
Trigger Level Tracking With Neural Networks on
Heterogeneous Computing Systems

Speaker: Alex Gekow (Ohio State University)

On Behalf of the ATLAS Collaboration

Connecting The Dots 2023

1

Outline

● ATLAS Track Trigger Requirements

● Problem Statement
○ Why consider ML for tracking?

● Algorithmic Overview
○ How we using ML to approach tracking

● Towards a Heterogenous Implementation
○ Current efforts focused on FPGA (GPU also possible)

2

ATLAS Phase-II Upgrade
LHC will be undergoing “High Luminosity” Upgrade by increasing the bunch density of pp collisions
(amongst other things)

3

Original ATLAS Track Trigger plan (prior to 2021)

● Use associative memory ASICS to accommodate
1-4 MHz readout rate in high lumi conditions

● Decision to not move forward with ASICS,

How to move forward with the ATLAS track
trigger?

○ CPU & Software only?
○ Heterogeneous computing?

Event Filter

4

ATLAS is being re-designed to cope with <𝜇> = 200 conditions

Hit combinatorics explode! Tracking becomes increasingly difficult

Relevant tracking and TDAQ upgrades include:

● Hardware:
○ Phase-II Inner Tracker (ITk)
○ Event Filter (EF) CPU/Accelerator farm

■ Potentially using commodity accelerators (GPU &
FPGA)

■ Pursue accelerators to potentially mitigate risks
related to power and cost

● Software/Firmware
○ Tracking algorithms running on EF computing farm

Goal of 150 kHz “full scan” tracking

L0/Global
Trigger
System

Problem Statement
Tracking is the most time consuming step of event reconstruction in ATLAS making it difficult to implement in the trigger

The Event Filter Tracking Group within ATLAS is developing methods for tracking in the EF farm that utilize commodity
hardware accelerators

Many proposed solutions (several involving ML) to tackle this complex pattern recognition problem:

● Hough Transform
● Kalman Filter on GPU
● Graph Neural Networks
● Deep Metric Learning
● Machine Learning Hit Search (this talk)

Many with the intent of leveraging heterogeneous computing for low latency high throughput execution

5Much work has been documented in the EF Tracking TDR:
https://cds.cern.ch/record/2802799/files/ATLAS-TDR-029-ADD-1.pdf

Why Machine Learning?
& Why leverage heterogeneous computing?
Machine learning algorithms and the hardware & software required to deploy them are a rapidly expanding domain (e.g
Tesla FSD, Apple neural engine, Google tensor, Vitis AI…)

6

● ML is at its core is a sequence of large matrix
multiplications

● Reducing complicated tasks to batched matrix
multiplication can allow for massive parallelization

● Hardware such as GPU/FPGA are capable of highly
efficient and fast execution of ML operations

*including offline processing [2]

● The overall CPU demands of ATLAS are growing
steadily

● Finding areas to offload CPU work to other devices
can save time, money, and energy

[2] https://cds.cern.ch/record/2729668/files/LHCC-G-178.pdf[1]https://www.xilinx.com/support/documentation/white_papers/wp50
4-accel-dnns.pdf

ML Tracking - Pattern Recognition
● Most ML approaches view tracking as a pattern recognition problem rather than a pure physics problem

○ Precision fits already more than capable of determining track parameters - no need for ML!

● Pattern recognition: Simply…Connect The Dots

○ Full Combinatorial Kalman Filter (CKF)

■ Precise, runs traditionally on CPU

○ Use ML to find collections of compatible hits and perform KF after

■ Well suited to run on CPU, GPU, FPGA

7

Hit level
information Track Candidates

Focus on these steps

Overview of Algorithms
ML Hit Search

8

Track Finding (Inside out track extension)

1. Predict a hit coordinate for each track seed (3 hits
from the innermost pixel layers)

2. Open a search window for compatible hits around
predicted coordinate

3. Create “track” candidates from hits within window
4. Repeat

0-300

X [mm]

(Right) A true track (blue) is shown alongside the coordinates predicted
by a neural network (red) in a simulated ITk geometry ttbar event with
<𝜇>=200 environment [1]. The grey rectangles depict the detector
modules.Modules that the particle passes through are highlighted in
yellow.

[1] Technical Design Report for the ATLAS Inner Tracker Strip Detector,
ATLAS Collaboration - ATLAS-TDR-025

Y
[m

m
]

Predicted
True

X [mm]
0-200-400-600

True Seed

https://inspirehep.net/literature/1614102

Overview of Algorithms

9

The irregular orientation of detector layers of ITk make straightforward coordinate prediction difficult for a NN

If spacepoints and the detector layer are given as input,
the NN learns to associate discrete sets of coordinates to
each detector layer

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/ITK-2020-002/

NN
Classifier

Xt-2 Yt-2 Zt-2

Xt-1 Yt-1 Zt-1

Xt Yt Zt

Volume
ID t+1

Layer ID
t+1

NN Hit
Predictor Xt+1 Yt+1 Zt+1

(Above) Hit coordinate prediction neural network Architecture.
Available hit coordinates are used as input to predict the
expected detector layer/volume of the next hit. The predicted
volume/layer as well as the available hit coordinates are used to
predict the expected next hit coordinate

Expected tracking and related performance with the updated
ATLAS Inner Tracker layout at the High-Luminosity LHC
ATL-PHYS-PUB-2021-024.pdf

Parallelized Track Finding
Predicting hit coordinates with a NN enables parallelized predictions for faster execution

Available proto-tracks can be batched into a matrix of size (proto-tracks ✕ N input features) which is input
to the NN, which outputs a matrix of size (proto-tracks ✕ N output features)

10

Parallelized Track Finding

● In practice we may find more than one hit per proto-track
○ Grow “Multitrajectories” from track seeds
○ Tree structure containing all track candidates for each seed

● We cannot run on arbitrarily sized matrices due to I/O and memory constraints
○ Optimally batch proto-tracks into configurable sized matrices

11

Seed 1
Three compatible
hits found

Seed 2
Two compatible hits
found

X1 Y1` Z1 X2 Yx Zz X3 Y3 Z3

X1 Y1` Z1 X2 Yx Zz X3 Y3 Z3

X1 Y1` Z1 X2 Yx Zz X3 Y3 Z3

X1 Y1` Z1 X2 Yx Zz X3 Y3 Z3

Input Matrices to prediction NN

X1 Y1` Z1 X2 Yx Zz X3 Y3 Z3

1

2

3

1

2

3

12

Parallelized Track Finding

Seed 1
Three compatible
hits found

Seed 2
Two compatible hits
found

X1 Y1` Z1 X2 Yx Zz X3 Y3 Z3

X1 Y1` Z1 X2 Yx Zz X3 Y3 Z3

X1 Y1` Z1 X2 Yx Zz X3 Y3 Z3

X1 Y1` Z1 X2 Yx Zz X3 Y3 Z3

Input Matrix to prediction NN

X4 Y4 Z4

X4 Y4 Z4

X4 Y4 Z4

X4 Y4 Z4

Predictions

Process is continued for all active track candidates
and terminates when no track candidates remain

Prediction resolution weaker than detector resolution
leads to many fake/duplicate tracks. Filter them with a
second stage NN

Overview of Algorithms
Each operating on spacepoint representation of tracks

Ambiguity Resolution

1. Score each track candidate with a NN
2. Compare tracks with more than M shared hits
3. Keep only the track with the highest NN score

Can be trained on the output tracks from any pattern
recognition step involving spacepoints

13

Plot from EF Tracking TDR ATLAS-TDR-029-ADD-1

All of the spacepoints along a track are enough for a
track to be evaluated as Real or Fake

The approximate azimuthal symmetry of ATLAS can be
exploited for better performance by rotating tracks to lie
in the same initial direction

Initial

Rotated

Tracking Performance
● The number of track candidates that are found by

the machine learning (ML) - hit search algorithm in
a <𝜇>=200 event, using a search window of 20 mm
at each prediction point (blue).

● The number of candidate tracks after filtering with
a NN are shown in orange

● Any candidate tracks sharing hits are compared,
and only that with the highest NN score is kept
(HW in legend)

● Tracking efficiency deviates at most 1% at each
stage as seen in performance tests with various
other detector geometries

14

N
or

m
al

iz
ed

 E
ve

nt
s

NN Hit Search Only Mean: 14120 Purity: 1.1%
NN Hit Search + Cut Mean: 3562 Purity: 4.2%
NN Hit Search + HW + Cut Mean: 174 Purity: 86%

Tracking Performance

15

● The track finding efficiency in the ITk barrel after
the initial hit search is performed using a search
window of 15 mm.

● Efficiency is defined as the fraction of true tracks
found with respect to the number of true tracks in
the event in the barrel region of the detector as
described on the figure.

● Tracking efficiency deviates at most 1% at each
stage as seen in performance tests with various
other detector geometries

● ACTS FATRAS (FAst TRAcking Simulation) does
not include hadronic simulationSearch Window = 15 mm

Purity = 3.2%

Tracking & FPGA Performance

16

Clock

Output

Input

FPGA Vivado Simulation

Latency
(ns)

LUT (%) FF (%) BRAM/URAM (%) DSP (%)

Ambiguity
Resolution

50 18 1 <0.01 31

Path Finder 50 7 0.5 <0.01 21

Xilinx Alveo U250 FPGA resource usage estimates for ambiguity resolution:
* rough estimates as NN architecture may change

Perfectly pipelined execution of Ambiguity Resolution NN
requires 10+B clockcycles where B is the number of
“tracks” to evaluate

1 clockcycle = 10ns

Future Work
Potential Algorithmic Improvements

● Metric learning for detector region classification
● KNN hit search
● Dynamic uncertainty estimation
● Synchronous track filtering
● Alternate seeding algorithms as input
● Strategies to account for missing hits

Goal: More precise predictions -> Fewer fakes as output & Faster execution

Demonstrator System

Algorithm being implemented in tracking framework ACTS and ATLAS software to be compatible with offline
tracking tools

● FPGA kernels being written (NN, I/O, etc.)
● Quantizing/Pruning/Optimizing for latency and efficiency

Goal: end-to-end fully functional implementation

17

Conclusion
Online tracking with <𝜇>=200 presents a new set of challenges with many exciting solutions to explore!

ML on heterogeneous computing systems is a subset of many promising solutions. Factoring the problem into steps similar
to offline tracking enables fast evaluation of dense tracking environments

ML algorithm for track extension that is suitable for fast inference on FPGAs
● High Tracking efficiency, fast execution on FPGA/GPU
● Minimal bussing of data between cpu & heterogenous device (No external detector geo or magnetic field info

required at run time)

ML Ambiguity resolution/Fake & Overlap Removal Algorithm

● Strong discriminating power between True/Fake tracks
● Also enables fast execution and implementation on FPGA/GPU

18https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradeEventDisplays

Thank You

19

