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HL-LHC opportunities and challenges

The High-Lumi LHC will provide the experiments with unprecedented high statistics data
» extend discovery reach in searches for new physics & rare SM processes

* improve Higgs boson and SM precision measurements

CMS-PHO-EVENTS-2016-008

This will happen in a very challenging environment for the experiments
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* Instantaneous luminosity of 5-7 x 1034 cm-2 s

» expected average pileup of 200, resulting increase of particle density

e SNSRI radiation damage to the detector
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excellent detection ability, and even improve performance wrt
current detector
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* including tracking in hardware trigger plays a crucial role
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CMS trigger upgrade

The entire trigger system will be replaced for HL-LHC LHC HL-LHC
Still based on a 2-level trigger approach to reduce the 40 MHz L] Detectors | 40 MHz
- Front end
40MHz collision rate down to 7.5 kHz i) I pipelines v
L1 output: ~100 kHz Readout 750 kHz
* hardware Level 1(L1) trigger buffers
Switching
» software High Level Trigger (HLT) network
Processor
\ 4 farms 4
HLT output: ~1kHz a:, 7.5 kHz

Significant challenge in data processing
* huge amount of input data bandwidth (~63Tb/s)

 decision window of 12.5us (4us for track reconstruction)

Tracking information will be used for the first time at L1!
* On-detector filtering to reduce hit rate

» Off-detector track finding algorithm implemented on Xilinx FPGAs



CMS L1 trigger scheme @HL-LHC

Calorimeter trigger

Detector Backend systems
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Phase-2 trigger project

vertex reconstruction &
track-only object ID
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Benefits of tracking @L1

e Usage of tracking information in hardware trigger allows to
* improve pr resolution and particle identification — lower trigger thresholds
 identify primary interaction vertex, mitigating the pileup effects
* associate objects to a common vertex

» perform Particle Flow reconstruction already at L1 (also thanks to the fine calorimeter granularity)
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Phase 2 Outer Tracker
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* Entire tracker detector will be replaced during LS3

* increased granularity and pseudo-rapidity acceptance, radiation tolerance, and lower mass

e Quter Tracker (OT) will consist of 6 barrel layers and 2 x 5 disks
* tilted geometry for better trigger performance and reduction in number of modules

* PS and 2S modules provide pr discrimination in front-end electronics through hit correlations
between two closely spaced sensors
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Tracker input to the L1 trigger

e Two kinds of modules (PS and 2S) will be used in different regions of the detector
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“PS" Pixel + Strip Modules 20 <r < 60 cm

Accurate z
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2.5¢cm x 100 gm
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* Correlated pairs of clusters consistent with a pr > 2 GeV track form a stub

input to the track finding algorithm

Pass = Stub Fail

cut at 2 GeV will allow a factor ~10 data reduction / /

outer
sensor

inner
sensor
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* Extensive parallel processing to cope with high data rate and large combinatorics

L1 tracking system overview

 takes advantage of natural detector segmentation (9 sectors in )
 further within-sector parallel processing dividing ¢ into “virtual modules”

 use of time-multiplexing (x18) to implement multiple identical processors

Flexible and scalable architecture

x9 detector ¢ sectors

Detector ¢
sector

x9 detector ¢ sectors

Outer Tracker

x24 DTCs per detector ¢ sector;
each DTC transmits to two
neighbouring TF nonants (36 TFPs)
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Track Finding
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Data Trigger & Control

pr > 2 GeV
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x18 time slices per nonant;
each TFP receives input data from two
neighbouring detector ¢ sectors (48 DTCs)
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Track finding algorithm (1)

Road search algorithm based on tracklet seeds

0.6

~ o
n

0.8 1.0

1.2 1.4 16

1200

r [mm]

1000

N o
~

o]

00

1. Pairs of stubs from adjacent layers/disks

I|I I| II|I I| °

H

form a seed

4004 A N N N N WA\

A 3 N R\ N N

n
8II L
I“ | “I |
7
v 4

AR W N N

'.Q_Ah "

A\

| | b
-

2.0

I I I 2'2

2.4

\

2.6

2.8

3.0
3.2

4.0

it v

2. Track parameters initially estimated from
tracklet + beamspot constraint

* only combinations with pr > 2 GeV kept

3. Project potential track to other layers/disks and associate
compatible stubs within predefined narrow windows

* propagation both inward and outward

* minimum number of stubs required
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Track finding algorithm (2)

Duplicate removal and fitting

4. Removal of duplicate tracks

* pattern recognition produces multiple track candidates per each
charged particle

+ redundant seeds ensure high efficiency, but lead to duplicate
tracks

» additional duplicates may originate from combinatorial stubs

* stubs of replicated tracks are joined into a “merged” track candidate

Kalman Filter fitting
Layer (L) 1 L2 L3 L4 L5 L6 L7 L8

5. Candidate track is finally fit with a Kalman Filter algorithm ‘

* iterative approach: starts with tracklet parameters & coarce j\ N recise
uncertainties, then use matched stubs to update the saramaters D}/%}ﬁ/ -—() ek
track parameters

increased precision of track parameters >
10




Expected performance

CMS Phase-2 Simulation 14 TeV

CMS Phase-2 Simulation 14 TeV
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Particle n
» Expected tracking performance estimated on simulated events

* high efficiency across n and pr

* precise zg resolution (~Tmm in the barrel), necessary for vertex association

CMS-TDR-021

Particle Il
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Track quality

e An additional track quality module will be run after the Kalman Filter step to reduce number of tracks
not coming from genuine charged particles

e Using a ML approach to classify real/fake tracks, outperforms simple cut based selection (%)
« features from reconstructed track parameters: &, 1, zo, Nstub , Nmisslayer, X2bend, Xrz, X2rd

* GBDT chosen over NN as less FPGA-resource hungry

CMS simulation Preliminary ~ 14 TeV, 200 PU
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Level-1 Track Quality Evaluation at CMS for the HL-LHC
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Hardware platforms

Hardware for track-finding based on ATCA platform (standard for HL-LHC upgrade)

SERENITY: DTC processing boards

- Carrier card provides services

- Flexibility via pluggable FPGA daughter cards:
host FPGAs for data processing
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AAAAAAAAAAA

APOLLO: track finding processing boards
» Service Module provides infrastructure components

- Flexibility via pluggable Command Module: contains
two large FPGAs, optical fiber interfaces & memories

2022 JINST 17 C04033
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Firmware implementation

Implemented as alternated
processing and memory modules

Multiple copies of each module
run in parallel

Seeding & propagation steps
written using Xilinx Vivado HLS

Memory modules, Kalman Filter
and top level written in VHDL

Targeting 240 MHz FPGA clock

organize
input stubs

seed (form
tracklets)

project &
find
matches

duplicate

removal,
track fitting

& quality

Input Router

Input Stub

VMRouter
VMStubs (TE/ME)

Tracklet Engine
Stub Pair

Tracklet Calculator

Tracklet Projection
Projection Router
VMProjection
Match Engine
Candidate Match
Match Calculator
Full Match
Track Builder

All Projection

v

Tracklet Parameter

Duplicate Removal

Kalman Filter

Track Quality
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| x 48
| x 288
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| x2
| x2
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Narrow slice project

End-to-end demonstration of the track finding chain on a
narrow ¢ slice

* based only on one (barrel) seed

* does not include the duplicate removal step

Demonstrated on Apollo board rev1

Tested on ttbar events + 200 pileup

Good firmware/software agreement for output tracks (> 99%)

No issues with resource utilisation
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Full barrel project

Seeding & stub matching in barrel layers, ~2/3 of the full project
* implemented in single VU13P FPGA

* final project will use two VU13P

* meeting timing requirements was challenging

* exploited machine learning based Vivado firmware
implementation strategy

+ floorplanning to avoid signals crossings regions with dead silicon
interconnections

+ using combined modules to reduce latency

Currently working on integrating the full chain of modules for the entire detector
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Summary

e L1 track finding will be crucial @HL-LHC to maintain acceptable trigger rates while successfully
pursuing CMS physics goals

* Main challenges related to the large combinatorics and latency
* CMS will use a unique detector design with pr modules providing on-detector data filtering

» extensive parallelisation being exploited for the off-detector track finding algorithm (on FPGAs)

e Current status:
* reduced configuration firmware was successfully tested

* ongoing work to integrate the full chain covering the entire detector on two FPGAs
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Combined modules

e Moving towards combined modules — fewer processing modules help in reducing the latency

[ TrackletEngine }
\ 4

[ StubPair ]
\ 4

TrackletCalculator

\ 4 i TrackletProcessor |

TrackletProjection \ 4

. L2 J ﬂ { TrackletProjection }
( \ 4

ProjectionRouter ]

\ 4
VMProjection

v
MatchEngine
) \/ .
CandidateMatch

v )
[ MatchCalculator ]

MatchProcessor

N\




Displaced tracking

* Extended tracking being studied in order to reconstruct trajectories not pointing to the PV

e Changes wrt baseline tracking algo impact:

» seeding step: triplets instead of doublets + origin

» Kalman filter: 5-parameter fit instead of 4-par. (+ dp)
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Track quality

e Resource usage for NN and GBDT

https://agenda.infn.it/event/28874/contributions/168841/attachments/93290/127232/ICHEP_2022_Poster.pdf

Performance and Model | Python AUC | HLS AUC | Latency (clk) [ LUT % | FF % | DSP %
resource use for Xilinx NN 0.985 0.982 8 0.104 0.029 | 0.292
VUIP FPGA [3.4]: GBDT 0.986 0.981 3 0.140 | 0.027 0.0

* Performance on displaced tracks of the baseline GBDT, compared to a possible dedicated displaced
GBDT

CMS Simulation Preliminary ~ 14 TeV, 200 PU
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