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e ATLAS Track Trigger Requirements

e Problem Statement
o Why consider ML for tracking?

e Algorithmic Overview
o How we using ML to approach tracking

e Towards a Heterogenous Implementation
o Current efforts focused on FPGA (GPU also possible)
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LHC will be undergoing “High Luminosity” Upgrade by increasing the bunch density of pp collisions
(amongst other things)
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EXPERIMENT

ATLAS is being re-designed to cope with <u> = 200 conditions

Hit combinatorics explode! Tracking becomes increasingly difficult

Relevant tracking and TDAQ upgrades include:

e Hardware:

o Phase-ll Inner Tracker (ITk)
o Event Filter (EF) CPU/Accelerator farm

m Potentially using commodity accelerators (GPU &
R biiptonioin FPGA)
Batton e m Pursue accelerators to potentially mitigate risks
[ R ] A,EZ.‘:,’:..,,] S aens related to power and cost
lL e Software/Firmware

Permanent o
Storage

Tracking algorithms running on EF computing farm

Goal of 150 kHz “full scan” tracking
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Tracking is the most time consuming step of event reconstruction in ATLAS making it difficult to implement in the trigger

The Event Filter Tracking Group within ATLAS is developing methods for tracking in the EF farm that utilize commodity
hardware accelerators

Many proposed solutions (several involving ML) to tackle this complex pattern recognition problem:

Hough Transform

Kalman Filter on GPU

Graph Neural Networks

Deep Metric Learning

Machine Learning Hit Search (this talk)

Many with the intent of leveraging heterogeneous computing for low latency high throughput execution

Much work has been documented in the EF Tracking TDR: 5
https://cds.cern.ch/record/2802799/files/ATLAS-TDR-029-ADD-1.pdf
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& Why leverage heterogeneous computing?

Machine learning algorithms and the hardware & software required to deploy them are a rapidly expanding domain (e.g
Tesla FSD, Apple neural engine, Go gle tensor, Vitis Al...)
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. , . . *including offline processing [2]
e MLis at its core is a sequence of large matrix ° J

multiplications

e Reducing complicated tasks to batched matrix
multiplication can allow for massive parallelization

e Hardware such as GPU/FPGA are capable of highly
efficient and fast execution of ML operations

e The overall CPU demands of ATLAS are growing
steadily

e Finding areas to offload CPU work to other devices
can save time, money, and energy

[1]https://www.xilinx.com/support/documentation/white_papers/wp50 [2] https://cds.cern.ch/record/2729668/files/LHCC-G-178.pdf
4-accel-dnns.pdf
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e Most ML approaches view tracking as a pattern recognition problem rather than a pure physics problem
o Precision fits already more than capable of determining track parameters - no need for ML!

e Pattern recognition: Simply...Connect The Dots
o  Full Combinatorial Kalman Filter (CKF)

m Precise, runs traditionally on CPU

o Use ML to find collections of compatible hits and perform KF after

m  Well suited to run on CPU, GPU, FPGA
ATLAS Primary Tracking

Space Point & Drift Pixel & Strip
Circle Formation Seed Finding

Ambiguity TRT Extended
Resolution Track Refit

Track Finding
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ML Hit Search
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https://inspirehep.net/literature/1614102

Overview of Algorithms
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EXPERIMENT

The irregular orientation of detector layers of ITk make straightforward coordinate prediction difficult for a NN
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Expected tracking and related performance with the updated
ATLAS Inner Tracker layout at the High-Luminosity LHC

ATL-PHYS-PUB-2021-024.pdf

If spacepoints and the detector layer are given as input,
the NN learns to associate discrete sets of coordinates to
each detector layer

Xt-2 Yt-2 Zt-2 NN NN Hit == ——————— :
> I 1 |

Xt Yer 2 Classifier Predictor | — | Xiar Y1 Ziag !
X, Y. Z, ([

(Above) Hit coordinate prediction neural network Architecture.
Available hit coordinates are used as input to predict the
expected detector layer/volume of the next hit. The predicted
volume/layer as well as the available hit coordinates are used to
predict the expected next hit coordinate
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Predicting hit coordinates with a NN enables parallelized predictions for faster execution

Available proto-tracks can be batched into a matrix of size (proto-tracks X N input features) which is input
to the NN, which outputs a matrix of size (proto-tracks X N output features)

000
000 -
000

10
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e |n practice we may find more than one hit per proto-track
o  Grow “Multitrajectories” from track seeds
o Tree structure containing all track candidates for each seed

e We cannot run on arbitrarily sized matrices due to I/O and memory constraints
o  Optimally batch proto-tracks into configurable sized matrices

Input Matrices to prediction NN

X, Y, Z,X,Y,Z,X,Y,Z, B
X1Y1‘Z1X2YXZZX3Y323 1 15172 "'xTz73 '373

X, Y Z, XY, Z,X, Y, Z,

X, Y Z, XY, Z,X, Y, Z,

Seed 1 Seed 2
Three compatible Two compatible hits
hits found found 1
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Input Matrix to prediction NN Predictions
X, Y. Z XY, Z X, Y, Z, X Y42y
_— _—
X, Y. Z XY, Z X, Y, Z, X Y42y ,
X Y. Z XY, Z X, Y, Z, X Y42y

X Y. Z XY, Z X, Y, Z, X,Y,zZ,
Seed 1 Seed 2
Three compatible Two compatible hits
hits found found

Process is continued for all active track candidates

and terminates when no track candidates remain
Prediction resolution weaker than detector resolution
leads to many fake/duplicate tracks. Filter them with a
second stage NN

12



Overview of Algorithms

Each operating on spacepoint representation of tracks

Ambiquity Resolution

1. Score each track candidate with a NN
2. Compare tracks with more than M shared hits
3. Keep only the track with the highest NN score

Can be trained on the output tracks from any pattern
recognition step involving spacepoints

A.U.

Plot from EF Tracking TDR ATLAS-TDR-029-ADD-1
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All of the spacepoints along a track are enough for a
track to be evaluated as Real or Fake

The approximate azimuthal symmetry of ATLAS can be
exploited for better performance by rotating tracks to lie
in the same initial direction

— |nitial

— - = Rotated
13



Tracking Performance

Normalized Events
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EXPERIMENT

The number of track candidates that are found by
the machine learning (ML) - hit search algorithm in
a <u>=200 event, using a search window of 20 mm
at each prediction point (blue).

The number of candidate tracks after filtering with
a NN are shown in orange

Any candidate tracks sharing hits are compared,
and only that with the highest NN score is kept
(HW in legend)

Tracking efficiency deviates at most 1% at each
stage as seen in performance tests with various
other detector geometries

14



Tracking Performance
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The track finding efficiency in the ITk barrel after
the initial hit search is performed using a search
window of 15 mm.

Efficiency is defined as the fraction of true tracks
found with respect to the number of true tracks in
the event in the barrel region of the detector as
described on the figure.

Tracking efficiency deviates at most 1% at each
stage as seen in performance tests with various
other detector geometries

ACTS FATRAS (FAst TRAcking Simulation) does
not include hadronic simulation

15
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FPGA Vivado Simulation

Clock Perfectly pipelined execution of Ambiguity Resolution NN
requires 10+B clockcycles where B is the number of
“tracks” to evaluate

- _ - - m— L P t— > - i
000, .. 000, .. 000, y000. ., Y000... Y

e

1 clockcycle = 10ns

Output

Xilinx Alveo U250 FPGA resource usage estimates for ambiguity resolution:
* rough estimates as NN architecture may change

| — Latency | LUT (%) | FF (%) | BRAM/URAM (%) | DSP (%)
(ns)

v Ambiguit 50 18 1 <0.01 31
his 4 mi & XILINX Resolution

Path Finder 50 7 0.5 <0.01 21 16
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Potential Algorithmic Improvements

Metric learning for detector region classification

KNN hit search 3
Dynamic uncertainty estimation

Synchronous track filtering

Alternate seeding algorithms as input

Strategies to account for missing hits

Goal: More precise predictions -> Fewer fakes as output & Faster execution

Demonstrator System

Algorithm being implemented in tracking framework ACTS and ATLAS software to be compatible with offline
tracking tools

e FPGA kernels being written (NN, I/O, etc.)
e Quantizing/Pruning/Optimizing for latency and efficiency

Goal: end-to-end fully functional implementation

17
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EXPERIMENT

Online tracking with <u>=200 presents a new set of challenges with many exciting solutions to explore!

ML on heterogeneous computing systems is a subset of many promising solutions. Factoring the problem into steps similar
to offline tracking enables fast evaluation of dense tracking environments

ML algorithm for track extension that is suitable for fast inference on FPGAs
e High Tracking efficiency, fast execution on FPGA/GPU
e Minimal bussing of data between cpu & heterogenous device (No external detector geo or magnetic field info
required at run time)

ML Ambiquity resolution/Fake & Overlap Removal Algorithm

e  Strong discriminating power between True/Fake tracks
e Also enables fast execution and implementation on FPGA/GPU

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradeEventDisplays 18
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Thank You
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