Ginzburg-Wilson paradigm
- BKT transitions
 - XY model
 - 6-clock model

MONTE CARLO SIMULATIONS

- Generating configurations
- Evaluating critical temperatures

DATA MINING

- Intrinsic dimension
 - Application to XY model
 - Application to 6-clock model
- Principal Component Analysis
 - PCA entropy
 - Application to XY model
 - Application to 6-clock model

PHASE TRANSITIONS

THE LANDAU-GINZBURG-WILSON PARADIGM

- Theoretical framework to describe standard phase transitions
- Based on the notion of spontaneous symmetry breaking
 - The ground state does not possess the full symmetry of the Hamiltonian
- Does not explain all possible phase transitions

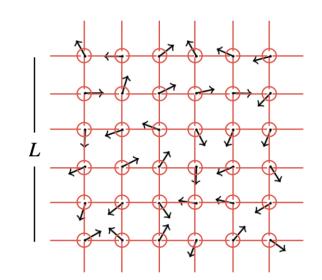
BKT TRANSITIONS

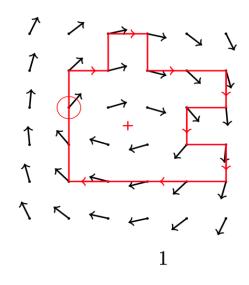
- Phase transitions that are *not* the result of s.s.b.
- Mermin-Wagner-Hohenberg Theorem

Continuous symmetries cannot be spontaneously broken at finite temperature in systems of dimensionality $D \leq 2$ for sufficiently short-ranged interactions

XY MODEL

- Prototypical example
 - *D* = 2
 - U(1) global symmetry
 - Nearest neighbour interaction
- Different kind of transition driven by topological defects
 - $T < T^{BKT}$ vortices are bound in pairs (QLRO)
 - $T > T^{BKT}$ vortices unbind and proliferate (DIS)





BKT TRANSITIONS

6-CLOCK MODEL

- Same Hamiltonian as XY, now 6 discrete spins $\phi = 2\pi q/6$, q = 0, ..., 5
 - *D* = 2
 - Z₆ global symmetry
 - Nearest neighbour interaction
- MWH Theorem *does not* apply, but 2 BKTs nevertheless

	LRO		QLRO	DIS.	
T = 0)	T_1^{BKT}	T_2^B	KT	$T = \infty$

- Understand if we can use PCA Entropy to obtain the critical points of
 - XY model
 - 6C model
- If so, obtain estimates of the critical points with
 - PCA Entropy
 - Intrinsic dimension

and compare them to those obtained with Monte Carlo techniques.

• Compare PCA Entropy and Intrinsic dimension with each other.

MONTE CARLO SIMULATIONS

GENERATING CONFIGURATIONS

Monte Carlo simulation - numerical technique that simulates the thermal evolution of a system

- Start from a configuration $\{\sigma\}_{i=1}^{N}$
- Propose a new configuration $\{\bar{\sigma}\}_{i=1}^{N}$
- Decide whether to transform $\{\sigma\}_{i=1}^{N}$ into $\{\overline{\sigma}\}_{i=1}^{N}$

At each MC step, a *new configuration* of the system is generated and averages of observables can be computed from it

EVALUATING CRITICAL TEMPERATURES

- Find T^* at a given L from observables^[8]
- Finite size scaling^[9]: $T^* T^{BKT} \sim ln^{-2}(L)$

System	Average		
XY: (L=24,32,64)	$0.910(5) \leftarrow T_{MC}^{BKT}$		
6C: (L=24,48,64,80)	$0.91(1) \leftarrow T_{MC,2}^{BKT}$		

[8] D. R. Nelson, J. M. Kosterlitz, Phys. Rev. Lett., 1977.[9] A. W. Sandvik, AIP Conf. Proc., 2010.

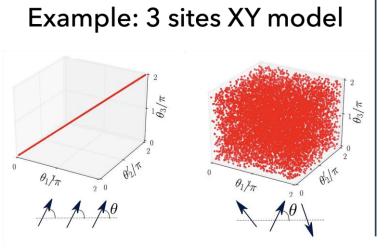
- How do we get the data set associated with a physical system?
 - Experimental measurements
 - Output configurations of Monte Carlo simulations

$$\mathscr{Z}[K] \xrightarrow{\mathsf{MARKOV CHAIN}} \begin{cases} \vec{x}_1 = (x_1^1, x_1^2, \dots, x_1^N) \\ \vec{x}_2 = (x_2^1, x_2^2, \dots, x_2^N) \\ \vdots \\ \vec{x}_{N_c} = (x_{N_c}^1, x_{N_c}^2, \dots, x_{N_c}^N) \end{cases} \xrightarrow{\mathsf{DATA SET}} X = (\vec{x}_1, \vec{x}_2, \dots, \vec{x}_{N_c})$$

- Once the data set is at hand, we apply our data mining techniques
- The power of the approach resides in its agnostic spirit

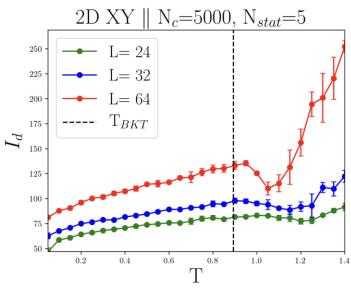
INTRINSIC DIMENSION

Minimum number of variables that describe a data set X embedded in an ND space

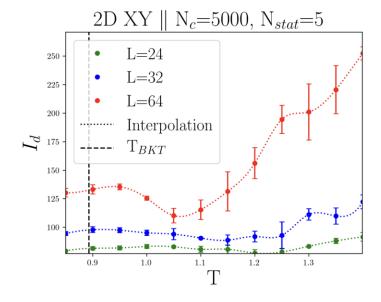


- T = 0) spins aligned configurations live on a line: $I_d = 1$
- $T = \infty$) random spins configurations fill the space: $I_d = N = 3$
- I_d able to distinguish different phases
- How do we compute it? *Two nearest neighbour method*
- What happens at intermediate temperatures?
- Can we identify a signal that scales properly? Can we find T^{BKT} from it?

APPLICATION TO XY MODEL



- I_d displays a minimum
- Does it scale as expected?



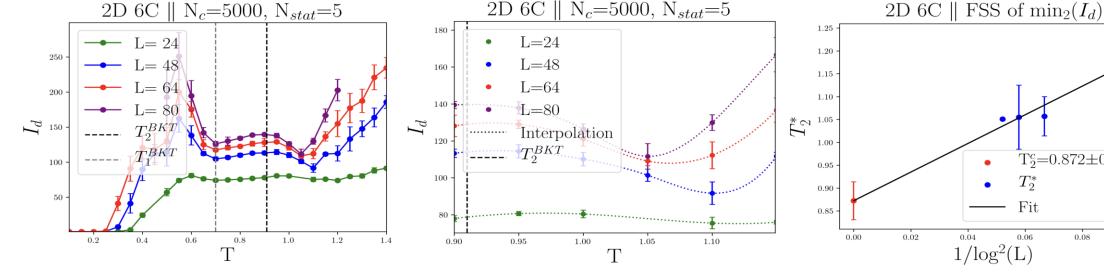
Interpolation of the data to

- 2D XY || FSS of min(I_d) $T_c = 0.844 \pm 0.04$ 1.2 $T^*_{I_d}$ Fit 1.1**Ě₁** 1.0 0.90.8 0.00 0.020.04 0.06 0.100.08 $1/\log^2(L)$
- Plot T^* against $ln^{-2}(L)$
- Scaling is satisfied

Result: $T_{I_d}^{BKT} = 0.84(4)$, 3% away from agreeing with T_{MC}^{BKT} **AQTIVATE**

determine T^*

APPLICATION TO 6-CLOCK



- *I_d* displays two minima
- Do they scale as expected?
- Interpolation of the data to determine T_2^*
- Plot T^* against $ln^{-2}(L)$

 $T_2^c = 0.872 \pm 0.042$

0.08

0.10

 T_2^*

Fit

0.06

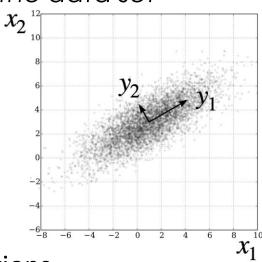
Scaling is satisfied

 $T_{I_{d},2}^{BKT} = 0.87(4)$, agrees with T_{MC}^{BKT} ; $T_{I_{d},1}^{BKT} = 0.87(4)$, agrees with $T_1^{BKT} = 0.6901(4)^{[10]}$

PRINCIPAL COMPONENT ANALYSIS

Dimensionality reduction technique based on a linear transformation of the data set

- Idea: relevant information in the directions of maximum variance
- Figure: we want to reduce the dimensionality from 2 to 1
 - Linear transformation $(x_1, x_2) \rightarrow (y_1, y_2)$ eigenvectors of C(X)
 - Discard eigenvectors with lower eigenvalues (y_2)
- General case: C(X) has N eigenvectors: systematic way of eliminating directions
 - Set a threshold for the *fidelity*: $[0,1] \ni F \equiv Tr[C(Y)]/Tr[C(X)]$
 - Keep all eigenvalues in decreasing order until the threshold is met

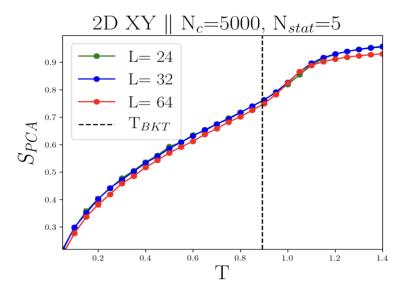


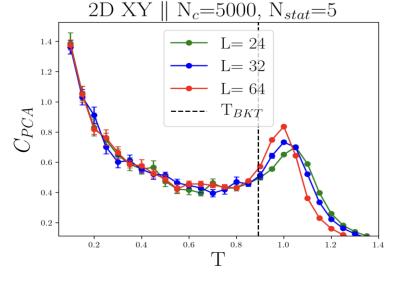
- Problems with PCA
 - Arbitrary threshold
 - By only looking at eigenvalues/vectors is not possible to get T_{PCA}^{BKT} ^[4]
- Define a new quantity using **all** the eigenvalues

$$S_{PCA} \coloneqq \frac{1}{\ln R} \sum_{i=1}^{R} \tilde{\lambda}_i \ln \tilde{\lambda}_i, \qquad \tilde{\lambda}_i = \lambda_i^2 / \sum_j \lambda_j \qquad \begin{matrix} S_{PCA} = 0 & S_{PCA} = 1 \\ & & \\ T = 0 & T = \infty \end{matrix}$$

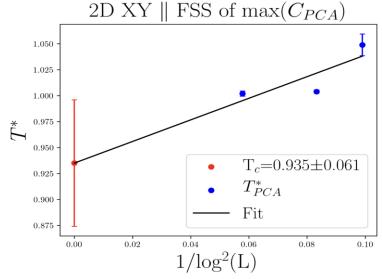
 $\tilde{\lambda}_i$ are now positive and sum up to 1, like probabilities: S_{PCA} is an entropy.

APPLICATION TO XY MODEL





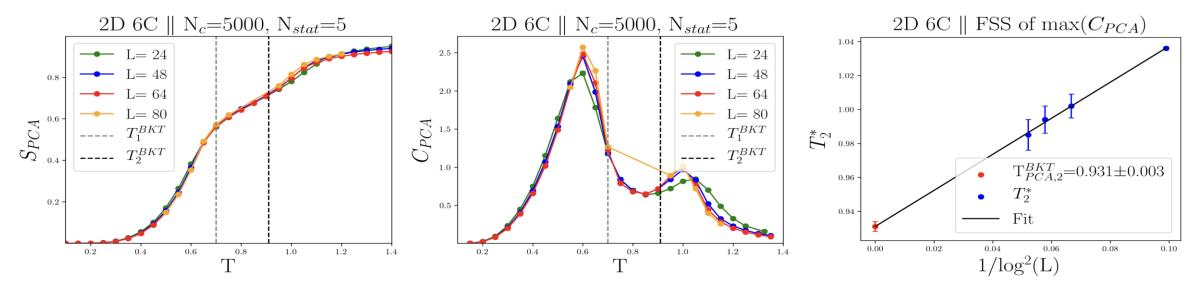
- Agrees with interpretation
- Shows a kink close to T^{BKT}
- Derivative has a maximum
- Does it scale properly?



- Small error bars
- The fit gives $T_{PCA}^{BKT} = 0.93(6)$

This result is in agreement with T_{MC}^{BKT}

APPLICATION TO XY MODEL



- Fast growth in LRO
- Kink close to T_2^{BKT}

Two maxima
Biggest signal at T₁^{BKT}

- Scaling is satisfied
- Fit gives $T_{PCA,2}^{BKT} = 0.93(3)$

 $T_{PCA,2}^{BKT}$ agrees with T_{MC}^{BKT} , while $T_{PCA,1}^{BKT} = 0.627(2)$ does not for a 9% **AQTIVATE**

SUMMARY OF THE RESULTS

- PCA entropy compatible results with Monte Carlo methods in both models for the estimation of T^{BKT} for QLRO \rightarrow DIS
 - T_1^{BKT} does not give satisfying results
 - Looking at bigger system sizes
 - More sophisticated techniques for evaluating the error on T^*
- I_d does not give compatible results with T_{MC}^{BKT} in the XY model, but this is due to limited system sizes, as supported by other works ^[4]
- Results obtained with I_d and S_{PCA} are not always compatible, furthermore
 - I_d seems to work better for LRO \rightarrow QLRO
 - S_{PCA} seems to work better for QLRO \rightarrow DIS

THANK YOU

