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Random walk
Physical model of neutron propagation

point particle

flying in space

ocassionally colliding with nuclei

absorption
scatter
etc

sequence of collisions to
absorption

subject of laws of probability

random walk



Deterministic approach
Physical model of neutron propagation

quantities of engineering interest

reaction rates for heat
generation, burnup, etc
multiplication factor

we don’t care about fluctuations

taking ensemble average

instead of particles:
fluid-like representation



Phase space
Fundamental concepts

State of a neutron

It’s traveling

at location r,

in direction Ω,

and at energy E

Phase space

Possible states
of any neutron

Quantities are functions
of these independent
variables (r,Ω,E )



Neutron density
Fundamental concepts

Neutron density

n(r,Ω,E )
[ n

cm3 St eV

]

Interpretation

Number of neutrons per unit
volume of the phase space
(unit volume, unit solid angle,
and unit energy)



Flux and cross sections
Fundamental concepts

Reaction rates are proportional to

number (density) of neutrons

their velocity

number (density) of nuclei

Proportionality constant:
microscopic cross section

Rx = σx(E )N(r,E )v(E )n(r,Ω,E )

Rx = Σx(r,E ) ϕ(r,Ω,E )

Angular flux

ϕ(r,Ω,E ) = v(E )n(r,Ω,E )

Interpretation

Number of neutrons crossing at a
small surface, in direction Ω

Macroscopic cross section

Σx(r,E ) = σx(E )N(r,E )

Interpretation

”Probability” of reaction per unit
distance travelled
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Scalar flux and current
Fundamental concepts

Scalar flux

Φ(r,E ) =

∫
4π

ϕ(r,Ω,E )dΩ

Flux of neutrons flying
in any direction

Net current

J(r,E ) =

∫
4π

Ωϕ(r,Ω,E ) dΩ

Net number of neutrons
crossing a surface



Streaming
Balance of neutrons

How many neutrons leave a small volume around r?

Number of neutrons crossing surface f
f · Ωϕ(r,Ω,E )

Number of neutrons leaving V
LV =

∮
F f(r) · Ωϕ(r,Ω,E ) dr

Apply Gauss’s theorem
LV =

∫
V Ω · ∇ϕ(r,Ω,E )dr

Streaming loss at r:
L = limV→r

LV
V = Ω · ∇ϕ(r,Ω,E )



Gain and loss of neutrons
Balance of neutrons

Balance of neutrons in a point of phase space

∂n

∂t
(r,Ω,E , t) =

1

v

∂ϕ

∂t
(r,Ω,E , t) = source− loss

What’s loss?

streaming
Ω · ∇ϕ(r,Ω,E , t)

collision
Σtϕ(r,Ω,E , t)
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Gain and loss of neutrons
Balance of neutrons

Balance of neutrons in a point of phase space

∂n

∂t
(r,Ω,E , t) =

1

v

∂ϕ

∂t
(r,Ω,E , t) = source− loss

What’s source?

scatter∫ ∞
0

∫
4π

Σs

(
r,Ω′ → Ω,E ′ → E

)
ϕ(r,Ω′,E ′, t) dΩ′ dE ′

fission

f (E )

4π

∫ ∞
0

∫
4π
νΣf

(
r,E ′

)
ϕ(r,Ω′,E ′, t) dΩ′ dE ′



Transport equation
Balance of neutrons

The (first order differential form of the) transport equation

1

v

∂ϕ

∂t
(r,Ω,E , t) = −Ω·∇ϕ(r,Ω,E , t)−Σtϕ(r,Ω,E , t)+Q(r,Ω,E , t)

Generalised source

Q(r,Ω,E , t) =∫ ∞
0

∫
4π

Σs

(
r,Ω′ → Ω,E ′ → E

)
ϕ(r,Ω′,E ′, t)dΩ′ dE ′+

f (E )

4π

∫ ∞
0

∫
4π
νΣf

(
r,E ′

)
ϕ(r,Ω′,E ′, t)dΩ′ dE ′+

S(r,Ω,E , t)



Solving the transport equation
Balance of neutrons

Very hard to solve because

complicated dependence on energy E (resonances,
thermalisation)

lack of theoretical understanding (singular solutions)

number of independent variables → combinatorial explosion

Possible routes out of the trouble

simplification

numerical methods needed

but usually both of them



Solving the transport equation
Balance of neutrons

Ideas and approaches

Point kinetics → focus on time dependence

Diffusion → get rid of the angular variable Ω

Discrete ordinates → discretise everything in (r, Ω,E )

Collision probabilities → connect everything to everything

Monte Carlo → simulate random walk

Multigroup/fewgroup approximation

Resonance shielding, cross section weighting



Diffusion theory
Neutron diffusion

Idea

For ease of life, flux could be approximated with linear expansion:

ϕ(r,Ω,E ) ≈ 1

4π
Φ(r,E ) +

3Ω

4π
J(r,E ) + . . .

Assumptions

Severe and restrictive conditions

dominant reaction is scatter

no strong absorbers

spatial flux variation is weak

angular dependence of flux is mild



Getting rid of Ω
Neutron diffusion

What you do

Substitute the linear flux expansion into the transport equation

Integrate the equation for Ω

What you get

1

v

∂Φ

∂t
(r,E , t) = −∇J(r,E , t)− ΣtΦ(r,E , t) + Q0(r,E , t)

Q0(r,E , t) is the isotropic part of the generalised source

Balance of neutrons, irrespective of their direction of flight

One equation for two unknowns: Φ(r,E , t), J(r,E , t)

One more equation is needed



Fick’s Law
Neutron diffusion

How to get connection between the flux Φ(r) and the J(r) current?

multiply the transport equation with Ω, and integrate again

neglect time derivative of the current (∂J
∂t (r,E , t) ≈ 0)

neglect energy change in the anisotropic part of the scatter

Fick’s Law

J(r,E , t) = −D(r,E )∇Φ(r,E, t)

diffusion coefficient D(r,E ) = 1
3Σtr (r,E) ,

Σre(r,E ) = Σt(r,E )− avg(cos θ)Σs(r,E )

eliminate J(r,E , t) from the previous equation



The diffusion equation
Neutron diffusion

Finally the diffusion equation

1

v

∂Φ

∂t
(r,E , t) = ∇D(r,E )Φ(r,E, t)− ΣtΦ(r,E , t) + Q0(r,E , t)

generalised source:

Q0(r,E , t) =

∫ ∞
0

Σs0

(
r,E ′ → E

)
Φ(r,E ′, t)dE ′+

f (E )

∫ ∞
0

νΣf

(
r,E ′

)
Φ(r,E ′, t) dE ′ + S(r,E , t)

much-much easier to solve

analytical and numerical solution methods are available



The physics behind Fick’s law
Neutron diffusion

Plenty of neutrons here,
they will migrate to the
neigbour region

No neutrons in the
neighbour, they can’t
migrate to here

Figuratively

Neutrons are rolling down
from the flux hill.



Criticality and keff
Neutron diffusion

The diffusion equation

0 =
1

v

∂Φ

∂t
(r,E , t) = ∇D(r,E )Φ(r,E, t)−ΣtΦ(r,E , t)+Q0(r,E , t)

balancing the equation with the multiplication factor

Q0(r,E , t) =

∫ ∞
0

Σs0

(
r,E ′ → E

)
Φ(r,E ′, t)dE ′+

f (E )

keff

∫ ∞
0

νΣf

(
r,E ′

)
Φ(r,E ′, t) dE ′ + S(r,E , t)

eigenvalue equation instead of time dependence

rather general, can be done to the transport equation as well



Concept
Reactor kinetics

Primarily, we would like to know the reactor power as a whole

time dependent neutron transport/diffusion models are
complicated

too much detail → too much work

seeking some simple approach

trying to compute overall number of neutrons N(t)

without considering phase space variables (r,Ω,E , t)

Point kinetic equation

ϕ(r,Ω,E , t) = N(t)Φ(r,Ω,E )

separating time dependence and shape function



Delayed neutrons
Reactor kinetics

fission neutron lifetime is short,
10− 100µs

small deviation from keff = 1.0 results
rapid increase reactor power

fission products have excess neutrons

strong β− decay

some fission neutrons are produced
after one or more decay

time scale 0.1 s − 100 s, i.e.
significantly later

example: 143Cs

divided into six groups

λi decay constants

βi delayed n, fractions



Overall balance of neutrons
Reactor kinetics

How is the number of neutrons changing during the average life
time τn of a neutron?

N(t + τn) = keff(1− β)N(t) +
6∑

i=1

λiCi (t) τn + S(t) τn

keff(1− β)N(t) increase from chain reaction

6∑
i=1

λiCi (t) τn emitted by decaying delayed neutron precursors

S(t) τn introduced by external source



Balance of delayed neutron precursors
Reactor kinetics

Further equations are needed for the delayed precursors

Ci (t + τn) = Ci (t) + keffβiN(t) − λiCi (t) τn, where i = 1 . . . 6

keffβiN(t) precursors produced by fission

λiCi (t) τn precursors decaying to delayed neutrons

Finally using the Taylor expansions
N(t + τn) ≈ N(t) + τn

dN
dt (t) + . . . and

Ci (t + τn) ≈ Ci (t) + τn
dCi
dt (t) + . . . to get · · ·



Point kinetic equations
Reactor kinetics

Point kinetic equations

dN

dt
(t) =

ρ− β
Λ

N(t) +
6∑

i=1

λiCi + S(t)

dCi

dt
(t) =

βi
Λ
N(t)− λiCi (t)

With

Reactivity

ρ =
keff − 1

keff

Generation time

Λ =
τn
keff



Solution of the point kinetic equations
Reactor kinetics

Assuming S(t) = 0, the solution can be written as

Ansatz

N(t) = N0 exp(ωt)

Ci (t) = C 0
i exp(ωt)

Substituting this into the point kinetic equations a formula for
period ω can be obtained.



Inhour equation
Reactor kinetics

Charachteristic polynomial of the system

Relation between reactivity and reactor period

ρ

β
=

Λ

β
ω + ω

6∑
i=1

βi/β

λi + ω

one eigenvalue can be positive or negative, depending on reactivity



Full solution of the point kinetic equations
Reactor kinetics

The full solution can be written as the sum of 7 modes

N(t) =
6∑

j=0

N0
j exp(ωj t)

Ci (t) =
6∑

j=0

C 0
i ,j exp(ωj t)

N0
j and C 0

i ,j can be tuned to fit initial condition.



Reactivity jump
Reactor kinetics

critical reactor

sudden increase in reactivity

sum of 7 exponentials

ω0 > 0 > ωj , where j = 1 . . . 6

Dominant mode

ω0 > 0 assymptotic behaviour



Rod drop
Reactor kinetics

critical reactor

control rod dropped suddenly

sum of 7 exponentials

ω6 � ω5 < ω4 < . . . ω0 < 0

pseudostable flux after
t = 0.05 s

Reactivity estimation

ρ
β = 1− Ncrit

Npseudo



Subcritical neutron multiplication
Reactor kinetics

subcritical reactor with source

number of neutrons in the core
N =
τn
(
S0 + S0keff + S0k

2
eff + . . .

)
geometric series

Inverse proportionality

N = S0τn
1−keff

= S0Λ
−ρ

estimation of critical mass, rod
position, etc



Change of composition
Burnup

nuclear reactions transmute
isotopes from one into another

composition of the reactor
slowly changing

main processes

fission into mid-size nuclei,
e.g. 235U + n → fission
products
build up of transuranium
isotopes
e.g. 238U + n → 239Np →
239Pu + n → 240Pu + n →
241Pu, etc
Activation of structural
materials



Mathematical treatment of burnup
Burnup

Equation for the number density (Bateman equations)

dNi

dt
(t) = − (σa

i Φ + λi )Ni (t) + σc
j ΦNj(t) + λkNk(t)

balance equation of rates of production and loss

system of ordinary differential equations

a few dozen or hundred of coupled equations

at afirst glance, this is an easy job

Reality kicks in

1. spatial dependence
2. cross sections and flux are changing in time
3. for real life reactors → bloody hard job → more in later lectures



The End

Thank you for your attention
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