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Introduction

u Small-x evolution: BFKL → BK → JIMWLK
u JIMWLK allows to evolve arbitrary combination of many Wilson lines without large
Nc approximation

u NLO JIMWLK equation was derived ≈ 10 years ago
Kovner, Lublinsky & Mulian (2013), Balitsky & Chirilli (2007), Grabovsky (2013); ML & Mulian (2016)

u Large transverse logs in NLO JIMWLK/BK: improvements are necessary
Altinoluk, Armesto, Beuf Hatta, Iancu, Lublinsky, Müller, Stasto, Triantafyllopoulos, Xiao, ...

u Simulation of NLO JIMWLK? LO JIMWLK: Langevin formulation
u The principal part: large logs multiplied by QCD β-function

I will not talk today about large logs due to k− ordering

u Resummation of these logs led to rcBK with generalization to rcJIMWLK
Balitsky, Kovchegov & Weigert, ...

u There is no rcJIMWLK implementation that would explicitly reproduce any specific
rc prescription consistent with NLO JIMWLK
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Positivity semi-definiteness of JIMWLK Hamiltonian

u Positive semi-definitness plays important role in Langevin form of JIMWLK

u For illustration: LO JIMWLK and derivation of its Langevin form
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LO JIMWLK Hamiltonian

u JIMWLK Hamiltonian at LO:

dO
dY

= −HLOO, HLO =
∫
z

∫
x

∫
y

K(X,Y )qa(x, z)qa(y, z)

X = x− z, qa(x, z) = [U(x)− U(z)]ab JbR(x)

x

y
z

u Property of LO JIMWLK kernel
K(X,Y ) = α

2π2Ki(X)Ki(Y ), HLO = αs
2

∫
z

Qai (z)Qai (z)

Single gluon emmision operator Qai (z) = 1
π

∫
x
Ki(X) qa(x, z).

The Weizsäcker–Williams (WW) field Ki(x) = xi
x2 .

U(x)(V (x)) is adjoint (fundamental) Wilson line along the light cone.
u The operators JbR(x) form a SU(N) algebra

JaR(z)V (x) = δ(2)(x− z)V (x)ta, JaR(z)V †(x) = −δ(2)(x− z)taV †(x)
JaR(z)U(x) = δ(2)(x− z)U(x)T a, JaR(z)U†(x) = −δ(2)(x− z)T aU†(x)
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Langevin form of JIMWLK I

u The rapidity variable η acts as a fictitious time, the evolution operator from η0 to η1

U(η0, η1) = Pe−
αs
2

∫ η1
η0

dη
∫
z
Qai (z)Qai (z)

u Introduce auxiliary noise field

U(η0, η1) =
∫
Dξ Pη exp{

∫ η1

η0

dη

∫
z

[
−i
√
αsQ

a
i (z)ξai (η, z)− 1

2ξ
2(η, z)

]
}

=
∫
Dξ Uξ(η0, η1) e−

∫ η1
η0

dη
∫
z

1
2 ξ

2(η,z)

Uξ is evolution operator for a fixed configuration of ξai (η, x)
u Evolution over small ∆ (ξa in (x)→ ξ̂a in (x) =

√
∆ξa in (x)):

Uξ ≈ 1− i
√
αs∆

∫
z

ξa,in (z)Qai (z)− 1
2αs∆

∫
z

∫
z′
ξa,in (z)ξb,jn (z′)Qai (z)Qbj(z′) .

Qai (z)V (x) = 1
π
Ki(x− z)[U(x)− U(z)]abV (x)tb

= 1
π
Ki(x− z)V (x)

[
V †(x)taV (x)− V †(z)taV (z)

]
= 1
π
Ki(x− z)

[
ta − V (x)V †(z)taV (z)V †(x)

]
V (x) ,
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Langevin form of JIMWLK II

u Then, one step of the evolution of V

UξV (x) = V (x)− i
√
αs∆
π

∫
z

Ki(x− z)
[
ξin(z)V (x)− V (x)V †(z)ξin(z)V (z)

]
− αs∆

2π2

∫
z

∫
z′
Ki(x− z)Kj(x− z′)ξa ,in (z)ξb ,jn (z′)

×
[
tatbV (x)− taV (x)V (z′)tbV (z′)− tbV (x)V (z)taV (z)

+ V (x)V †(z′)tbV (z′)V †(z)taV (z)
]

u This exponentiates into Langevin form of LO JIMWLK

V (x)→ UξV (x) = exp

(
− i
√
αs∆
π

∫
z

K(x− z) · ξn(z)

)

× V (x) exp

(
i

√
αs∆
π

∫
z

K(x− z) · (V †(z)ξn(z)V (z))

)
.
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Key property for Langevin formulation

u Naively, factorization of the JIMWLK Hamiltonian is required K(X,Y )→ K(X)K(Y )

H =
∫

x,y,z

K(X,Y ) qa(x, z) qa(y, z), qa(x, z) = [U(x)− U(z)]ab JbR(x).

u Actually, positive semi-definiteness of the kernel is sufficient
u For a positive semi-definite

1
2

∫
V

Ψi(X,V )Ψi(Y, V ) = K(X,Y ) .

u This would enable introduction of the noise field

U(η, η + ∆) =
∫
Dζe

∆
(
i
∫
x,y,z

Ψi(X,Y ) qa(x,z) ζai (y,z)− 1
2

∫
x,z

ζai (x,z)ζai (x,z)
)
.

Following the same steps as at LO { Langevin formulation
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Non semi-definite kernels

u No Langevin formultion
u Does it mean JIMWLK evolution is not well defined?
u Alternative form of JIMWLK (α is the phase of the Wilson line):

∂ηO[α] =1
2

∫
d2xd2y

∂

∂αa(x−, x)

(
ηab(x, y) ∂

∂αb(y−, y)O[α]
)

with

ηab(x, y) =
∫
d2zK(X,Y )

[
(U(x)− U(z))(U†(y)− U†(z))

]ab
u For non positive semi-definite kernels, there exists such distribution W (U) that the

evolution is “anti-diffusive”
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Constraints from positive semi-definiteness

Positive semi-definite kernel∫
d2Xd2Y φ(X)K(X,Y )φ(Y ) ≥ 0 ∀φ(X)

u Consider a trial function

φ(X) = A1δ(X −X1) +A2δ(X −X2) .

u Positive semi-definiteness means

A2
1K(X1, X1) +A2

2K(X2, X2) + 2A1A2K(X1, X2) ≥ 0, ∀A1 and A2

and thus K(X1, X1)K(X2, X2)−K2(X1, X2) ≥ 0,
K(X1, X1) ≥ 0

u Potentialy more constraints, but those above are already quite restrictive
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rcJIMWLK

u There are several rc prescription which reproduce β0-dependent terms of the NLO
JIMWLK

- Balitsky
- Kovchegov-Weigert

u Do they have positive semi-definite kernels?
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Balitsky prescription

u For JIMWLK (original prescription for BK)

KB(x, y, z) = αs((X − Y )2)
2π2

X · Y
X2Y 2 + αs(X2)

4π2
1
X2

(
1− αs((X − Y )2)

α(Y )

)
+ αs(Y 2)

4π2
1
Y 2

(
1− αs((X − Y )2)

α(X2)

)
.

u Is it positive semi-definite? E.g. consider Y = cX and c→ 1

KB(X,X)KB(Y, Y )−
(
KB(X,Y )

)2 ≈ − (1−c)2αs(X2)2

4π4X4

[
1− β0αs(X2)

4π

]2

≤ 0

u The same conclusion applied to the un-resummed kernel at fixed NLO order
For details see, T. Altinoluk, G. Beuf, M. Lublinsky and V. S., arXiv:2310.10738
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Other prescriptions

u Kovchegov-Weigert: More about the difference with Balitsky’s rc prescription in the
second part of the talk

u KW: The same criterion of positive semi-definiteness is violated
u In arXiv:2310.10738, we tried many different prescriptions. All of them violated

positive semi-definiteness
u Open question: rcBK, does not have apparent problems; instability in

(n > 2)-pointWilson line correlators?
u Do we set rc scale correctly?
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LO JIMWLK Hamiltonian

u LO JIMWLK Hamiltonian ∂O/∂Y = −HJIMWLKO

HJIMWLK
LO =∫
x,y,z

KLO
[
JaL(x)JaL(y) + JaR(x)JaR(y)− 2JaL(x)Sab(z)JbR(y)

]
KLO(x, y, z) = αs

2π2
(x− z)i(y − z)i
(x− z)2(y − z)2 ≡

αs
2π2

X · Y
X2Y 2

x

y
z

u Eikonal propagation through target

S(z) = P exp
(
ig

∫
dz+A−(z+, z)

)
u Lee derivatives

JaL(x)S(z) = T aS(x)δ(2)(x− z) JaR(x) = S†ab(x)JbL(x)
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NLO JIMWLK Hamiltonian

u The NLO JIMWLK Hamiltonian

HNLO
JIMWLK =

∫
x,y,z

KJSJ(x,y, z)
[
JaL(x)JaL(y) + JaR(x)JaR(y)− 2JaL(x)Uab(z)JbR(y)

]
+
∫

x,y,z,z′
KJSSJ(x,y, z, z′)

[
JaL(x)Dad(z, z′)JdR(y)− Nc

2 JaR(x)JaR(y)− Nc
2 JaL(x)JaL(y)

]
+
∫

x,y,z,z′
Kqq̄(x,y, z, z′)

[
2 JaL(x) tr[V †(z) ta V (z′)tb] JbR(y)− 1

2J
a
R(x)JaR(y)− 1

2J
a
L(x)JaL(y)

]
+ . . .

where Dab(z1, z2) = Tr[T aU(z1)T bU+(z2)]
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NLO JIMWLK Hamiltonian: relevant kernels

KJSJ(x,y, z) ≡ α2
s(µ)X · Y
4π3X2Y 2

[
β0

( 1
2 ln[X2µ2] + 1

2 ln[Y 2µ2]
)

+
(

67
9 −

π2

3

)
Nc −

10
9 Nf

]
with β0 = βg0 + βq0 ≡

11Nc − 2Nf
3 .

KJSSJ(x, y, z, z′) = α2
s(µ)

16π4

[
4
Z4 +

{
2X

2(Y ′)2 + (X ′)2Y 2 − 4(X − Y )2Z2

Z4(X2(Y ′)2 − (X ′)2Y 2) + (X − Y )4

X2(Y ′)2 − (X ′)2Y 2

×
(

1
X2(Y ′)2 + 1

Y 2(X ′)2

)
+ (X − Y )2

Z2

(
1

X2(Y ′)2 −
1

Y 2(X ′)2

)}
ln
(
X2(Y ′)2

(X ′)2Y 2

)
−2I(x, z, z′)

Z2 − 2I(y, z, z′)
Z2

]
+ K̃(x, y, z, z′), with Zi ≡ zi − z′i

K̃(x, y, z, z′) = α2
s(µ)

16π4

(
(Y ′)2

(X ′)2Z2Y 2 −
Y 2

Z2X2(Y ′)2 + 1
Z2(Y ′)2 −

1
Z2Y 2 + (X − Y )2

X2Z2Y 2

− (X − Y )2

(X ′)2Z2(Y ′)2 + (X − Y )2

(X ′)2X2(Y ′)2 −
(X − Y )2

X2(X ′)2Y 2

)
ln
(

X2

(X ′)2

)
+ (x↔ y)
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NLO JIMWLK Hamiltonian: UV divergent contributions

KJSJ KJSSJ
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NLO JIMWLK Hamiltonian: UV divergent contributions I

∫
x,y,z

KJSJ

[
JaL(x)JaL(y) + JaR(x)JaR(y)− 2JaL(x)Uab(z)JbR(y)

]

KJSJ = KLO
αβ0

4π
(

ln
(
X2µ2) + ln

(
Y 2µ2))+ ...

u The structure similar to the leading order
u Proportional to the WW kernel X·Y

X2Y 2

u No reasonable r. c. prescription, as the number of UV logs is twice as many

α(X2)→ α
(

1 + αβ0

4π lnX2µ2
)

u Forcing r. c. would lead to α(X2)α(Y 2)
α

Kovchegov & Weigert, Balitsky, Albacete & Kovchegov 2007 17



NLO JIMWLK Hamiltonian: UV divergent contributions II

∫
x y z z′

KJSSJf
abcfdefJaL(x)Ube(z)Ucf (z′)JdR(y)

u When z′ → z, fabcfdefUbe(z)Ucf (z′)→ NcU
ad(z)

u In the coincidence limit, integral of JSSJ kernel contains wanted UV singularity

Nc

∫
z′
KJSSJ = αs

2π2
αsβ0

4π

(
1
X2 ln

(
X2µ2) + 1

Y 2 ln
(
Y 2µ2) + (X − Y )2

X2Y 2 ln
(

(X − Y )2

X2Y 2µ2

))
+ . . .

u Strategy is to shift UV divergent “single gluon” scattering part to KJSJ
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NLO JIMWLK Hamiltonian: UV divergent contributions III

- +

KJSSJ KJSJ

3 No UV divergence in KJSSJ

3 Allows for r. c. in KJSJ : cancel an extra lnµ2

7 UV-finite pieces, including potentially large logarithms, are not uniquely defined.
Dependence on the coordinate of the subtraction point

u All logarithms multiplying β0 were attributed to r. c.
This led to Balitsky and Kovchegov-Weigert rc prescriptions.
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Balitsky and Kovchegov-Weigert UV subtractions

u Balitsky subtraction (position of the quark)

KJSJ → KB
JSJ = α2

s(µ)β0

16π3

{
− (X − Y )2

X2Y 2 ln(X − Y )2µ2 + 1
X2 lnY 2µ2 + 1

Y 2 lnX2µ2
}

u Kovchegov-Weigert subtraction (position of mother gluon)

KJSJ → KKW
JSJ = α2

s(µ)β0

8π3
X · Y
X2Y 2

{
X2 lnX2µ2 − Y 2 lnY 2µ2

X2 − Y 2 − X2Y 2

X · Y
ln X2

Y 2

X2 − Y 2

}

Kovchegov & Weigert, Balitsky, Albacete & Kovchegov 2007
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Balitsky and Kovchegov-Weigert rc prescriptions

u rc prescriptions:

KB
JSJ →

αs((X − Y )2)
2π2

X · Y
X2Y 2

+αs(X2)
4π2

1
X2

(
1− αs((X − Y )2)

αs(Y 2)

)
+ αs(Y 2)

4π2
1
Y 2

(
1− αs((X − Y )2)

αs(X)

)
,

KKW
JSJ →

1
2π2

αs(X2)αs(Y 2)
αs(R2)

X · Y
X2Y 2

for the latter

R2 =
√
X2 Y 2

(
Y 2

X2

)Θ/2

, Θ = X2 + Y 2

X2 − Y 2 − 2X
2Y 2

X · Y
1

X2 − Y 2 .

u Ambiguity due to UV subtraction in KJSSJ .
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Dressed gluon state I

u Let’s return back to KJSJ ; it has twice the factor needed for renormalization of αs
u KJSJ : production of a bare gluon state from the valence charge
u rc in QFT: the matrix element of the interaction Hamiltonian b/w dressed states
u Gluon wave function renormalization at arbitrary scale Q in one loop

AQµ (x) = Z−1/2(Q2)Aµ(x), Z1/2(Q2) = 1 + αs
8πβ0 ln Q

2

µ2

u This leads to the modification of NLO:

KJSJ →KLO
αsβ0

4π

(
ln(X2µ2) + ln(Y 2µ2) − ln µ2

Q2

)
+ . . .

Q2 is the scale at which the renormalized field is defined
u Correct number of UV logs
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Dressed gluon state II

u How to deal with divergence in KJSSJ?

u This divergene also has to cancel, if HJIMQLK is rewritten in term os physical dressed
gluon amplitudes

u Simple multiplicative wave function renormalization does not account for scattering of
a two gluon component of the dressed gluon state It has to be explicitly considered.

u At NLO the dressed gluon state contains a two-gluon (and q − q̄) component due to
gluon splitting; to be included in the definition of the dressed gluon scattering. To
simplify, I will neglect quarks in this talk.
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Dressed gluon states III

u For splitting to two gluons, the S-matrix of the gluon state at order α with the
transverse resolution Q:

UabQ (z) = Uab(z) + αs
2π2

∫
dξ

1
ξ+(1− ξ)+

(
ξ2 + (1− ξ)2 + ξ2(1− ξ)2)

σ(ξ)

×
∫

µ−1<Z<Q−1

1
Z2

Tr[T aU(z + (1− ξ)Z)T bU+(z − ξZ)]
Dab(z+(1−ξ)Z,z−ξZ)

−NcUab(z)


Last term: αβ0

4π ln µ2

Q2S
ab(z)

u Expressing LO JIMWLK in terms of SQ cancels UV divergence of KJSSJ in NLO
u This expression uses exact DGLAP splitting function; to leading log accuracy this is

unnecessary; one may replace ξ → 1
2 in Dab.

UabQ (z) = [1 + αsβ
g
0

4π ln µ2

Q2 ]Sab(z)− αsβ
g
0

4π2Nc

∫
|Z|<Q−1

d2Z

Z2 D
ab(z + Z/2, z− Z/2)

The linear term is the “virtual” DGLAP log. The quadratic term is due to two gluon
component of the dressed gluon – the “real” DGLAP log 24



Putting everything together

u All occuracnce of U in HJIMWK should be replace with UQ

u This will eliminate all UV “extra” UV logs

u Subtle point: UQ defined for dressed gluons without any possible overlap, as in
DGLAP: gluons evolve independently. This cannot be right if sources are in the same
region of transverse plane. The probability of gluon splitting has to be modified if the
size of the pair is larger that the distance to the closest source.

u The distance to the closest source { an IR cutoff: Q̄2 = max
{
Q2, 1

X2 ,
1
Y 2

}
u Use Q̄2 instead of Q2
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Resolution scale independence and RG

u Promoting to closed equation describing multiple
consecutive DGLAP splittings

∂SQ(z)
∂ lnQ2 = −αs

∫
ξ

σ(ξ) (DQ − SQ(z))

u Independence of the introduced scale, Q:

dH

d lnQ = ∂H

∂ lnQ +
∫
u

[
δH

δSQ(u)
∂SQ(u)
∂ lnQ

]
= 0

...
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Initial conditions and rc

u Initial conditions: at Qin = QPs

Hin =
∫
Kin

[
{SQin(z)− SQin(x)} {SQin(z)− SQin(y)}†

]ab
JaL(x) JbL(y)

u The kernel at this scale is given by

Kin = αλs (X2)αλs (Y 2)α1−2λ
s (XY )

2π2
X · Y
X2Y 2 [1 + small NLO corrections]

and does not contain large logs, as QPs |X| ∼ 1

λ is not uniquely fixed by NLO; λ = 1/2 is our preference; λ = 1 is “triumvirate” form
c.f. G. Chirilli & Y. Kovchegov, 2013

u Evolve up to Qf = QTs
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Dilute/BFKL regime

u Initial JIMWLK kernel is convenient to write in the form:

Hin ∝
∫

x,y,z,z1,z2

X · Y
X2Y 2

(
δz1,z2

δ(z1−z2)

δz1,z + δx,z1δy,z2 − δx,z1δz,z2 − δy,z2δz,z1

)
∝Kin

[
SQ0(z1)S†Q0

(z2)
]ab

JaL(x) JbL(y)

u DGLAP evolution leads to smearing of δ-functions

HQ ∝
∫

x,y,z,z1,z2

X · Y
X2Y 2

(
rz1,z2

r(z1−z2)

rz1,z+rx,z1ry,z2−rx,z1rz,z2−ry,z2rz,z1

) [
SQ(z1)S†Q(z2)

]ab
JaL(x) JbL(y)

u r function:

r(z) =



δ(z), for z > 1/QPs
1
z2

[(
1

zQPs

)αsβ0
2π − 1

]
, for 1/QPs > z > 1/QTs

1
z2

[(
QTs
QPs

)αsβ0
2π − 1

]
, for z < 1/QTs
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Saturation regime

u Target saturation momentum plays two roles:
- provides correlation length for Wilson lines
- provides color neutralization scale: a Wilson line separated from the rest by a

distance greater than 1/Qs is vanishingly small

u For evolution in distance range from 1/QPs to 1/QTs , neglect quadratic term in
DGLAP evolution DQ − NcSQ(z)→ −NcSQ(z)

u The kernel is

KQ =
[
QTs
QPs

]αs
2π b

Kin
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Interpolating equation between two regimes

u Explicit solutions in dilute and saturation regime of DGLAP provided us with
Q-dependent kernel for JIMWLK Hamiltonian

u For practical implementation, an interpolating equation is needed
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Conclusions

u Conventional rc prescriptions violate positive semi-definiteness of JIMWLK kernel
u Not all large logs of NLO JIMWLK multiplying QCD β-function belong to running

coupling

u Subset of the logs comes from DGLAP evolution of the projectile

u We identified both types of logs, and provided the scheme for their resummation:
- DGLAP logs { evolution equation for JIMWLK kernel
- rc logs { simple scale for the QCD running coupling

u This procedure leads to positive semi-definite JIMWLK Hamiltonian
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