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ATLAS upgrade for HL-LHC 
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• From 2029, LHC Luminosity will be 7.5 times the 
current one.

• Average number of inelastic p-p collision per bunch 
will be increased to 200 (Currently 40).

• Shifting towards a new all silicon Inner Tracker(ITk)

• Upgrade in the trigger and data acquisition system 
     (TDAQ) is also required 

Ref : ATL-ITK-SLIDE-2018-073

https://cds.cern.ch/record/2302625/files/ATL-ITK-SLIDE-2018-073.pdf


ATLAS Event Filter for HL-LHC

• Track reconstruction for Inner Tracker 

• Computationally intensive task for high particle density 

• For real time tracking :

• Precise algorithm

• Fast computing resources  

• Accept trade off in precision for high throughput

• Exploration of modern machine learning techniques with

heterogeneous computing architecture

(CPUs + GPUs +FPGAs)
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Ref : ATLAS-TDR-029-ADD-1

https://cds.cern.ch/record/2802799/files/ATLAS-TDR-029-ADD-1.pdf


Track reconstruction with GNN
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• Metric Learning : uses  
deep neural network 

• Module Map : uses 
geometric observables 
for construction 

• Implements interaction 
network to model the 
relationship between 
graph objects

• Creates track candidates 
as a sequence of hits 

ExaTrkX Project

https://cds.cern.ch/record/2815578/files/ATL-ITK-PROC-2022-006.pdf


Track reconstruction with GNN
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Graph construction using MLP

• MLP is trained to construct graph with the 

available info : hit position 𝑟, 𝜙, 𝑧

• Graph : Nodes(hits) ,  Edge (Connection between two hits)

• All hits are mapped to some latent space and Edge is drawn 

among the hits lying within the circle of radius 𝑟

• Network learns to push hits belonging to the same track

within the circle : Red hits in the figure 
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Hits in the latent space



Edge classification (GNN)

• Goal: classify edges as “True” or “False” 

- could they belong to a track?

• GNNs rely on Message Passing:

• Node vectors (properties of node) are updated through

an update function (MLP)

• Information is passed along edges to neighboring nodes

• All messages are aggregated at each node 

• After one or more message passing steps, use classifier 

to make edge-level predictions
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Resource Estimation
for Intel FPGAs* with HLS4ML 

* AMD FPGAs : Under exploration 



FPGA deployment

• For FPGA translation, ML model must be converted to HLS

• Frameworks HLS4ML and Xilinx/FINN are used for conversion

• For resource estimation :

• PyTorch model is translated to ONNX, 

then HLS4ML generates HDL code

• Using Quartus RTL compilation resource were estimated

on target device (Intel S10 GX) 
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HLS4ML documentation 

FINN documentation

https://github.com/fastmachinelearning/hls4ml
https://finn.readthedocs.io/en/latest/getting_started.html


Resource Estimates : Intel S10 GX 
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• Entire model was unrolled onto FPGAs
• Only small models were considered 

because of the reuse factor 1

• Aggregation at nodes and Index matrix  
not supported in HLS4ML

• Simplified GNN with 1 message passing 
steps: more resources for full GNN

Ref :M.Sc. thesis Sara Schjødt Kjaer (public link to be added)



Takeaway 

• To completely unroll a model on FPGAs, DSP blocks are predominantly used 

• Can we compress the model while keeping the pipeline precise ?

• Yes, by applying ML compression techniques :

• Quantization Aware Training

• Pruning

Sachin Gupta, CTD Mini Workshop 13 Oct, 2023 11



Sachin Gupta, CTD Mini Workshop 13 Oct, 2023 12

Model Compression 
study in step 1



Quantization Aware Training (QAT)

• Parameter’s representation are trained for arbitrary precision instead of FP32

• Bit width of weights, activation and bias is predefined, and training is done afterwards
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nn.Linear + Bias

nn.ReLUEach 
parameter 
has FP32 
representation 

nn.Linear + Bias

nn.ReLU

Input layer

Output layer

Qnn.Linear+Bias

Qnn.ReLU

QuantIdentity

Output layer

Qnn.Linear+Bias

Qnn.ReLU

NN with PyTorch NN with Brevitas +PyTorch

Each layer has different 
representation for 
parameters 



Pruning 

• Idea : Sparse matrix speed up computation 

• Pruning is performed iteratively, after certain epochs weights can be removed either with or 
without structure 

• Weights are penalized with L1 loss i.e., making some of them  closer to zero and pruning them 
after some epochs  
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After 
Pruning 



Performance metric for Step 1

• Aim : To have all true edges with small fraction of false edges 

• Performance quantified by Efficiency and Purity

• 𝑒𝑓𝑓 =
# 𝑡𝑟𝑢𝑒 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ

#𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑒𝑑𝑔𝑒𝑠

• 𝑝𝑢𝑟𝑖𝑡𝑦 =
# 𝑡𝑟𝑢𝑒 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ

#𝑡𝑜𝑡𝑎𝑙 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ
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Eff: 100 %
Purity : 100%

Eff: 100 %
Purity < 100 % 

Truth graph  Predicted  graph  



Setting up QAT 
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• Parameter’s bit width are different for different regions

• For our study we have three variable for each parameter:

• 𝑏𝑤[1,2−4,5] = 𝐵𝐼 , 𝐵𝐻 , 𝐵𝑂

• 𝑏𝐴[1,2−3,4] = 𝐴𝐼 , 𝐴𝐻 , 𝐴𝑂

• Architecture adapted for FPGA target :

• Batchnorm was used

• No bias after linear layers

𝐵𝐼 𝐵𝐻 𝐵𝐻 𝐵𝐻 𝐵𝑂

𝐴𝐼 𝐴𝐻 𝐴𝐻 𝐴𝑂

Bit widths for 
weights 

Bit widths for 
activations 4 hidden layers 



Results with TrackML dataset

• Pruning : 10 % with frequency - 180 epochs

• Performance is retained  even by 

order of 3 reduction in BOPs

for QAT+pruned

• Smaller model (less BOPs)

can be selected, but the graph 

size will be larger in comparison
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Ref : https://indico.jlab.org/event/459/contributions/11375/

https://indico.jlab.org/event/459/contributions/11375/


Summary and Outlook 

• Translation of GNN based pipeline on FPGAs with HLS4ML and resource estimation

• Resource estimation suggests to compress ML model

• Model compression techniques studied for Step 1 (Graph Construction)

• For non-ML methods  manual translation of the code to hardware (VHDL)

• Outlook:
• Resource estimate for QAT+Pruned MLP 
• Model compression study for the GNN and resource estimation 
• Study with AMD FPGAs via FINN translation 
• Graph segmentation to reduce the graph size
• Performance with ITk data 
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Thank you for your attention 

Questions ?
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Backup Slides 
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Translation of non-ML 
Steps : Module Map



Module Map

Goal of graph construction: 
Limit amount of false edges while keeping true edges

• For each module pair, find max and min of geometric values
• Apply geometric cuts for each pair
• Construct map of possible connections/edges

• Store in permutation invariant matrix
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VHDL implementation of Module Map
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Module Map: VHDL implementation 

• Preliminary design implemented targeting realistic ITk conditions
• End-to-end simulation working
• (Very) preliminary resource utilization estimates on AMD xcvu37p-fsvh2892-2L-e
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What is the TrackML Dataset?

● Simplified detector geometry, 
adapted from early ATLAS ITk 
designs

● Pile-up 200 conditions like @ HL-LHC
● We are starting with a pre-processed 

dataset of particles pT > 1 GeV

25



Translating & obtaining resource estimates

• Metric learning
• MLP extracted from graph construction
• Converted to ONNX before translation

• Graph Neural Network
• Some GNN operations are currently not supported in HLS4ML
• Constructed a simplified GNN based on GNN4ITk architecture, 

removing two unsupported model features:
• Aggregation at nodes (message passing)
• Indexing operation connecting node and edge indices

• Track reconstruction
• VHDL implementation of walkthrough method developed and tested in simulation
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Edge classification (GNN)

Use type of GNN called “Interaction Network”

● Interaction Network adds an extra step to the message passing 
algorithm

● “Edge network” updates edge features, allowing 
two nodes to form unique relationships

● Improves quality of edge-level predictions

Finally, edge scores are assigned to all edges in an event

Use threshold value (e.g. ~0.5) to discard false edges

Sebastian Dittmeier - Heidelberg University       27



Track reconstruction methods

Method 1: Walkthrough

● Identify starting node
● Traverse edges with high scores
● Longest path found 

→ track candidate

Method 2: Connected components

● For edges above threshold score, identify 
connected paths

● Assign component index to nodes

Method 3: Connected components followed 
by walkthrough

Sebastian Dittmeier - Heidelberg University       28



Segmentation :Subgraph Edge Visualization (all edges)

Black points: hits = nodes
Blue lines: edges preserved in subgraph (nodes in same segments)
Green lines: edges NOT preserved in subgraph (nodes in different segments)
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