

Level-1 Tracking at CMS for the HL-LHC

Sara Fiorendi (University of Tennessee) on behalf of the CMS Collaboration

> Connecting the Dots 2023 October 10-13th Toulouse

HL-LHC opportunities and challenges

The High-Lumi LHC will provide the experiments with unprecedented high statistics data

- extend discovery reach in searches for new physics & rare SM processes
- improve Higgs boson and SM precision measurements

This will happen in a **very challenging environment** for the experiments

- instantaneous luminosity of 5-7 x 10³⁴ cm⁻² s⁻¹
- expected average pileup of 200, resulting increase of particle density
- radiation damage to the detector

Phase-II upgrades of the CMS detector were designed to maintain excellent detection ability, and even improve performance wrt current detector

• including tracking in hardware trigger plays a crucial role

Sanoni inggor Systemis

• L1 trigger

- Hardware-based, implemented in custom-built electronics
- Muon & calorimeter information with reduced granularity, no tra

CMS trigger-upgrade

- Tracking information & full detector granularity
- ATLAS use level-2 & event filter, CMS single-step HLT
- The entire trigger system will be replaced for HL-LHC
- Still based on a 2-level trigger approach to reduce the 40MHz collision rate down to 7.5 kHz
 - hardware Level 1 (L1) trigger
 - software High Level Trigger (HLT)

- Significant challenge in data processing
 - huge amount of input data bandwidth (~63Tb/s)
 - decision window of 12.5µs (4µs for track reconstruction)
- Tracking information will be used for the first time at L1!
 - On-detector filtering to reduce hit rate
 - Off-detector track finding algorithm implemented on Xilinx FPGAs

CMS L1 trigger scheme @HL-LHC

Benefits of tracking @L1

- Usage of tracking information in hardware trigger allows to
 - improve p_T resolution and particle identification \rightarrow lower trigger thresholds
 - identify primary interaction vertex, mitigating the pileup effects
 - associate objects to a common vertex
 - perform **Particle Flow** reconstruction already at L1 (also thanks to the fine calorimeter granularity)

Phase 2 Outer Tracker

- Entire tracker detector will be replaced during LS3
 - increased granularity and pseudo-rapidity acceptance, radiation tolerance, and lower mass
- Outer Tracker (OT) will consist of 6 barrel layers and 2 x 5 disks
 - tilted geometry for better trigger performance and reduction in number of modules
 - PS and 2S modules provide p_T discrimination in front-end electronics through hit correlations between two closely spaced sensors

Tracker input to the L1 trigger

• Two kinds of modules (PS and 2S) will be used in different regions of the detector

- Correlated pairs of clusters consistent with a $p_T > 2$ GeV track form a **stub**
 - input to the track finding algorithm
 - cut at 2 GeV will allow a factor ~10 data reduction

L1 tracking system ov

- Extensive **parallel processing** to cope with high data rate and large combinatorics
 - takes advantage of natural detector segmentation (9 sectors in ϕ)
 - further within-sector parallel processing dividing ϕ into "virtual modules"
 - use of time-multiplexing (x18) to implement multiple identical
- Flexible and scalable architecture

ΔΨ (R=R

critical

radius

A. Hart

duplicated

 $p_T > 2 \text{ GeV}$

 $p_T < 2 \text{ GeV}$

Muon Track Finding

outer

inner

Eff by

unique

x Icm

Track finding algorithm (1)

Road search algorithm based on tracklet seeds

Emulation \Leftrightarrow **Firn**

- Track parameters initially estimated from tracklet + beamspot constraint
 - only combinations with p_T > 2 GeV kept oject tracklets to other layers & disks to search for matching stubs
- Search windows derived from
 Project potential track to other layers/disks accessible stubs within predefined narrow wiscowr ch
 - propagation both inward and outward Both inside-out & outside-in
 - minimum number of stubs required

Track finding algorithm (2)

Duplicate removal and fitting

4. Removal of duplicate tracks

- pattern recognition produces multiple track candidates per each charged particle
 - redundant seeds ensure high efficiency, but lead to duplicate tracks

litional duplicates may originate from combinatorial stubs

Tracklet Based Track Finding Ls replice

replicated tracks are joined into a "merged" track candidate

Form track seeds, tracklets, from pairs of stubs in neighboring layers.
 iterative approach: starts with tracklet parameters & uncertainties, then track parameters
 stub pair

tracklet

Kalman Filter fitting

Expected performance

- Expected tracking performance estimated on simulated events
 - high efficiency across η and p_T
 - precise z₀ resolution (~1mm in the barrel), necessary for vertex association

Track quality

- An additional track quality module will be run after the Kalman Filter step to reduce number of tracks not coming from genuine charged particles
- Using a ML approach to classify real/fake tracks, outperforms simple cut based selection (*)
 - features from reconstructed track parameters: ϕ , η , z_0 , n_{stub} , $n_{misslayer}$, χ^2_{bend} , χ^2_{rz} , $\chi^2_{r\phi}$
 - GBDT chosen over NN as less FPGA-resource hungry

Hardware platforms

• Hardware for track-finding based on ATCA platform (standard for HL-LHC upgrade)

APOLLO: track finding processing boards

- Service Module provides infrastructure components
- Flexibility via pluggable Command Module: contains two large FPGAs, optical fiber interfaces & memories

2022 JINST 17 C04033

ards)

Firmware implementation

- Implemented as alternated processing and memory modules
- Multiple copies of each module run in parallel
- Seeding & propagation steps written using Xilinx Vivado HLS
- Memory modules, Kalman Filter and top level written in VHDL
- Targeting 240 MHz FPGA clock

Narrow slice project

- End-to-end demonstration of the track finding chain on a narrow $\boldsymbol{\varphi}$ slice
 - based only on one (barrel) seed
 - does not include the duplicate removal step
- Demonstrated on Apollo board rev1

Kalman • Filter

VU7P

Full barrel project

- Seeding & stub matching in barrel layers, ~2/3 of the full project
 - implemented in single VU13P FPGA
 - final project will use two VU13P
 - meeting timing requirements was challenging
 - exploited machine learning based Vivado firmware implementation strategy
 - **floorplanning** to avoid signals crossings regions with dead silicon interconnections
 - using **combined modules** to reduce latency

• Currently working on integrating the full chain of modules for the entire detector

Summary

- L1 track finding will be crucial @HL-LHC to maintain acceptable trigger rates while successfully pursuing CMS physics goals
- Main challenges related to the large combinatorics and latency
 - CMS will use a **unique detector design with p_T modules** providing on-detector data filtering
 - extensive parallelisation being exploited for the off-detector track finding algorithm (on FPGAs)
- Current status:
 - reduced configuration firmware was successfully tested
 - **ongoing** work to integrate the **full chain** covering the entire detector on two FPGAs

backup

Combined modules

• Moving towards combined modules \rightarrow fewer processing modules help in reducing the latency

Displaced tracking

- Extended tracking being studied in order to reconstruct trajectories not pointing to the PV
- Changes wrt baseline tracking algo impact:
 - seeding step: triplets instead of doublets + origin
 - Kalman filter: 5-parameter fit instead of 4-par. (+ d_0)

Track quality

• Resource usage for NN and GBDT

https://agenda.infn.it/event/28874/contributions/168841/attachments/93290/127232/ICHEP_2022_Poster.pdf

Performance and	Model	Python AUC	HLS AUC	Latency (clk)	LUT $\%$	FF %	DSP %
resource use for Xilinx	NN	0.985	0.982	8	0.104	0.029	0.292
VU9P FPGA [3,4]:	GBDT	0.986	0.981	3	0.140	0.027	0.0

 Performance on displaced tracks of the baseline GBDT, compared to a possible dedicated displaced GBDT

