

Test result of MBXF1

Michinaka SUGANO (KEK) KEK On behalf of CERN-KEK Collaboration for D1 Development for HL-LHC

WP3 meeting, Jun. 7, 2023

Outline

- Test result of the 1st cycle for MBXF1
 - 1.9 K Hi-pot test
 - Validation of newly implemented varistor
 - Training performance
 - Energy extraction with varistor
 - He gas recovery with an additional storage bag
 - Other test items (Joint resistance, RRR measurement)

The results of MFM will be presented in another talk by Kento SUZUKI.

D1 magnet (MBXF)

- Beam separation dipole (D1) by KEK
 - Design study of D1 for HL-LHC within the framework of the CERN-KEK collaboration since 2011.
 - 150 mm single aperture, 35 Tm (5.6 T x 6.3 m), Nb-Ti technology.
 - Development 2-m long model magnets (3 units) at KEK
- Deliverables for HL-LHC
 - 1 full-scale prototype cold mass (LMBXFP)
 - 6 series cold masses (LMBXF1-6)
- Current status of D1 prototype and series production magnet
 - MBXFP1 : In preparation for the horizontal test at CERN
 - MBXF1: The 1st test cycle was completed. The 2nd test cycle is being conducted. This slide
 - MBXF5: Magnet assembly has been almost completed in Hitachi.
 - MBXF2: Coil winding and curing was completed.

Remaining issues in the KEK test facility

- Sufficient energy extraction with the allowable maximum voltage and complete He gas recovery is needed.
- Dump resistors of 25 m Ω or 50 m Ω were used for the cold test of MBXFP1.
 - 25 mΩ: Insufficient energy extraction resulted in incomplete He gas recovery.
 - 50 mΩ: The maximum voltage exceeded the allowable limit of 600 V for the DCCB of the power converter. Training above 106% of the nominal current could not be performed.
- Target: Maximum voltage < 600 V at the ultimate current Magnet dissipation energy < Safety limit = 1.6 MJ (Max. experienced energy in the cold test of MBXFP1)
- To satisfy these targets, varistor and additional He gas bag were implemented before the cold test of MBXF1.

Installation of the new EE system: Varistor

Non-linear resistor: varistor (Metrosil®)

- Composed of SiC disks
- C=32.01
- **β** =0.3

Technical meetings with CERN experts had been held twice so far, and some concerns attributed to "parallel connection scheme" were raised

- Imbalance of the circuit current
- Imbalance of the turn-on time
- KEK had proposed a "gradual powering plan" to check the EE system and setup for monitoring current imbalance using Rogowski coils (PEM Ltd.)

Recall **Additional Helium Gas Storage Bag**

- Limitation of helium gas recovery at quenches of MBXFP1.
- Present capacity: 280 m³ (#2: 80 m³, #4: 200m³)
- Helium gas at 13.23 kA w/ Varistors: 294 m³ (prediction)
- Plan: new Helium gasbag (#4b, 40 m³)
 - Total capacity: 320 m³ > 294 m³
- ited at the 5th D7 #4b Gasbag to be installed next to #4 Gasbag in the same tent warehouse
 - \succ The gasbag is already available. The drawings are being prepared in a rush.

In the event of MBXFP1 quench

Additional Helium Gas Storage Bag

New Helium gasbag (#40-sub, 40 m³):

- construction and system commissioning completed in March 2023.
- In operation for MBXF1 powering test.

Test schedule

- Insertion of MBXF1 into the vertical cryostat: April 7
- 1st test cycle
 - Cool-down: April 12 17
 - 1.9 K Hi-pot test: April 17
 - System check: April 18 26
 - MFM at 3 kA: April 19
 - Training: April 27 May 2
 - MFM: May 10 17
 - Current holding at the ultimate current: May 18
 - Warm-up: May 18 26
- 2nd test cycle
 - Cool-down: May 28 31
 - 1.9 K Hi-pot test: June 1
 - System check: June 2
 - MFM at 3 kA: June 2
 - Training: June 5
 - MFM: June 6 –

Test items

- 1.9 K Hi-pot test
 - Coils to ground: max 1.3 kV
 - Heater to coils: max 2.3 kV
 - R14: The magnet shall fulfil the electrical test requirements during assembly and at 1.9 K.
- System check with Metrosil varistors
- MFM at 3 kA
- Training up to the ultimate current
 - R1: Ramp to the ultimate current with ramp of 12 A/s and flattop for 4 hours.
 - R21: Ramp to and from the ultimate current at \pm 30 A/s
- MFM up to the nominal current
 - Perform Z-scan field measurement at [687, 1k, 3k, 5k, 7k, 9k, 10k, 11k, 12k, 11k, 10k, 9k, 7k, 5k, 3k, 1k, 687] A.
 - Perform DC-loop at the magnetic center.
 - Splice joint resistance and inductance measurements along with the field measurement.
 - R8: The integral multipoles of the magnet at 1.9 K and at nominal current shall target the range "upper limit, lower limit" as defined in Table 1.
 - R19: Each internal splice shall have an electrical resistance lower than 1 n Ω at 1.9 K.
- 1.9 K Hi-pot test (only at the end of the 2nd cycle)
- Warm-up
 - RRR measurement

1.9 K Hi-pot test

- Hi-pot test was performed after cool-down in the 1st and 2nd cycles.
- MBXF1 passed all the following tests.

Criteria: Leak current < 10 μ A for 30sec

- Coil-GND: 1.3 kV
- Heater-GND: 2.3 kV
- Between adjacent heater strips: 2.3 kV

Another 1.9 K Hi-pot test will be conducted before the 2nd warm-up.

3kA shutdown

Validation of varistor

- Signals from Rogowski coils and temperature of SiC disks has been monitored every shutoff/quench event to ensure no sign of imbalance promotion
 - At every higher current we perform 3kA shutdown to check reproducibility
- In the 1st cycle:
 - Current imbalance < 7%
 - Turn-on time imbalance < 300 µs
- Detailed report can be found :
 - https://indico.cern.ch/event/1282199/

Training performance

Quench start location

- The quench position was identified by using quench antennas.
- The first quench occurred at LE same as MBXFP1. Then the quench origin changed with progressing training. No specific weak point was found.

Normal training behavior was confirmed.

Current holding

- The current holding for 4 hours was successfully done at the nominal, nominal +200 A, and the ultimate current. This is the first time of current holding at the ultimate current for more than a half hour including the 2 m-long model magnets.
- The ramping-up/down up to the ultimate current with a ramp rate of 30 A/s was also successful.

Measured maximum coil voltage

- The maximum coil voltage was evaluated by the current shutdown and quench.
- Dump resistors of 25 m Ω or 50 m Ω were utilized for MBXFP1.
 - R_{dump} =25 m $\Omega \rightarrow$ Insufficient energy extraction
 - R_{dump} =50 m $\Omega \rightarrow$ Maximum coil voltage exceeding 600 V below the ultimate current
- In MBXF1, the varistors are confirmed to be effective to suppress the maximum coil voltage thanks to their non-linear V-I characteristics.

MITTs, magnet dissipation energy

- Through the commissioning of the Varistor system, it was found that parameter β has a current dependence and is smaller at lower current.
 - It turns out to be the higher MIITs and lower energy extraction at the current below 10 kA wrt the design.
- Nevertheless, profit of using the Varistor is obvious: the dissipation energy during the training quenches are significantly reduced wrt R_{dump}=25 mΩ while the maximum voltage is below 600 V.

He gas recovery

- Measured evaporated He gas volume at the shutdown at the ultimate current = 290 m³ (as prediction) < Capacity of the He gas bag = 320 m³
- Evaporated He gas could be completely recovered up to the ultimate current.
 An increase in the capacity of He gas bag was successful.

Joint resistance

• Joint resistance was evaluated to be 0.645 n Ω <1 n Ω .

17

RRR measurement

 RRR was evaluated during the warm-up after the 1st test cycle. RRR is defined as the following equation.

 $RRR = \frac{R(293K)}{R_{low}}$, R_{low} : Normal resistance just before superconducting transition

RRR= 197 for MBXF1 (ex. RRR=217 for MBXFP1)

Summary

- Cold test of the first series production magnet (MBXF1) is being performed at KEK. The results are summarized as follows.
 - 1.9 K Hi-pot test → Passed
 - Successful validation of newly implemented varistor
 - Good training performance: 2 quenches to the nominal, 7 quenches to the ultimate
 - Reaching the ultimate without quench after thermal cycle, perfect training memory
 - Current holding at the ultimate for 4 hours \rightarrow OK
 - Ramp to the ultimate with 30 A/s \rightarrow OK
 - Complete recovery of evaporated He gas in the shutdown at the ultimate
 - Joint resistance < $1n\Omega \rightarrow OK$
- MFM in the 2nd test cycle is ongoing. The 2nd test cycle will be completed in the week of June 12.

Current history

Many shutdowns were repeated mainly for the validation test of the varistor.

