Radiation measurements

Dr. Imre Szalóki

scientific advisor

Nuclear Security Department

Centre for Energy Research

Sensor or detector is a device that detects the physical properties of objects and gives an electronic signal

Input: electromagnetic radiation

Output: electronic signal that is converted to human-readable display

Physical effects which are frequently used for detection:

- ionization rate
- properties of the atomic excitation
- electronic conductivity in crystals
- light production, etc.

Nuclear radiations: charged particles, EM radiation (gamma-, X-ray),

beta-particles, alpha-particles, ions

Detection of nuclear radiations by interactions between photons/particles and matter \Rightarrow producing electrons and/or light

Spectral distribution of electromagnetic (EM) radiation

Gas-filled detectors

- Ionization and excitation of gas atoms/molecules along the particle trajectory \Rightarrow positive ions and free electrons
- External electric field \Rightarrow (-) charged move to anode and (+) to cathode \Rightarrow production of electronic signal $\Rightarrow U_{\text{anode}}(t) \Rightarrow$ electric pulse

Characteristic properties of the electronic signal (output) in gas-filled detectors (constant ionization effect)

Gas-filled detectors

- First electronic sensor measuring ionization radiation
- Development: first half of the 20th. century
- Simple structure and electronics \Rightarrow low cost

• Suitable to measure α (He), β (electron or positron), γ and X radiations

• Energy measurements \Rightarrow integral of the output electric signal

Dose measuring gas-filled detectors

- W = average energy loss per ion pair formed in gas
- \bullet S = energy loss of the radiation in the material to that gas
- \bullet P = number of ion pairs per unit mass formed in the gas
- \bullet D = absorbed dose \Rightarrow D = WSP

Scintillation detectors

- ZnS + ionization radiation (charged particles, EM) \Rightarrow light emission
- 1940s \Rightarrow luminosity is proportional to the absorbed energy
- What material is suitable as a scintillator?
- Inorganic, organic materials, liquid and gas.

Physical properties of inorganic scintillator materials

Liquid Scintillation Spectroscopy (LSC)

³H E_{max}=18.6 keV \Rightarrow ≈ 30 photons ¹⁴C E_{max}=156 keV \Rightarrow ≈ 250 photons ³²P E_{max}=1,71MeV \Rightarrow ≈ 3300 photons Low fluorescence yield \Rightarrow \approx 1% of the β energy is converted into light.

Reduction of the noise is necessary!

Toluene, xylene,…

Semiconductor detectors

Band structure of solid materials

General structure of semiconductor detectors

- Electrode: Au layer
- Ion implantation ۰
- p-n junction ۰
- High volume space ۰ charge region
- Sensitive volume: $0.2 - 50$ mm
- Cooling is necessary to decrease the thermal noise
- $T = 92$ K liquid nitrogen temperature ۰
- Peltier-type cooling system \bullet
- Charge collection time: $10^{-7} 10^{-8}$ s \bullet

Structure of HPGe detector cooled with $LN₂$

Si(Li) and Silicon Drift detectors for X-ray measurement

BRUKER

Si(Li) $\Delta E \approx 125$ eV, $E = 6.4$ keV, Max. count rate $\approx 20 - 50$ kcps

General properties of semiconductor detectors

- Solid material \Rightarrow higher density \Rightarrow higher excitation probability
- Higher density compared to the gases \Rightarrow higher detection efficiency
- Operation in atmospheric and vacuum condition
- First applications: 1960, Si, Ge, CdTe, Hgl_2 ,....
- Short response time: \approx ns!!!

NaI

HPGe

500

 $5x10^2$

 $4x10^2$

 $3x10^2$

 $2x10^2$

Counts

/channel

2023 EK SBL - BME NTI *Radiation measurements* 16

1500

1000

Energy

1332 keV

1173 keV

(keV)

Usual geometry of HPGe detectors

- Coaxial Ge
- Well ٠
- Planar ۰
- REGe٥

Si PIN and CZT (CdZnTe) detectors

- 10² 10⁴ times lower mass and volume than HPGe
- Low efficiency on high energy \bullet
- Operate at T= $-$ 40-50 °C, room temperature (!) ٠
- Extreme conditioning: space, Mars, underground deep \bullet
- High count rate without loss of resolution ۰
- Cheap manufacturing
- Integral design on a single chip ۰

Superconducting detectors

- Temperature dependence of electrical resistivity ٠
- Meissner-effect ٥
- Critical magnetic filed ۰

Superconductor detectors

- Superconductive Tunnel Junction = STJ ۰
- Cooper-pairs ۰
- $E_{binding} \approx 1-2$ meV
- $FWHM \approx 5-15 \text{ eV}$

 $E = 100 \text{ eV} < E < 10 \text{ keV}$

- Count rate: < 100-200 cps ۰
- Cooling: He, N_2 ۰
- Surface \approx 140x140 μ m² \bullet

$$
\frac{\Delta E}{E} \sim \frac{1}{\sqrt{N}} \qquad E_{Cooper} = 1.76kT_c
$$
\n
$$
\Rightarrow \qquad E_{Cooper} \approx 10^{-3} - 10^{-5} eV
$$
\n
$$
\frac{\Delta E}{E} = \frac{1.76kT_c}{1.5}
$$

G. Angloher, *Nuclear Instruments and Methods in Physics Research A,*512, 401,2003