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CGC in a nutshell

DIS in QCD :

Three Lorentz invariant quantities :

1 q2 = −Q2 ≡ virtuality of the incoming photon

2 x = Q2

2P·Q ≡ longitudinal momentum fraction carried by the parton

3 s ' 2P · Q ≡ energy of the colliding γ − p system

increasing the energy (s = Q2/x) of the system:

Bjorken limit fixed x , Q2 →∞
density of partons decreases/DGLAP

Regge-Gribov limit fixed Q2, x → 0

density of partons increases/Saturation!
The x evolution of a hadron :

above the saturation line there is no rapid increase in the number of
gluons
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Qs ≡ saturation scale

In the saturation regime, scattering processes
are described by an effective theory:
Color Glass Condensate:

fast partons : k+ > Λ+ → color sources:
Jµ(x) = δµ+ρ(x−, x⊥)
slow partons: : k+ < Λ+ → color fields
Aµ(x)
interaction:

∫
d4xJµ(x)Aµ(x)
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Motivation to go from LO to NLO in the CGC

Leading Order in αs CGC calculations:

↙ ↘
(pro) : CGC-based theoretical calculations are in
qualitative agreement with the experimental data
from all types of collisions

(con): LO CGC lacks precision in order to
determine unambiguously whether saturation is
exhibited by the experimental data.

increasing precision of theory predictions in order to perform precise quantitative studies:

? relaxing the kinematical approximations performed at LO.

? going from LO to NLO in αs :

There has been a lot activity to provide expressions of observables at NLO.

↙ ↘
eA collisions

• dipole factorization

• structure functions/ dijets

pA collisions

• hybrid factorization

• single inclusive hadron/jet

? Many developments on the NLO corrections to the rapidity evolution equations.
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Forward hadron production in pA collisions

[Dumitru, Hayashigaki, Jalilian-Marian - hep-ph/0506308]

Accepted calculation framework for forward production in pA collisions: Hybrid factorization

The wave function of the projectile proton is treated in the spirit of collinear factorization
(an assembly of partons with zero intrinsic transverse momenta) - DGLAP gives perturbative
corrections.

Target is treated as distribution of strong color fields which during the scattering event transfer
transverse momentum to the propagating partonic configuration. (CGC like treatment)

x0

k⊥

x1

dσq→H

d2k dη
=

∫ 1

xF

dζ

ζ2
Dq
µ2

0
(ζ)

xF
ζ
f q
µ2

0

(
xF
ζ

)∫
e ik(x0−x1)〈s(x0, x1)〉

dipole operator: s(x0, x1) = 1
Nc

tr
[
U(x0)U†(x1)

]

high transverse momentum in the produced hadron is acquired from the interaction with the target.

Tolga Altinoluk Single inclusive production at NLO 4/23



Forward hadron production

Does LO ”Hybrid” formula take into account all contributions at high k⊥?

[TA, Kovner - arXiv:1102.5327]

For k⊥ � Qs :

dσ

d2kdη
∝
[

dσ

d2kdη

]

el .

+

[
dσ

d2kdη

]

inel .

Real contributions at NLO.

Particle Production at NLO within ”Hybrid” formalism

[ T.A., A. Kovner - 2011 ]

The single inclusive gluon cross section :

d�

d2k dy
/


d�

d2k dy

�

elastic

+


d�

d2k dy

�

inelastic

In the limit of large transverse momentum of the produced gluon k � Qs ,⇤QCD

there are two dominant contributions:

”Elastic Scattering” (LO)

kT

kT

pT ⌧ kT

”Inelastic Scattering” (NLO)

pT ⌧ kT

kT

�kT
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[Chirilli, Xiao, Yuan - arXiv:1112.1061 / arXiv:1203.6139 ] → Full NLO computation.

Collinear divergences: absorbed into DGLAP evolution of PDFs and FFs.

Rapidity divergences: absorbed into evolution of the target.

[Stasto, Xiao, Zaslavsky - arXiv:1307.4057] → Numerical studies of full NLO result.

Particle Production at NLO within ”Hybrid” formalism

[ G.A. Chirilli, B.W. Xiao, F. Yuan - 2012 ]
Full NLO calculation...
[ A.M.Stasto, B.W.Xiao, D. Zaslavsky - 2013 ]
Numerical analysis...
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Comparison of BRAHMS (h�) and STAR (⇡0) yields in dAu collisions to results of
the numerical calculation with rcBK gluon distribution, both at LO and with NLO
corrections included.
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cross sections turn out to be negative at large transverse
momentum!

Several solutions proposed to fix the problem:
• kinematical constraints
• different choice of rapidity scales
• threshold/ Sudakov resummations
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Revisiting NLO hybrid formula - kinematical constraints

[TA, Armesto, Beuf, Kovner, Lublinsky - arXiv:1411.2869]

• choice of frame:
(i) target moves fast and carries almost all the energy.
(ii) projectile moves fast enough: accommodates partons with momentum fraction xp but does not
develop a large low-x tail.
(iii) target is evolved to s from initial s0 via BK.

• Ioffe time restriction: only pairs whose coherence time is greater than the propagation time through
the target can be resolved.

coherent scattering→ (1− ξ)ξxp
l2⊥

>
1

s0

The problem (I):

4 N. Armesto, 18.05.2023

● Several solutions proposed along the years:
➜ Kinematic constraints (1505.05183)/Ioffe time restriction 
(1411.2869) leading to new, BK-like terms.
➜ Choice of rapidity scales 
(1403.5221,1407.6314,1608.05293).
➜ Threshold (2004.11990) and Sudakov (2112.06975) 
resummation. (1 − ξ)ξxp

l2⊥
> 1

s(0)● They lead to a 
successful 
description of data 
but lack of 
understanding of 
what was or still is 
wrong, or of 
guidance on how to 
rectify it. 2004.11990 2112.06975

Single inclusive production in pA at : beyond the hybrid model: 1. Intro.η ≫ 0

The restriction establishes itself through a modified definition of WW field:

11

FIG. 4. Examples of the virtual diagrams included in eq. (3.3) with the interaction with the target nucleus after (left) or
through (right) the loop.

fundamental dipole. The superscript indices i refer to transverse components. As discussed in the Introduction, this
dipole amplitude has to be averaged over the target color fields evolved with rapidity by the amount YT = ln s/s0 via
the JIMWLK or BK equation. Here s is the total energy of the process, while s0 is a high, but not very high hadronic
scale chosen so that at energy s0 one can already use eikonal approximation for scattering, but the energy evolution
from the rest frame to energy s0 does not yield a significant change in the dipole amplitude. As explained in [37], the
scale s0 determines the Io↵e time cuto↵ on the life time of the fluctuations in the projectile wave function,

(1 � ⇠)⇠xp

q2
> s�1

0 , (3.5)

resulting in the longitudinal resolution of the TMD discussed in the previous section. Here ⇠ and q are the longitudinal
momentum fraction and transverse momentum of the emitted gluon8, respectively.

The Io↵e time constraint enters the above expressions explicitly via the modified Weizsäcker-Williams (WW) fields

Ai
⇠,xp

(y � z) ⌘ �i

Z

l2<⇠(1�⇠)xps0

d2l

(2⇡)2
li

l2
e�il·(y�z) (3.6)

= � 1

2⇡

(y � z)i

(y � z)2


1 � J0

✓
|y � z|

q
⇠(1 � ⇠)xps0

◆�
,

Ai
⇠(y � z) ⌘ Ai

⇠,xp/(1�⇠)(y � z) . (3.7)

In eq. (3.3) we have put the upper limit of the integration over ⇠ to unity, relying on the fact that the PDF vanishes
if the fraction of the longitudinal momentum in its argument is greater than one9. Hereafter,

R
r

=
R

d2r,
R

k
=
R

d2k.
In the above expressions we assumed the large Nc factorization of the dipole amplitudes, and translational invariance

of the target ensemble, approximations which are invariably employed in numerical implementations. We have also
neglected the Nc suppressed terms. This last approximation can only be relaxed if one also relaxes the factorization
hypothesis, since some of the nonfactorisabe terms are of the same order as the explicit 1/Nc suppressed terms in the
expressions of [37].

Fragmentation can be accounted for in a straightforward way by modifying the expression for cross section to

d�q!q!H

d2pd⌘
=

Z 1

xF

d⇣

⇣2
Dq

H,µ2
0
(⇣)

d�̄q!q

d2kd⌘

✓
p

⇣
,
xF

⇣

◆
. (3.8)

B. Transforming into momentum space

We now transform the above expressions into momentum space. We define, as in [42], the Fourier transform of the
dipole

s(k) =

Z

r

1

(2⇡)2
e�ik·rs(r) =) s(r) =

Z

l

eil·rs(l). (3.9)

8 Note that if we change s0 ! s (the total squared center-of-mass energy of the collision), this restriction coincides with the kinematic
constraint used in [38].

9 We have also dropped the prefactor (1 � ⇠)2 in the second term in (3.3) compared to eq. (A.11) in [37]. This factor in [37] is incorrect,
and arose due to an overcourageus treatment of a divergent integral. Our original expressions (before rescaling in eq. (A.10) in [37])
reduce to the expression given here directly if we assume translational invariance of the dipoles. We thank Yair Mulian for a confirmation
on this point.

Neglecting Ioffe time restriction: Modified WW field → standard WW field.

New BK-like terms arise due to Ioffe time restriction.
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Revisiting NLO hybrid formula - kinematical constraints

[Watanabe, Xiao, Yuan, Zaslavsky - arXiv:1505.05183] → exact kinematical constraint.
The relevant contribution:

5

with �2 = ⇠(1 � ⇠)xps. The original dipole splitting function, which is proportional to
u?·✏(1,2)

?
u2
?

,

arises from the Fourier transform of
l?·✏(1,2)

?
l2?

. The additional term of �J0(u?�) arises from the

kinematical constraint, Eq. (3), imposed during the Fourier transform.
In general, the correction to the splitting function J0 (u?�) does not play any important role

since it vanishes when we take the high energy limit s ! 1. It only becomes important when the
gluon longitudinal momentum fraction 1� ⇠ approaches zero. Specifically, for quark production at
one-loop order, we always get the following DGLAP-type contribution from real diagrams:

Z 1

⌧
d⇠

1 + ⇠2

1 � ⇠
=

Z 1

⌧
d⇠

1 + ⇠2

(1 � ⇠)+
+

Z 1

0
d⇠

2

1 � ⇠
. (6)

For the first term on the right hand side of the above equation, we can safely take the s ! 1 limit,
since this term is regular when ⇠ ! 1. However, one can not neglect the correction J0 (u?�) for
the second term, since it is singular when ⇠ ! 1. Clearly, in this NLO calculation for single hadron
production in pA collisions, the kinematical constraint only a↵ects the rapidity subtraction term.

The relevant contribution to the cross section, with the modified splitting function, can be
written as

↵sNc

2⇡2

Z 1

0

d⇠

1 � ⇠

Z
d2x?d2y?d2b?

(2⇡)2
e�ik?·(x?�y?)

h
�S(x?, y?) + S(x?, b?)S(b?, y?)

i

⇥
⇢⇥

1 � J0(u?�)
⇤2

u2
?

+

⇥
1 � J0(u

0
?�)

⇤2

u02
?

� 2u? · u0
?

u2
?u02

?

⇥
1 � J0(u?�)

⇤⇥
1 � J0(u

0
?�)

⇤�
, (7)

where u? ⌘ x?� b? and u0
? ⌘ y?� b?.3 One can actually approximately integrate over ⇠ and find

that
Z 1

0

d⇠

1 � ⇠


1 � J0

⇣
u?
q

xps(1 � ⇠)
⌘�2

' ln
xpsu

2
?

c2
0

= ln
1

xg
+ ln

k2
?u2

?
c2
0

(8)

Z 1

0

d⇠

1 � ⇠


1 � J0

⇣
u?
q

xps(1 � ⇠)
⌘�

1 � J0

⇣
u0
?

q
xps(1 � ⇠)

⌘�

' ln
xpsu?u0

?
c2
0

= ln
1

xg
+ ln

k2
?u?u0

?
c2
0

,

(9)

with c0 = 2e��E . Here we have used xpxgs = k2
?. It is then clear that the first term ln 1

xg
can be

subtracted from the NLO cross section and interpreted as the BK evolution of the dipole amplitude
S up to rapidity Yg = ln 1

xg
. The second term in the above equations, which is conjugate to the term

ln
k2
?

l2?
as in Eq. (4) (see also Eq. (3.12) of Ref. [52]) with l? being the gluon transverse momentum,

arises due to the exact kinematical constraint. More precisely, the second integral should give

ln 1
xg

+ ln
k2
?u2

<

c20
instead of ln 1

xg
+ ln

k2
?u?u0

?
c20

with u< ⌘ min{u?, u0
?}, which makes the calculation

for Lq(k?) non-analytical and the precise numerical evaluation more challenging. Fortunately, one
can numerically check that the resulting Lq(k?) has similar large-k? behaviour, and it gives the
same high k? tail, since u? ' u0

? when k? ! 1. Besides, as we will show later, in the low-k?
region, Lq(k?) is negligible in the total cross section. Our goal here is to extract the correct large
k? tail of the additional hard factor, which eventually helps to extend the applicability of the

3 This term looks similar to the last term of Eq. (4.21) in Ref. [52]. Here we are implementing the kinematical

constraint, while they are discussing the Io↵e time cuto↵. These two become equivalent if one identifies their 2P+

⌧

as the center-of-mass energy s in our paper.

with u⊥ = x⊥ − b⊥ and u′⊥ = y⊥ − b⊥.
One can approximate:

5

with �2 = ⇠(1 � ⇠)xps. The original dipole splitting function, which is proportional to
u?·✏(1,2)

?
u2
?

,

arises from the Fourier transform of
l?·✏(1,2)

?
l2?

. The additional term of �J0(u?�) arises from the

kinematical constraint, Eq. (3), imposed during the Fourier transform.
In general, the correction to the splitting function J0 (u?�) does not play any important role

since it vanishes when we take the high energy limit s ! 1. It only becomes important when the
gluon longitudinal momentum fraction 1� ⇠ approaches zero. Specifically, for quark production at
one-loop order, we always get the following DGLAP-type contribution from real diagrams:

Z 1

⌧
d⇠

1 + ⇠2

1 � ⇠
=

Z 1

⌧
d⇠

1 + ⇠2

(1 � ⇠)+
+

Z 1

0
d⇠

2

1 � ⇠
. (6)

For the first term on the right hand side of the above equation, we can safely take the s ! 1 limit,
since this term is regular when ⇠ ! 1. However, one can not neglect the correction J0 (u?�) for
the second term, since it is singular when ⇠ ! 1. Clearly, in this NLO calculation for single hadron
production in pA collisions, the kinematical constraint only a↵ects the rapidity subtraction term.

The relevant contribution to the cross section, with the modified splitting function, can be
written as

↵sNc

2⇡2

Z 1

0

d⇠

1 � ⇠

Z
d2x?d2y?d2b?

(2⇡)2
e�ik?·(x?�y?)

h
�S(x?, y?) + S(x?, b?)S(b?, y?)

i

⇥
⇢⇥

1 � J0(u?�)
⇤2

u2
?

+

⇥
1 � J0(u

0
?�)

⇤2

u02
?

� 2u? · u0
?

u2
?u02

?

⇥
1 � J0(u?�)

⇤⇥
1 � J0(u

0
?�)

⇤�
, (7)

where u? ⌘ x?� b? and u0
? ⌘ y?� b?.3 One can actually approximately integrate over ⇠ and find

that
Z 1

0

d⇠

1 � ⇠


1 � J0

⇣
u?
q

xps(1 � ⇠)
⌘�2

' ln
xpsu

2
?

c2
0

= ln
1

xg
+ ln

k2
?u2

?
c2
0

(8)

Z 1

0

d⇠

1 � ⇠


1 � J0

⇣
u?
q

xps(1 � ⇠)
⌘�

1 � J0

⇣
u0
?

q
xps(1 � ⇠)

⌘�

' ln
xpsu?u0

?
c2
0

= ln
1

xg
+ ln

k2
?u?u0

?
c2
0

,

(9)

with c0 = 2e��E . Here we have used xpxgs = k2
?. It is then clear that the first term ln 1

xg
can be

subtracted from the NLO cross section and interpreted as the BK evolution of the dipole amplitude
S up to rapidity Yg = ln 1

xg
. The second term in the above equations, which is conjugate to the term

ln
k2
?

l2?
as in Eq. (4) (see also Eq. (3.12) of Ref. [52]) with l? being the gluon transverse momentum,

arises due to the exact kinematical constraint. More precisely, the second integral should give

ln 1
xg

+ ln
k2
?u2

<

c20
instead of ln 1

xg
+ ln

k2
?u?u0

?
c20

with u< ⌘ min{u?, u0
?}, which makes the calculation

for Lq(k?) non-analytical and the precise numerical evaluation more challenging. Fortunately, one
can numerically check that the resulting Lq(k?) has similar large-k? behaviour, and it gives the
same high k? tail, since u? ' u0

? when k? ! 1. Besides, as we will show later, in the low-k?
region, Lq(k?) is negligible in the total cross section. Our goal here is to extract the correct large
k? tail of the additional hard factor, which eventually helps to extend the applicability of the

3 This term looks similar to the last term of Eq. (4.21) in Ref. [52]. Here we are implementing the kinematical

constraint, while they are discussing the Io↵e time cuto↵. These two become equivalent if one identifies their 2P+

⌧

as the center-of-mass energy s in our paper.

New terms (Lq + Lg ) arise after the implementation of the exact kinematical constraint.

The new terms in both works are consistent and equivalent.
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Revisiting NLO hybrid formula - kinematical constraints

[Watanabe, Xiao, Yuan, Zaslavsky - arXiv:1505.05183]12
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FIG. 4. Comparisons of BRAHMS data [9] with the center-of-mass energy of
p

sNN = 200GeV per nucleon
at rapidity y = 2.2, 3.2 with our results. As illustrated above, the crosshatch fill shows LO results, the
grid fill indicates LO+NLO results, and the solid fill corresponds to our new results which include the NLO
corrections from Lq and Lg due to the kinematical constraint. The error band is obtained by changing µ2

from 10 GeV2 to 50 GeV2.

(transformed) formulas. The LO and LO+NLO curves are very similar to earlier results published
in Ref. [43]; some slight di↵erences are due to the increased precision of the new formulas. In the
meantime, the Lq and Lg corrections are completely negligible in the region where p? . Qs. On
the other hand, where p? & Qs, Lq and Lg start to become important and alleviate the negativity
problem in the GBW model, and help us to better describe the data in the high p? region. In the
rcBK case, we find that the full NLO cross section now becomes completely positive and provides
us excellent agreement with all the RHIC data.

In Figure 6, we show the comparison between the forward ATLAS data at y = 1.75 and the
numerical results from SOLO. We observe remarkable agreement between the full NLO calculation
from the saturation formalism and experimental data up to 6GeV. Again, as we have seen earlier,
the newly added Lq and Lg corrections help to increase the applicable p? window of the saturation
formalism from roughly 2.5–3 GeV to 6 GeV. From 6 GeV and up, the full NLO cross section
still becomes negative, which implies that the saturation formalism does not apply anymore and
the collinear factorization should be used. Admittedly, what we have seen is only one piece of
a promising clue for the gluon saturation phenomenon. More data in di↵erent forward rapidity
windows at the LHC would allow us to conduct precise tests of the theoretical calculation, and
may eventually provide us the smoking gun proof.

BRAHMS data with
√
sNN = 200 GeV.

The negativity problem is shifted to higher transverse momentum but not cured!
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Revisiting NLO hybrid formula

[Liu, Ma, Chao - arXiv:1909.02370]
• a new method to regularize rapidity divergence in the region ξ → 1.

(1− ξ)−1+η =
δ(1− ξ)

η
+

1

(1− η)+
+ O(η)

[Kang, Liu - arXiv:1910.10166], [Liu, Kang, Liu - arXiv:2004.11990]
Soft-Collinear Effective Theory (SCET), threshold resummation

2

summed solves this instability [48–53].
Threshold logarithms. Threshold logarithms are com-

mon features of the partonic cross sections for hadronic
processes [54–56]. They are expected to be large and
therefore invalidate the truncations in the perturbative
expansion in ↵s, when a massive final state is produced
or kinematic constrains are implemented to force the
system reaching its maximally allowed energy. Even in
cases where all the kinematics are away from the machine
threshold, such as the 125 GeV Higgs production at the
13 TeV LHC, the threshold logarithms are still found to
be sizable [57], due to the steep falling shape of the par-
ton distribution functions (PDFs) [55], which e↵ectively
restricts the maximally allowed energy and enhances the
e↵ects. Conventional wisdom to rescue the perturbative
predictive power is to resum the threshold logarithms
L [54–56], which formatively turns the fixed order (FO)

series
PFO

n ↵n
s (
P

k Lk + cn) ! eg(L)
PFO

n ↵n
s cn, wherePFO

n ↵n
s cn is free of large corrections and a fixed order

truncation is therefore justified.
The same story happens to pA ! hX. The n-th or-

der corrections to the partonic cross section possess the
logarithmic structure in the large Nc limit

�̂(n) �
n�1X

k=0

↵n
s

 
lnk(1 � z)

1 � z

!

+

, (1)

where 1�z = 1�⌧/x⇠ with x and ⇠ the momentum frac-
tion in the PDF and the fragmentation function (FF),
respectively, as illustrated in fig. 1. Note that 1�z is the
energy fraction carried by the bremsstrahlung radiations.
We have ⌧ = ph,?eyh/

p
s, with yh the hadron rapidity

and ph,? the transverse momentum. In the forward re-
gion, yh is very large and thus z quickly approaches 1.
The system is reaching the threshold and the radiations
can only be soft and the logarithms are large.

FIG. 1. Illustration of pA ! hX.

To make it more specific, we consider the pA ! hX
at NLO. In the large Nc limit, the partonic cross section
can be written as [27, 35, 47, 58]

d2�̂(1)

dzd2p0?
/ �↵s

2⇡
T2

i Pi!i(z) ln
r2
?µ2

c2
0

✓
1 +

1

z2
ei 1�z

z p0
?·r?

◆

� ↵s

⇡
Ta

i T
a0
j

Z
dx?
⇡

(
1

z
P̃i!i(z) ei 1�z

z p0
?·r0

?
r0? · r00?
r0?

2r00?
2

+ �(1 � z) ln
Xf

XA

"
r2
?

r0?
2r00?

2

#

+

)
Waa0(x?) + . . . , (2)

where we have factorized out the LO terms. At the same
time, c0 = 2e��E with �E the Euler constant, and p0? =
ph,?/⇠ is the transverse momentum of the fragmenting
parton. We have only written out those (1 � z) singular
terms relevant for discussion, but suppress all the (1 �
z) non-singular terms for simplicity. Here, XA is the
momentum fraction carried by the gluon from the nucleus
and Xf is the scale due to the rapidity divergence [35,

47, 60, 61]. Pi!i(z) is the splitting function and P̃i!i(z)
is Pi!i(z) without the �(1 � z) term, r? = b0? � b?,
r0? = b? � x? and r00? = x? � b0?. The +-prescription is
defined in [65] which subtracts the singularities at x? !
b? (b0?) and Waa0 is the CGC Wilson line in the adjoint
representation. We find it convenient to use the color
operator Ta

i introduced by Catani et al. [59], acting on
the i-th parton with color c(c0) in the color space as

hic , jb . . . |Ta
i |ic0 , jb0 , . . . i = T a

c,c0�bb0 . . . , (3)

where T a
c,b = ifcab if the particle i is a gluon and T a

c,b =
tac,b for a final state quark while T a

c,b = �tab,c for a final
state antiquark.

As z ! 1, the splitting function P̃i!i(z) ! 2
(1�z)+

and

we see explicitly in Eq. (2) that the NLO results reduce
to the threshold structure in Eq. (1) with n = 1 and
k = 0. After integrating over z, the logarithmic form will
be more explicit [54–56].

When 1�z ⇠ O(1), these (1�z)�1
+ terms are small and

do no harm to the perturbative calculation. In this away-
from-threshold case, the typical energy scales involved
are the longitudinal momentum n̄ ·p of the incoming par-
ton moving along n direction where n = (1, 0, 0, 1) and
n̄ = (1, 0, 0,�1), and p0? of the out-going parton. The
heirachy p0? ⌧ n̄ · p gives rise to large logarithms ln n̄·p

p0
?

,

which we will see, can be resummed by the BK evolution,
if the CGC rapidity scale choice Xf ⇠ XA is made.

However when we increase ph,?, especially in the for-
ward region where yh is large, z quickly approaches its
threshold and the threshold terms can become extraordi-
narily large. To demonstrate this point, we plot explicitly
this near-threshold situation in fig. 2, using dAu collision
at RHIC with

p
s = 200GeV and yh = 2.2 as an example.

In the upper panel, the solid curve is the full NLO cross
section including the kinematic constraint [27, 35, 47],
while the dashed curve is the NLO result with the thresh-
old (1 � z)�1

+ terms (setting z = 1 in the numerator) in
Eq. (2) subtracted. From this comparison, we see clearly
that, when the threshold singular terms are absent, the
remaining contribution stays positive for the entire ph,?
spectrum, while the full NLO prediction quickly drops
below zero. In the lower panel of fig. 2, we show the ratio
R between the NLO threshold contribution and the full
NLO result. To make the plot more evident, we take out

σ(n) ∝
n−1∑

k=0

(
lnk(1− z)

1− z

)

+

1− z is the energy fraction carried by the soft radiation.
In the forward region z → 1 very quickly ⇒ logs need to be resummed. 5
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FIG. 3. Data versus theory predictions.

rapidity region from the charged hadron production in
p+Pb collisions at LHC and the hadron productions in
d+Au collisions at RHIC [16]. From fig. 3, we see that
the NLO+LLthr. results stay positive and show no signs
of turning negative. The uncertainty bands are obtained
by varying Xf around its central value up and down by a
factor of 2 and taking the maximum deviations. We see
that the uncertainties are substantially reduced when we
go from LO (orange bands) to NLO+LLthr. (red bands).
The NLO+LLthr. calculation impressively describes all
the experimental data. The central values of the predic-
tions slightly overshoot the LHC data for small ph,? but
still within errors. The situation is expected to be fur-
ther improved if a global fit beyond LO is performed to
determine the CGC dipole initial condition.

Conclusions. In this paper, through thorough studies,
we identify the threshold logarithms responsible for the
negative cross section problem that are missing in pre-
vious discussions [44] in the forward pA ! hX, within
the small-x formalism. We develop an all-order factor-
ization theorem with systematically improvable accuracy.
We present detailed derivation and numerical study for
the first complete threshold resummation at LL in the
CGC formalism. We find that the LLthr. resummation
can be realized simply by a suitable rapidity scale choice
in the NLO calculation. After resummation, all pre-
dicted ph,? spectrums are found to be positive all the
way to the kinematic boundaries. We compared our pre-
dictions with the available data and observed excellent
agreements with greatly reduced scale uncertainties, in
comparison with the LO results. Our results are ready
for more phenomenological applications at the LHC and
RHIC, such as global fitting studies of the CGC models
beyond LO. Given the universality of the LLthr. structure
in hadronic processes, we expect our approach is appli-
cable to many other practical applications of high order
CGC predictions for the small-x collider phenomenology.
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Revisiting NLO hybrid formula

[Xiao, Yuan - arXiv:1806.0352], [Shi, Wang, Wei, Xiao - arXiv:2112.06975]
• extra logs from the kinematical constraint written in coordinate space

ln
k2
⊥
µ2
r

, ln
µ2

µ2
r

, ln2 k
2
⊥
µ2
r

with µr = 2e−γE /r⊥. In the threshold region (k⊥ or p⊥ � µr ) logs become large and needs to be
resummed.
• rewritten in momentum space

ln
k2
⊥

Λ2
+ I1(Λ) , ln

µ2

Λ2
+ I1(Λ) , ln2 k

2
⊥

Λ2
+ I2(Λ)

Λ is an auxilary scale in momentum space , Λ� ΛQCD

• soft gluon emission → ln
k2
⊥

Λ2 and ln2 k2
⊥

Λ2 resummed into Sudakov factor

• collinear logs → lnµ
2

Λ2 → threshold resummation (DGLAP of PDFs and FFs)
39
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FIG. 14. Comparisons of the LHC pPb data [25, 26, 28] measured by the ALICE, ATLAS and LHCb collaborations with the
CGC calculations with fixed ⇤ scales.

The NLO corrections significantly reduces the µ dependence. The numerical calculations at the one-loop order
have already been carried out in the previous works [40, 45]. The major issue of the one-loop cross-section is that it
turns negative at high-pT near the threshold region. This negative cross-section issue, as illustrated by the orange
bands in the left plot of Fig. 13 for RHIC energy and plots in Fig 14 for the LHC energy at 5TeV, has attracted a
lot of attentions in the community. It becomes manifest that the one-loop cross section consistently turns negative
at su�ciently large pT in the forward rapidity region near the threshold. According to our numerical results, the
threshold logarithmic terms are negligible at low pT , whereas they become the dominant contribution in the high pT

region with pT � Qs. At RHIC, since the saturation momentum increases and the kinematic limit of pT decreases
with increasing rapidity y, the issue of negative one-loop results becomes less severe in the more forward region. For
the rapidity bin around y = 4, the negativity does not appear due to the lack of phase space for pT . As laid out
above, one can systematically resolve this issue through the implementation of the threshold resummation.

In Fig. 13, we show the comparison between our numerical results and experimental data measured by the BRAHMS
and STAR collaborations for dAu collisions at RHIC in three rapidity bins around y = 2.2, 3.2 and 4. The resummed
calculation has two parameters: the factorization scale µ and the semi-hard auxiliary scale ⇤. The proper and natural
choice of the ⇤ scale is discussed in Sec. VI B, and the numerical values in di↵erent kinematic regions are shown in
Table I. The central values in Table I are used in the numerical evaluation. To estimate the theoretical uncertainties
at NLO order, we vary the factorization scale µ2 from 4(µ2

min +p2
T ) to 16(µ2

min +p2
T ) with µmin = 2 GeV. Remarkably,

the resummed calculation not only fixes the negative problem but also improves the quality of the description of the
experimental data.

In Fig. 14, we present the numerical results for pPb collisions at the LHC measured by the ALICE, ATLAS and
LHCb collaborations in three rapidity bins near y = 0, 1.65 and 4.15. In the first two middle rapidity regions, our
framework can only be applied in the small-pT region. At high-pT , our numerical results start to deviate from the
experimental data since the so-called dilute-dense factorization framework breaks down. More detailed discussions of
the applicable windows of our calculation are provided in Sec. XC. Nonetheless, our numerical results yield robust
predictions and agree with the experimental data well in the middle rapidity and low-pT region and in the forward
rapidity regime for the entire pT range.

B. Numerical Results for Forward Hadron Productions in pp Collisions

In principle, the dilute-dense factorization employed in this paper only requires that the gluon density in the target
hadron is much higher than the parton density in the projectile. For pp collisions, as long as the rapidity y is su�ciently
large (roughly 2), this requirement can be met. However, as briefly mentioned above, our calculation may not be
directly applied to the forward hadron productions pp collisions since we have also assumed that the size of the target
hadron (nucleus) is much larger than that of the projectile proton. This simplification allows us to neglect the impact
parameter (b?) dependence in the dipole scattering amplitude S(2)(r?) and integrate over the impact parameter b?
freely. This integral results in an overall normalization S?. In pA collisions, S? is approximately the transverse area
of the target nucleus. Nevertheless, in pp collisions, S? is supposed to be the overlapping transverse area in which the
inelastic pp collision occurs and it is close to the total inelastic cross-section, which is estimated to be a couple times
of the target proton transverse area ⇡R2

p. Therefore, this overall normalization is less constrained in pp collisions.

After setting Spp
? = 2⇡R2

p, we find that our resummed numerical results, which are shown in Figs. 15 and 16, can

Tolga Altinoluk Single inclusive production at NLO 10/23



A new approach to forward pA scatterings

Common assumption in all these works: large logs can be resummed within the collinear factorization.

[TA, Armesto, Kovner, Lublinsky - arXiv: 2307.14922]

TMD-factorized framework is a natural choice to resum all large logs.

in [arXiv:1102.5327], the mechanisms that give rise to high transverse momentum hadrons:

Particle Production at NLO within ”Hybrid” formalism

[ T.A., A. Kovner - 2011 ]

The single inclusive gluon cross section :

d�

d2k dy
/


d�

d2k dy

�

elastic

+


d�

d2k dy

�

inelastic

In the limit of large transverse momentum of the produced gluon k � Qs ,⇤QCD

there are two dominant contributions:

”Elastic Scattering” (LO)

kT

kT

pT ⌧ kT

”Inelastic Scattering” (NLO)

pT ⌧ kT

kT

�kT

Tolga Altinoluk High energy QCD and gluon saturation 21/47

– It is more natural to think the inelastic contribution in the TMD framework:
produced high kT quark coming directly from quark TMD PDF.

? another potential source to producing high transverse momentum hadron:

low kT parton scatters softly, but subsequently fragments into a high transverse momentum hadron.

-Hadron arising from TMD FF.

? soft logs – we follow [arXiv:1411.2869]: most of the energy is carried by the target. Projectile wave
function does not contain many soft gluons and no large soft logs appear explicitly in the calculation.
All such logs implicitly resummed in the dipole scattering amplitude on a highly evolved target.
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The setup of the problem

[TA, Armesto, Kovner, Lublinsky - arXiv:2307.14922]

TMD-factorized parton model expression:

dσLO+NLO

d2p⊥dη
∝
∫

dζ

ζ2

∫

k⊥q⊥
T (xF/ζ, k⊥;µ2

T )P(k⊥, q⊥)F(ζ, p⊥, (k⊥ + q⊥);µ2
F ) + Gen.NLO

Our setup:

6 N. Armesto, 28.03.2023

● We work in a frame in which the target nucleus moves fast. We find a TMD-factorized parton 
model expression:

k⊥

q⊥

k⊥ + q⊥ p⊥

● Our scales are

Dense target, rapidity YT

Dilute projectile, P

xp = k+

P+ xF = p+

P+

∫ dζ
ζ2 ∫ d2k⊥d2q⊥ T ( xF

ζ
, k⊥; μ2

T) P(k⊥, q⊥) F (ζ; p⊥, (k⊥ + q⊥); μ2
F) + " ( p2⊥, k2⊥, Q2

s , μ2

s0 )

μ2
T = max {k2⊥, q2⊥, Q2

s } ≈ max {(k⊥ + q⊥)2, Q2
s }, μ2

F = ((q⊥ + k⊥) − p⊥/ζ)2) ≈ max {(q⊥ + k⊥)2, (p⊥/ζ)2}
Single inclusive production in pA at : beyond the hybrid model: 1. Intro.η ≫ 0

T (xF/ζ = xp, k⊥;µ2
T )→ initial TMD PDF F(ζ, p⊥, (k⊥ + q⊥)→ TMD FF

P(k⊥, q⊥)→ differential probability to produce a parton with momentum (k⊥ + q⊥) from a parton
with momentum k⊥
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The setup of the problem

The factorization scales:

5

for inclusive single particle production cross section (we assume a single quark species for the sake of the argument
in this section):

Z
d⇣

⇣2

Z
d2k?d2q? T

✓
xF

⇣
, k?; µ2

T

◆
P (k?, q?) F

�
⇣; p?, (k? + q?); µ2

F

�
. (1.3)

Here T is the initial TMD parton distribution function (PDF), F the final parton TMD fragmentation function (FF),
corresponding to a parton with transverse momentum k? + q? fragmenting into a hadron with transverse momentum
p?, and P (k?, q?) is the di↵erential probability to produce a parton with momentum k? + q? from a parton with
momentum k? due to scattering o↵ the target3. Our main goal in this paper is to show explicitly that all large
logarithms at NLO can be resummed into perturbative evolution of the TMD PDF and FF with the resolution scale
precisely in the form of eq. (1.3). Thus eq. (1.3) is not just a cartoon, but is indeed the correct theoretical framework
for performing this calculation.

P (P+, 0)

(k+, k?)

q?

(p+, p?)

T

P

T

TMD PDF

TMD FF

P

T

FIG. 2. Illustration of the parton-model expression (1.3), with the cut (left) and the squared (right) diagrams.

Note, that eq. (1.3) is not quite what is usually called TMD factorization in hadronic collisions. In other words the
picture of the process is not that one draws a parton from the TMD PDF of the projectile and another parton from the
TMD PDF of the target, and perturbatively collides the two with subsequent fragmentation. Instead we have only the
parton that arises from the TMD PDF of the projectile, which scatters (eikonally) on the nonperturbative fields of the
target. The target here is not described in terms of TMD, like for example in the kT - factorized approach to particle
production at mid rapidity. This reflects the hybrid nature of eq. (1.3) in the spirit of the original proposal [10].

The correct value of the factorization scales for TMD PDF and FF, is of course, very important. Again, our naive
expectation based on simple arguments below (which is born out by the explicit calculations in subsequent sections)
is

µ2
T = max

(
k2
?, q2

?, Q2
s,

✓
p

⇣

◆2
)

⇡ max

(
(k? + q?)2, Q2

s,

✓
p

⇣

◆2
)

, (1.4)

µ2
F = [(q? + k?) � p?/⇣]2 ⇡ max

�
(q? + k?)2, (p?/⇣)2

 
.

Qualitatively this is understood in the following way. For the initial parton production, if k? is the largest scale then
clearly the TMD is taken at this resolution scale, since the scale has to be at least k2

? in order to resolve the parton,
and no larger scale is available. On the other hand if the momentum transfer from the target, qT is larger than the
momentum of produced parton, then it is this momentum transfer, and not the final momentum that provides the
highest resolution and defines the factorization scale. It is also possible that both k? and q? are smaller than Qs.
That would mean that in most likelihood, the partner of the incoming quark (or partners, depending on the structure
of the dressed quark state) is scattered with momentum of order Qs, as this is the typical scale for scattering o↵ the
target. The resolution scale then is determined by Qs which resolves the scattered quark from the rest of the wave
function. In case that neither k? nor q? are of the order of the final momentum, the momentum p/⇣ is acquired
during the fragmentation. Then the fragmentation momentum scale provides the relevant resolution, since it resolves
the members of a pair of the size up to the inverse of this momentum scale, which emerge from the scattering.

3 Here we have assumed for simplicity that there is no longitudinal momentum transfer during scattering and therefore the probability
P depends only on transverse momentum. This is true in the leading order where the scattering is eikonal. As we will see below this
is not quite true in general and finite NLO terms do involve finite longitudinal momentum transfer. We ignore this in the qualitative
discussion in this section for simplicity.

for the initial TMD pdf:

- if k⊥ is the largest scale, then TMD is taken at this resolution scale , since the scale has to be at least
k2
⊥ in order to resolve the parton.

- if q⊥ > k⊥, then q⊥ defines the factorization scale since it is the highest scale.
- if q⊥, k⊥ < Qs , then it means that the partner of the incoming quark is scattered with Qs and it this
scale that resolves quark from the rest of the wave function.
- if q⊥, k⊥ � p⊥/ζ, then the momentum p⊥/ζ is acquired during the fragmentation and it sets the
resolution scale.

for the fragmentation: fragmentation process proceeds in two steps

first: quark with momentum (p+, k⊥ + q⊥) fragments perturbatively into a quark with momentum
(p+, p⊥/ζ).
second: the quark fragments nonperturbatively collineraly into a hadron with momentum (p+ζ, p⊥)

Tolga Altinoluk Single inclusive production at NLO 13/23



TMD distributions

Quark TMD PDF is defined as

8

and

Fq
H(x, k2; µ2; ⇠0) = ✓(µ2 � k2)

"
Fq

H(x, k2; k2; ⇠0)

� g2

(2⇡)3
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2
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Z 1

⇠0

d⇠
1 + (1 � ⇠)2

⇠
Fq

H

�
x, k2; l2; ⇠0

�
#
, (2.6)

where Dq
H,µ2(x) is the collinear fragmentation function giving the projection of parton q onto a hadron H. Analogously

to eq. (2.3) we have

Dq
H,µ2(x) =

Z µ2

0

⇡dk2 Fq
H(x, k2; µ2; ⇠0). (2.7)

In the following, in order to identify the logarithms to be resummed we will need perturbative expressions for the
TMDs to order g2. Expanding eq. (2.2) to first order we have

xTq(x, k2; µ2; ⇠0) = ✓(µ2 � k2) xTq(x, k2; k2; ⇠0)

"
1 � g2

(2⇡)3
Nc

2

Z µ2

k2

⇡dl2

l2

Z 1

⇠0

d⇠
1 + (1 � ⇠)2

⇠

#
, (2.8)

and similarly for FH .

B. Including the gluons

We now generalize the previous expressions by including the gluons and also allowing for nf massless quark species.
It is these TMDs that will actually appear in our final expressions for the particle production. The generalization is
straightforward and the following expressions should be self explanatory:
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, (2.9)

xTq(x, k2; µ2; ⇠0) = ✓(µ2 � k2)

"
xTq(x, k2; k2; ⇠0)

� g2

(2⇡)3
Nc

2

Z µ2

k2

⇡dl2

l2

Z 1

⇠0

d⇠
1 + (1 � ⇠)2

⇠
x Tq

�
x, k2; l2; ⇠0

�
#

(2.10)

and analogously for q̄, and
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where the sum runs over quark flavors. The evolution of the gluon TMD with the transverse resolution scale is given
by

xTg(x, k2; µ2; ⇠0) = ✓(µ2 � k2)
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. (2.12)

similarly, the quark TMD FF is
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Using (2.3) for the quark collinear PDF and an analogous expression

xfg
µ2(x) =

Z µ2

0

⇡dk2 xTg(x, k2; µ2; ⇠0), (2.13)

for the gluon collinear PDF, yields the standard DGLAP evolution equations for collinear PDFs, see Appendix (A).
The TMD FFs generalize to
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with

Fq
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with analogous expressions for q̄. The gluon TMD FF is given by
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With (2.7) and the definition

Dg
H,µ2(x) =

Z µ2

0

⇡dk2 Fg
H(x, k2; µ2; ⇠0), (2.18)

the DGLAP evolution equations for the collinear FFs are recovered in full analogy to (A4) and (A5) for the collinear
PDFs.

Note that all the evolution equations in µ2 for TMDs are diagonal in parton species and the longitudinal momentum
fraction [56, 57, 60, 66–75]. This is a direct reflection of the fact that evolution in µ2 proceeds because of disappearance
of partons of a given species via DGLAP splitting into pairs of partons with higher transverse momentum. On the
other hand the ”initial condition” for this evolution, i.e., the TMD at µ2 = k2, involves a sum over all parton species.
Note also that the imposition of the Io↵e time cuto↵ for collinear PDFs and FFs leads to ⇠0 / µ2, as advocated
in [62–65].

III. THE q ! q ! H CHANNEL

We start our discussion of hadron production by considering a simplified setup, where the process is initiated by
a valence quark and proceeds via fragmentation of the scattered quark into the hadron. We will include all other
channels in the next section.

For simplicity, let us only consider the quarks and assume no gluons (the inclusion of the gluons are
straight forward albeit tedious)

xTq(x , k2, k2; ξ0) =
g2

(2π)3

Nc

2

∫ 1

ξ0

dξ
1 + (1− ξ)2

ξ

x

1− ξ f
q
k2

(
x

1− ξ

)
1

k2
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TMD distributions

• TMD PDFs are generated from the collinear ones (large k)

xTq(x , k2, k2; ξ0) =
g2

(2π)3

Nc

2

∫ 1

ξ0

dξ
1 + (1− ξ)2

ξ

x

1− ξ f
q
k2

(
x

1− ξ

)
1

k2

Our TMD distributions: one flavor PDFs

7 N. Armesto, 28.03.2023

● TMD PDFs (single parton species to start with) are generated from collinear ones (large ):k

Single inclusive production in pA at : beyond the hybrid model: 2. Our TMDs.η ≫ 0

x!q(x, k2; k2; ξ0) = g2

(2π)3
Nc

2 ∫
1

ξ0
dξ

1 + (1 − ξ)2

ξ
x

1 − ξ
f q
k2 ( x

1 − ξ ) 1
k2

● Evolution (diagonal in parton species and momentum fraction; the second term corresponds 
to a loss due to the increase in resolution):

x!q(x, k2; μ2; ξ0) = θ(μ2 − k2) [x!q(x, k2; k2; ξ0) − g2
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● At : #(αs) x!q(x, k2; μ2; ξ0) = θ(μ2 − k2) x!q(x, k2; k2; ξ0)[1 − g2
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ξ ]
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q

g

– The soft divergence of the gluon emission is regulated by the cut off ξ0 (longitudinal resolution scale).

– Partons with high longitudinal momentum are produced from partons with lower longitudinal
momentum by DGLAP splitting.

– Transverse resolution scale in these splittings is equal to the transverse momentum of the parton
(µ2 = k2).

The transverse resolution scale (or factorization scale) dependence of the TMD PDF is given by
DGLAP like equation

7

emission is regulated by the cuto↵ ⇠0, which has therefore the meaning of the resolution in the longitudinal momentum
fraction.

The third argument in the TMD is the transverse resolution (factorization) scale. eq. (2.1) is intuitively very simple.
It states that partons with high transverse momentum are produced from partons with lower transverse momentum
by DGLAP splittings. The transverse resolution scale in these splittings is simply equal to the transverse momentum
of the parton in question, µ2 = k2.

The factorization scale dependence of the TMD PDFs is then given by the DGLAP-like equation

xTq(x, k2; µ2; ⇠0) = ✓(µ2 � k2)

"
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�
#
. (2.2)

Again, this is easy to understand. Increasing the transverse resolution means that the number of quarks at a fixed
transverse momentum decreases due to DGLAP splittings into quark-gluon pairs with higher longitudinal momentum
given by the resolution scale.

As noted above, in (2.1) and (2.2) we regulate the soft divergence in gluon emissions by introducing the cut-o↵ on
momentum fraction, ⇠0. Such regularization is standard in the TMD literature, although details of its implementations
vary, see [56, 57] for discussions on the di↵erent implementations of such cut-o↵ and the cut-o↵ independence of physical
observables. The definition of the longitudinal cuto↵ we use follows our earlier approach [37], where we have limited
the life time of the fluctuations by the Io↵e time cuto↵. The resolution ⇠0 then depends on the virtuality l of the
gluon in the splitting in (2.2) as ⇠0(l) = l2/(xs0), where s0 is the Io↵e cuto↵ parameter. Since in (2.2) the cuto↵
appears under the integral over l, at the end of the day the soft regulator e↵ectively depends both on the momentum
k2 and the transverse resolution µ2 of the TMD. Thus, it is better to label the longitudinal resolution by s0 rather
than ⇠0, although for most of our calculations we will stick to the above simplified notations.

With these definitions, the collinear quark PDF, related to the quark TMD PDF via (see [62–65])

xfq
µ2(x) =

Z µ2

0

⇡dk2 xTq(x, k2; µ2; ⇠0), (2.3)

satisfies the DGLAP evolution equations5:
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, (2.4)

where we can take the limit ⇠0 ! 0 without encountering any obstacles6.
The evolution equations for these TMD PDFs with respect to the transverse and longitudinal resolution scales are

given in Appendix A. They are easily obtained from the definitions given here and have in general similar structure
to the evolution equations for more standard TMDs [56–58, 60, 66–75]. We have not scrutinized more closely the
correspondence between these di↵erently defined TMDs although we feel that such a study is warranted in future.

Similarly, for TMD FFs (D1 in standard notations)7,

Fq
H(⇣, k2; k2, ⇠0) =
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5 For g(x) su�ciently smooth at x = 0, we define
R 1
0 dx[f(x)]+ g(x) =

R 1
0 dxf(x)[g(x) � g(0)]. To relate eq. (2.4) with a more standard

expression of the quark-to-quark splitting function, note that
h
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+ 3

2
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6 Concerning the ⇠0-independence of the collinear PDFs, note that using (2.1) and (2.2) we get
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,

where it is evident that we can take ⇠0 ! 0. This definition is therefore sound and independent of the choice of ⇠0 as long as ⇠0 ⌧ 1 as
we implicitly assume.

7 At LO the DGLAP evolution kernels for PDFs and FFs, i.e., for space-like and time-like evolution, coincide [56].

Increasing the transverse resolution ⇒ number of q at a fixed transverse momentum decreases due to
DGLAP splittings into qg pair with higher long. momentum given by the resolution scale.
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TMD distributions

With these definitions, collinear quark PDF and quark TMD PDF are related via
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emission is regulated by the cuto↵ ⇠0, which has therefore the meaning of the resolution in the longitudinal momentum
fraction.

The third argument in the TMD is the transverse resolution (factorization) scale. eq. (2.1) is intuitively very simple.
It states that partons with high transverse momentum are produced from partons with lower transverse momentum
by DGLAP splittings. The transverse resolution scale in these splittings is simply equal to the transverse momentum
of the parton in question, µ2 = k2.

The factorization scale dependence of the TMD PDFs is then given by the DGLAP-like equation

xTq(x, k2; µ2; ⇠0) = ✓(µ2 � k2)
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Again, this is easy to understand. Increasing the transverse resolution means that the number of quarks at a fixed
transverse momentum decreases due to DGLAP splittings into quark-gluon pairs with higher longitudinal momentum
given by the resolution scale.

As noted above, in (2.1) and (2.2) we regulate the soft divergence in gluon emissions by introducing the cut-o↵ on
momentum fraction, ⇠0. Such regularization is standard in the TMD literature, although details of its implementations
vary, see [56, 57] for discussions on the di↵erent implementations of such cut-o↵ and the cut-o↵ independence of physical
observables. The definition of the longitudinal cuto↵ we use follows our earlier approach [37], where we have limited
the life time of the fluctuations by the Io↵e time cuto↵. The resolution ⇠0 then depends on the virtuality l of the
gluon in the splitting in (2.2) as ⇠0(l) = l2/(xs0), where s0 is the Io↵e cuto↵ parameter. Since in (2.2) the cuto↵
appears under the integral over l, at the end of the day the soft regulator e↵ectively depends both on the momentum
k2 and the transverse resolution µ2 of the TMD. Thus, it is better to label the longitudinal resolution by s0 rather
than ⇠0, although for most of our calculations we will stick to the above simplified notations.

With these definitions, the collinear quark PDF, related to the quark TMD PDF via (see [62–65])

xfq
µ2(x) =

Z µ2

0

⇡dk2 xTq(x, k2; µ2; ⇠0), (2.3)

satisfies the DGLAP evolution equations5:
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where we can take the limit ⇠0 ! 0 without encountering any obstacles6.
The evolution equations for these TMD PDFs with respect to the transverse and longitudinal resolution scales are

given in Appendix A. They are easily obtained from the definitions given here and have in general similar structure
to the evolution equations for more standard TMDs [56–58, 60, 66–75]. We have not scrutinized more closely the
correspondence between these di↵erently defined TMDs although we feel that such a study is warranted in future.

Similarly, for TMD FFs (D1 in standard notations)7,

Fq
H(⇣, k2; k2, ⇠0) =

g2
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5 For g(x) su�ciently smooth at x = 0, we define
R 1
0 dx[f(x)]+ g(x) =

R 1
0 dxf(x)[g(x) � g(0)]. To relate eq. (2.4) with a more standard

expression of the quark-to-quark splitting function, note that
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6 Concerning the ⇠0-independence of the collinear PDFs, note that using (2.1) and (2.2) we get

xfq

µ2 (x) =
g2

(2⇡)3
Nc

2

Z µ2

0

⇡dk2

k2

Z 1

⇠0

d⇠


1 + (1 � ⇠)2

⇠

�

+

x

1 � ⇠
fq

k2

✓
x

1 � ⇠

◆
,

where it is evident that we can take ⇠0 ! 0. This definition is therefore sound and independent of the choice of ⇠0 as long as ⇠0 ⌧ 1 as
we implicitly assume.

7 At LO the DGLAP evolution kernels for PDFs and FFs, i.e., for space-like and time-like evolution, coincide [56].

And it satisfies the DGLAP evolution equations...
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emission is regulated by the cuto↵ ⇠0, which has therefore the meaning of the resolution in the longitudinal momentum
fraction.

The third argument in the TMD is the transverse resolution (factorization) scale. eq. (2.1) is intuitively very simple.
It states that partons with high transverse momentum are produced from partons with lower transverse momentum
by DGLAP splittings. The transverse resolution scale in these splittings is simply equal to the transverse momentum
of the parton in question, µ2 = k2.

The factorization scale dependence of the TMD PDFs is then given by the DGLAP-like equation
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Again, this is easy to understand. Increasing the transverse resolution means that the number of quarks at a fixed
transverse momentum decreases due to DGLAP splittings into quark-gluon pairs with higher longitudinal momentum
given by the resolution scale.

As noted above, in (2.1) and (2.2) we regulate the soft divergence in gluon emissions by introducing the cut-o↵ on
momentum fraction, ⇠0. Such regularization is standard in the TMD literature, although details of its implementations
vary, see [56, 57] for discussions on the di↵erent implementations of such cut-o↵ and the cut-o↵ independence of physical
observables. The definition of the longitudinal cuto↵ we use follows our earlier approach [37], where we have limited
the life time of the fluctuations by the Io↵e time cuto↵. The resolution ⇠0 then depends on the virtuality l of the
gluon in the splitting in (2.2) as ⇠0(l) = l2/(xs0), where s0 is the Io↵e cuto↵ parameter. Since in (2.2) the cuto↵
appears under the integral over l, at the end of the day the soft regulator e↵ectively depends both on the momentum
k2 and the transverse resolution µ2 of the TMD. Thus, it is better to label the longitudinal resolution by s0 rather
than ⇠0, although for most of our calculations we will stick to the above simplified notations.

With these definitions, the collinear quark PDF, related to the quark TMD PDF via (see [62–65])

xfq
µ2(x) =

Z µ2

0

⇡dk2 xTq(x, k2; µ2; ⇠0), (2.3)

satisfies the DGLAP evolution equations5:

dxfq
µ2(x)

dµ2
= ⇡xTq(x, µ2; µ2; ⇠0) +
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where we can take the limit ⇠0 ! 0 without encountering any obstacles6.
The evolution equations for these TMD PDFs with respect to the transverse and longitudinal resolution scales are

given in Appendix A. They are easily obtained from the definitions given here and have in general similar structure
to the evolution equations for more standard TMDs [56–58, 60, 66–75]. We have not scrutinized more closely the
correspondence between these di↵erently defined TMDs although we feel that such a study is warranted in future.

Similarly, for TMD FFs (D1 in standard notations)7,

Fq
H(⇣, k2; k2, ⇠0) =

g2

(2⇡)3
Nc

2

Z 1

⇠0

d⇠
1 + (1 � ⇠)2

⇠

1

1 � ⇠
Dq

H,k2

✓
⇣

1 � ⇠

◆
1

k2
, (2.5)

5 For g(x) su�ciently smooth at x = 0, we define
R 1
0 dx[f(x)]+ g(x) =

R 1
0 dxf(x)[g(x) � g(0)]. To relate eq. (2.4) with a more standard

expression of the quark-to-quark splitting function, note that
h

1+(1�⇠)2

⇠

i
+

=
1+(1�⇠)2

[⇠]+
+ 3

2
�(⇠).

6 Concerning the ⇠0-independence of the collinear PDFs, note that using (2.1) and (2.2) we get

xfq

µ2 (x) =
g2

(2⇡)3
Nc

2

Z µ2

0

⇡dk2

k2

Z 1

⇠0

d⇠


1 + (1 � ⇠)2

⇠

�

+

x

1 � ⇠
fq

k2

✓
x

1 � ⇠

◆
,

where it is evident that we can take ⇠0 ! 0. This definition is therefore sound and independent of the choice of ⇠0 as long as ⇠0 ⌧ 1 as
we implicitly assume.

7 At LO the DGLAP evolution kernels for PDFs and FFs, i.e., for space-like and time-like evolution, coincide [56].
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Forward pA - quark channel

– start from the expressions obtained in LCPT (with Ioffe time restriction) in [arXiv:1411.2869]
(no collinear subtraction and no + prescription)

– projectile contains quarks with transverse momentum smaller than µ0, target sits at some rapidity
with no need of further evolution.

– assumptions: large Nc , factorization of the dipoles, and translationally invariant dipoles.

After Including the fragmentation and FT to momentum space:

dσq→q→H

d2pdη
=

dσq→q→H
0

d2pdη
+

dσq→q→H
1,r

d2pdη
+

dσq→q→H
1v.

d2pdη

LO term

dσq→q→H
0

d2pdη
= S⊥

∫ 1

xF

dζ

ζ2
Dq
µ2

0
(ζ)

xF
ζ
f q
µ2

0

(
xF
ζ

)
s(p/ζ)
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Forward pA - quark channel

NLO real corrections:

23

where p̄ = p/⇣ and s̄0 = xF s0/⇣. Assuming that the dipole decreases fast at momenta larger than Qs, and s(Qs) ⇠
1/Q2

s, we see that the integral over q is dominated by the values q2 ⇠ Q2
s + p̄2. Thus the transverse momentum

integral is
Z ⇠s̄0

µ2
0

d2q ln
q2

µ2
s(q + p̄) +

Z 1

⇠s̄0

d2q ln
⇠s̄0

µ2
s(q + p̄)

⇡ ln
Q2

s + p̄2

µ2
✓
⇣
⇠s̄0 � (Q2

s + p̄2)
⌘

+ ln
⇠s̄0

µ2
✓
⇣
(Q2

s + p̄2) � ⇠s̄0

⌘
(B11)

Now integrating over ⇠13 we obtain for the integral in eq.(B10)

ln2 Q2
s + p̄2

µ2
+ ln

s0

Q2
s + p̄2

ln
Q2

s + p̄2

µ2
(B12)

The transverse logarithm is not large, since we have chosen µ2 to be close to Q2
s + p̄2. In fact, at least in the

approximation considered here we can choose µ2 such that it vanishes. However even if we do not recourse to such
fine tuning, we can see that eq.(B10) is not dangerously large. The only question here is about the longitudinal
logarithm ln s0

Q2
s+p̄2 . Recall that our choice of s0 is such that although the ratio s0

Q2
s+p̄2 is large, its logarithm is not a

large number. If that is the case, this logarithm is also under control. In fact we can always change s0 by evolving
the dipole s(p) through a larger or smaller rapidity interval. The only reason we do not choose s0 ⇠ Q2

s + p̄2, is that
then we will have in our projectile wave function gluons with rather small longitudinal momentum, for which we will
not be able to use the eikonal scattering approximation. Thus our choice of s0 is the most appropriate, as it does not
leave any large logarithms (after resummations discussed here) and also allows us to use eikonal approximation for
the partonic scattering amplitude.

We conclude therefore that the second term in the last line of eq.(3.20) is not large with our choice of scales, and
should be considered as a small genuine NLO correction.

Appendix C: All channels - full result

1. Real corrections at NLO

Real corrections at NLO can be written as a sum of four di↵erent contributions.

d�

d2p d⌘
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=
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d2p d⌘

����
g!g

NLO,r

+
d�

d2p d⌘

����
q!g

NLO,r

(C1)

a. Quark initiated quark production

The first term on the right hand side of Eq. (C1) corresponds to quark production from quark initiated channel.
It is computed in previous sections and it reads
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2
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(1 � ⇠)2(q � k)2

[p/⇣ � (1 � ⇠)k]2[p/⇣ � (1 � ⇠)q]2

�
+ (Gen. NLO)1 (C2)

The first term in Eq. (C2) contributes to the quark TMD PDF and the second term contributes to the quark TMD
FF. The remaining part is referred to as the geniune NLO contribution since it does not involve any large logarithms.
Its explicit form reads

(Gen. NLO)1 =
g2

(2⇡)3
S?
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0
(⇣)
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�
(C3)

13 Here we make the low ⇠ approximation, since only the small values of ⇠ can potentially lead to a logarithmic integral.

- first term contributes to the quark TMD PDF
- second term contributes to the quark TMD FF

• the leftover genuine NLO correction (no large logs) is given by
29

Its explicit form reads
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Let us rewrite eq. (D2) in a more convenient way. In the first term after shifting the transverse momenta, it can be
written as

1
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1
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q2

�
s(�q + p/⇣), (D4)

where we used the symmetry between k and q. In the second term in eq. (D2), after rescaling ⇣(1 � ⇠) ! ⇣ one can
perform the same modifications described in eq. (D4). After all, the real correction in to the quark initiated quark
production can be written as
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where the explicit expression for the genuine NLO correction in this channel is given in eq. (D3).

b. Gluon initiated quark production

In the large Nc limit, the real contribution to NLO partonic cross section from the gluon initiated quark production
reads (eq. (4.8) in Ref. [37])
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o

.

Assuming translationally invariant dipoles and using the definitions for the modified WW field (eq. (3.6)) and for the
dipole operators in momentum space (eq. (3.9)), this contribution can be written as
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After performing the integrals, this contribution reads
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NLO real terms

The first term can be cast into

1

2

∫

k,q
s(k)s(q)

(q − k)2

(p/ζ − k)2(p/ζ − q)2
=

∫
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[
1− k · q

q2

]
s(−q + p/ζ)

Second term (after rescaling ζ(1− ξ)→ ζ ′) can be acts into the same form.
Using the definition of TMD PDF (analogously TMD FF)
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The real contribution reads
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×
∫

q
s(−k + p/ζ)

[
1− k · q

q2

]
s(−q + p/ζ) + (Gen.NLO)

– incoming quark with mom. k , scatters with mom exchange −k + p/ζ, outgoing quark with mom.
p/ζ collinearly fragments into a hadron with mom. p.

– (shift k → −q + p/ζ and q → −k + p/ζ) incoming quark with vanishing mom., scatters with mom.
transfer q, first perturbatively fragments into a quark with mom p/ζ, which then fragments into a
hadron with momentum p.
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NLO virtual contributions

Starting from the expressions in [arXiv:1411.2869], adopting the same assumptions:

12

To understand the second term in the second line it is convenient to change variables a little: k ! �q + p/⇣,
q ! �k + p/⇣. Then this describes the process where the incoming quark has vanishing momentum, it scatter with
momentum transfer q and later fragments into hadron with momentum p, via first fragmenting perturbatively into
quark with momentum p/⇣.

Note that the integration in k is limited to k2 > µ2
0, as the perturbative splitting process produces partons above

the non-perturbative scale. Note also that the TMD PDF Tq

⇣
xF

⇣ , k2; k2, ⇠0 = k2⇣/(xF s0)
⌘

in (3.17) is already of

order ↵s and therefore to this order we can choose the resolution scale in the TMD to be any µ2 � k2. In the
kinematics of this term, the momentum transfer from the target is �k + p/⇣, which is always dominated by Qs. Thus
k is always either greater (if p/⇣ � Qs) or equal (if p/⇣ ⌧ Qs) to Qs. We can therefore write in (3.17) for TMD

PDF Tq

⇣
xF

⇣ , k2; µ2, ⇠0 = µ2⇣/(xF s0)
⌘

with µ2
T as defined in (1.4). The same is true for the TMD FF term. Here the

resolution scale also is set by µ2
F in (1.4), since k2 = [(p/⇣ � k) � p/⇣]2. We will see below that this choice of scale is

best when the virtual correction is included.
Thus we find that the large logarithms in the real contribution are resummed into the TMD PDF and FF. We now

move to the virtual contribution.

2. The virtual term

We first rewrite the virtual term as
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The second term here is analogous to a similar term in the real contribution. It contains no large logarithms, either
transverse or longitudinal, and is therefore a small, genuinely perturbative contribution.

To understand the physics of the first term we perform the angular integration over the angle of vector k in eq.(3.12),
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We can now write for the first term in eq.(3.18)
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This simple result has a nice interpretation. Recall that the first term in the square brackets in the first line in (3.20)
originates from the diagrams where the incoming quark splits into a qg pair, which then scatters and recombines
after the scattering into a quark. This is clearly an NLO correction to the LO elastic quark scattering, ��elastic. The
second term in the square brackets is just the qg loop on the quark propagator, which occurs either before or after
the scattering of the quark - so the proper virtual diagram, �proper

v .
What do we expect from the elastic contribution ��elastic? If the transverse size of the qg pair is greater than the

momentum transfer from the target (or relative momentum is smaller than the momentum transfer), we expect this
contribution to be very small. This is because the scattering will be dominated by a single kick to a quark, but this
clearly cannot be elastic since in the outgoing state the relative momentum between q and g then will be large, while
in the elastic state the relative momentum should be small. On the other hand, if the size of the qg pair is much

↙ ↘ ↘
• incoming q → qg pair, pair
scatters, recombines into q.

• NLO corr. to LO elastic q
scattering.

• qg loop that appears either
before or after the scattering.

• ”proper” virtual diagram

Does not contain any large logs (a Gen.
NLO correction)

in the first term one can perform the angular integration over the angle of vector k :
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To understand the second term in the second line it is convenient to change variables a little: k ! �q + p/⇣,
q ! �k + p/⇣. Then this describes the process where the incoming quark has vanishing momentum, it scatter with
momentum transfer q and later fragments into hadron with momentum p, via first fragmenting perturbatively into
quark with momentum p/⇣.

Note that the integration in k is limited to k2 > µ2
0, as the perturbative splitting process produces partons above

the non-perturbative scale. Note also that the TMD PDF Tq

⇣
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⇣ , k2; k2, ⇠0 = k2⇣/(xF s0)
⌘

in (3.17) is already of

order ↵s and therefore to this order we can choose the resolution scale in the TMD to be any µ2 � k2. In the
kinematics of this term, the momentum transfer from the target is �k + p/⇣, which is always dominated by Qs. Thus
k is always either greater (if p/⇣ � Qs) or equal (if p/⇣ ⌧ Qs) to Qs. We can therefore write in (3.17) for TMD
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with µ2
T as defined in (1.4). The same is true for the TMD FF term. Here the
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Thus we find that the large logarithms in the real contribution are resummed into the TMD PDF and FF. We now

move to the virtual contribution.
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The second term here is analogous to a similar term in the real contribution. It contains no large logarithms, either
transverse or longitudinal, and is therefore a small, genuinely perturbative contribution.

To understand the physics of the first term we perform the angular integration over the angle of vector k in eq.(3.12),
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We can now write for the first term in eq.(3.18)
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This simple result has a nice interpretation. Recall that the first term in the square brackets in the first line in (3.20)
originates from the diagrams where the incoming quark splits into a qg pair, which then scatters and recombines
after the scattering into a quark. This is clearly an NLO correction to the LO elastic quark scattering, ��elastic. The
second term in the square brackets is just the qg loop on the quark propagator, which occurs either before or after
the scattering of the quark - so the proper virtual diagram, �proper

v .
What do we expect from the elastic contribution ��elastic? If the transverse size of the qg pair is greater than the

momentum transfer from the target (or relative momentum is smaller than the momentum transfer), we expect this
contribution to be very small. This is because the scattering will be dominated by a single kick to a quark, but this
clearly cannot be elastic since in the outgoing state the relative momentum between q and g then will be large, while
in the elastic state the relative momentum should be small. On the other hand, if the size of the qg pair is much
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The virtual NLO contribution can be split into two intervals
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To understand the second term in the second line it is convenient to change variables a little: k ! �q + p/⇣,
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The second term here is analogous to a similar term in the real contribution. It contains no large logarithms, either
transverse or longitudinal, and is therefore a small, genuinely perturbative contribution.

To understand the physics of the first term we perform the angular integration over the angle of vector k in eq.(3.12),
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We can now write for the first term in eq.(3.18)
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This simple result has a nice interpretation. Recall that the first term in the square brackets in the first line in (3.20)
originates from the diagrams where the incoming quark splits into a qg pair, which then scatters and recombines
after the scattering into a quark. This is clearly an NLO correction to the LO elastic quark scattering, ��elastic. The
second term in the square brackets is just the qg loop on the quark propagator, which occurs either before or after
the scattering of the quark - so the proper virtual diagram, �proper

v .
What do we expect from the elastic contribution ��elastic? If the transverse size of the qg pair is greater than the

momentum transfer from the target (or relative momentum is smaller than the momentum transfer), we expect this
contribution to be very small. This is because the scattering will be dominated by a single kick to a quark, but this
clearly cannot be elastic since in the outgoing state the relative momentum between q and g then will be large, while
in the elastic state the relative momentum should be small. On the other hand, if the size of the qg pair is much

• the first term combines with LO to evolve the resolution scale of the TMD to µ2.

• contribution from the pairs of the transverse size close to the resolution scale.
(no large logs & Gen. NLO correction)

LO + NLO virtual:

13

smaller that the inverse momentum transfer, the scattering does not resolve the pair, and ther should be no correction
to the elastic cross section. In other words ��elastic should be cancelled by the NLO correction to the single quark
elastic cross section which does not include splitting into qg pair in the intermediate state, i.e. �proper

v . Thus for
large sizes we expect the sum of the two virtual terms to be simply equal to the ”proper” virtual term �proper

v , while
for small sizes we expect the sum to vanish since the two terms should cancel each other. Eq.(3.20) reflects precisely
this behavior in a somewhat extreme form. Recall that the integral over k2 in (3.20) is precisely the integral over the
(inverse) sizes of the qg pair. Also note that the dipole function s(q) should be peaked rather sharply at q2 ⇠ Q2

s. So
for large sizes [or k2 < (q � 1

⇣ p)2 ⇠ max(Q2
s, p

2)] the whole contribution in eq.(3.20) is given by the proper virtual

term, while for small sizes there indeed is complete cancellation.
Thus the virtual term essentially tells us that the qg pairs of large size scatter inelastically, while those of very small

size are not resolved and therefore do not contribute to perturbative correction.
In the last equality in eq.(3.20) we have deliberately split the integration interval into two. It is easy to see that

the first term (integral up to µ2) combines with the LO to evolve the resolution scale in the TMD’s to µ2.
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We did two things to arrive at the last equality. First, we have evolved the factorization scale in the collinear PDF
and FF up to µ2, but kept the integral over the momentum up to the low factorization scale
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This introduces the term of order ↵2
s and is therefore legitimate in our order ↵s calculation. In addition we have

altered the scattering amplitude
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This is legitimate since in eq.(3.21), |k + l|2 . µ2
0 ⌧ p2

⇣2 , while the momentum q is dominated by the region where the

argument of the second dipole is of order Qs, and thus q2 ⇠ max
⇣
Q2

s ,
p2

⇣2

⌘
. We also recall that

R
q
s(q) = 1. In all,

this modification only adds subleading power correction terms of order µ2
0/Q2

s and therefore are beyond the accuracy
of our calculation. The utility in these modifications is that they allow us to put the virtual and real terms together
in a simple way.

Now going back to eq.(3.20), we note that the second contribution comes only from the pairs of the transverse size
close to the resolution provided by the target. We show in the Appendix B that this term is a small perturbative
correction to the elastic scattering probability and does not contain large logarithms as long as our choice of the Io↵e
time parameter s0 is close enough to the factorization scale µ2, so that ln s0/µ2 is not large.

D. Putting it all together

We can now put together the real and virtual pieces. To do that we use eq.(3.22) in the first term in eq.(3.17),
which again is legitimate within the accuracy of our calculation. Then the first term in eq.(3.17), up to order ↵2

s

corrections, can be cast in the form of the first term in (3.21) with the di↵erence of the domain integration in l and
k. The real and virtual contributions can be combined into the folowing expression, which now does not contain any
large logarithms apart from those that are resummed into the TMD PDF and TMD FF:
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• evolve the factorization scale in the collinear PDFs and FFs up to µ2
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smaller that the inverse momentum transfer, the scattering does not resolve the pair, and ther should be no correction
to the elastic cross section. In other words ��elastic should be cancelled by the NLO correction to the single quark
elastic cross section which does not include splitting into qg pair in the intermediate state, i.e. �proper

v . Thus for
large sizes we expect the sum of the two virtual terms to be simply equal to the ”proper” virtual term �proper

v , while
for small sizes we expect the sum to vanish since the two terms should cancel each other. Eq.(3.20) reflects precisely
this behavior in a somewhat extreme form. Recall that the integral over k2 in (3.20) is precisely the integral over the
(inverse) sizes of the qg pair. Also note that the dipole function s(q) should be peaked rather sharply at q2 ⇠ Q2

s. So
for large sizes [or k2 < (q � 1

⇣ p)2 ⇠ max(Q2
s, p

2)] the whole contribution in eq.(3.20) is given by the proper virtual

term, while for small sizes there indeed is complete cancellation.
Thus the virtual term essentially tells us that the qg pairs of large size scatter inelastically, while those of very small

size are not resolved and therefore do not contribute to perturbative correction.
In the last equality in eq.(3.20) we have deliberately split the integration interval into two. It is easy to see that

the first term (integral up to µ2) combines with the LO to evolve the resolution scale in the TMD’s to µ2.
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We did two things to arrive at the last equality. First, we have evolved the factorization scale in the collinear PDF
and FF up to µ2, but kept the integral over the momentum up to the low factorization scale
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This introduces the term of order ↵2
s and is therefore legitimate in our order ↵s calculation. In addition we have

altered the scattering amplitude
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This is legitimate since in eq.(3.21), |k + l|2 . µ2
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of our calculation. The utility in these modifications is that they allow us to put the virtual and real terms together
in a simple way.

Now going back to eq.(3.20), we note that the second contribution comes only from the pairs of the transverse size
close to the resolution provided by the target. We show in the Appendix B that this term is a small perturbative
correction to the elastic scattering probability and does not contain large logarithms as long as our choice of the Io↵e
time parameter s0 is close enough to the factorization scale µ2, so that ln s0/µ2 is not large.

D. Putting it all together

We can now put together the real and virtual pieces. To do that we use eq.(3.22) in the first term in eq.(3.17),
which again is legitimate within the accuracy of our calculation. Then the first term in eq.(3.17), up to order ↵2

s

corrections, can be cast in the form of the first term in (3.21) with the di↵erence of the domain integration in l and
k. The real and virtual contributions can be combined into the folowing expression, which now does not contain any
large logarithms apart from those that are resummed into the TMD PDF and TMD FF:

this introduces the term at O(α2
s ) therefore legitimate in our O(αs) calculation.

• alter the scattering amplitude
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smaller that the inverse momentum transfer, the scattering does not resolve the pair, and ther should be no correction
to the elastic cross section. In other words ��elastic should be cancelled by the NLO correction to the single quark
elastic cross section which does not include splitting into qg pair in the intermediate state, i.e. �proper

v . Thus for
large sizes we expect the sum of the two virtual terms to be simply equal to the ”proper” virtual term �proper

v , while
for small sizes we expect the sum to vanish since the two terms should cancel each other. Eq.(3.20) reflects precisely
this behavior in a somewhat extreme form. Recall that the integral over k2 in (3.20) is precisely the integral over the
(inverse) sizes of the qg pair. Also note that the dipole function s(q) should be peaked rather sharply at q2 ⇠ Q2

s. So
for large sizes [or k2 < (q � 1
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2)] the whole contribution in eq.(3.20) is given by the proper virtual

term, while for small sizes there indeed is complete cancellation.
Thus the virtual term essentially tells us that the qg pairs of large size scatter inelastically, while those of very small

size are not resolved and therefore do not contribute to perturbative correction.
In the last equality in eq.(3.20) we have deliberately split the integration interval into two. It is easy to see that

the first term (integral up to µ2) combines with the LO to evolve the resolution scale in the TMD’s to µ2.
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We did two things to arrive at the last equality. First, we have evolved the factorization scale in the collinear PDF
and FF up to µ2, but kept the integral over the momentum up to the low factorization scale
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This introduces the term of order ↵2
s and is therefore legitimate in our order ↵s calculation. In addition we have

altered the scattering amplitude
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This is legitimate since in eq.(3.21), |k + l|2 . µ2
0 ⌧ p2

⇣2 , while the momentum q is dominated by the region where the

argument of the second dipole is of order Qs, and thus q2 ⇠ max
⇣
Q2

s ,
p2

⇣2

⌘
. We also recall that

R
q
s(q) = 1. In all,

this modification only adds subleading power correction terms of order µ2
0/Q2

s and therefore are beyond the accuracy
of our calculation. The utility in these modifications is that they allow us to put the virtual and real terms together
in a simple way.

Now going back to eq.(3.20), we note that the second contribution comes only from the pairs of the transverse size
close to the resolution provided by the target. We show in the Appendix B that this term is a small perturbative
correction to the elastic scattering probability and does not contain large logarithms as long as our choice of the Io↵e
time parameter s0 is close enough to the factorization scale µ2, so that ln s0/µ2 is not large.

D. Putting it all together

We can now put together the real and virtual pieces. To do that we use eq.(3.22) in the first term in eq.(3.17),
which again is legitimate within the accuracy of our calculation. Then the first term in eq.(3.17), up to order ↵2

s

corrections, can be cast in the form of the first term in (3.21) with the di↵erence of the domain integration in l and
k. The real and virtual contributions can be combined into the folowing expression, which now does not contain any
large logarithms apart from those that are resummed into the TMD PDF and TMD FF:

(|k + l |2 . µ2
0 � p2/ζ2 & q2 ∼ max(Q2

s , p
2/ζ2) &

∫
q s(q) = 1) ⇒ this modification only adds

subleading power corrections of the order µ2
0/Q

2
s

LO + NLO virtual:
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smaller that the inverse momentum transfer, the scattering does not resolve the pair, and ther should be no correction
to the elastic cross section. In other words ��elastic should be cancelled by the NLO correction to the single quark
elastic cross section which does not include splitting into qg pair in the intermediate state, i.e. �proper

v . Thus for
large sizes we expect the sum of the two virtual terms to be simply equal to the ”proper” virtual term �proper

v , while
for small sizes we expect the sum to vanish since the two terms should cancel each other. Eq.(3.20) reflects precisely
this behavior in a somewhat extreme form. Recall that the integral over k2 in (3.20) is precisely the integral over the
(inverse) sizes of the qg pair. Also note that the dipole function s(q) should be peaked rather sharply at q2 ⇠ Q2

s. So
for large sizes [or k2 < (q � 1

⇣ p)2 ⇠ max(Q2
s, p

2)] the whole contribution in eq.(3.20) is given by the proper virtual

term, while for small sizes there indeed is complete cancellation.
Thus the virtual term essentially tells us that the qg pairs of large size scatter inelastically, while those of very small

size are not resolved and therefore do not contribute to perturbative correction.
In the last equality in eq.(3.20) we have deliberately split the integration interval into two. It is easy to see that

the first term (integral up to µ2) combines with the LO to evolve the resolution scale in the TMD’s to µ2.
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We did two things to arrive at the last equality. First, we have evolved the factorization scale in the collinear PDF
and FF up to µ2, but kept the integral over the momentum up to the low factorization scale
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This introduces the term of order ↵2
s and is therefore legitimate in our order ↵s calculation. In addition we have

altered the scattering amplitude
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This is legitimate since in eq.(3.21), |k + l|2 . µ2
0 ⌧ p2

⇣2 , while the momentum q is dominated by the region where the

argument of the second dipole is of order Qs, and thus q2 ⇠ max
⇣
Q2

s ,
p2
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⌘
. We also recall that

R
q
s(q) = 1. In all,

this modification only adds subleading power correction terms of order µ2
0/Q2

s and therefore are beyond the accuracy
of our calculation. The utility in these modifications is that they allow us to put the virtual and real terms together
in a simple way.

Now going back to eq.(3.20), we note that the second contribution comes only from the pairs of the transverse size
close to the resolution provided by the target. We show in the Appendix B that this term is a small perturbative
correction to the elastic scattering probability and does not contain large logarithms as long as our choice of the Io↵e
time parameter s0 is close enough to the factorization scale µ2, so that ln s0/µ2 is not large.

D. Putting it all together

We can now put together the real and virtual pieces. To do that we use eq.(3.22) in the first term in eq.(3.17),
which again is legitimate within the accuracy of our calculation. Then the first term in eq.(3.17), up to order ↵2

s

corrections, can be cast in the form of the first term in (3.21) with the di↵erence of the domain integration in l and
k. The real and virtual contributions can be combined into the folowing expression, which now does not contain any
large logarithms apart from those that are resummed into the TMD PDF and TMD FF:
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Now, considering that the change µ2
0 ! µ2 in the collinear PDFs and FFs only a↵ects the expression at O(↵2

s) we
can reorganize (3.23) to read, to O(↵s) accuracy,
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In this expression, the first term has the form of a production probability discussed above, while the remaining factors
correspond to genuine NLO contributions without any logarithmic enhancement for the choice of scales in (1.4). The
production probability in the first term has a natural interpretation: a quark with momentum k+l should be scattered
with momentum transfer �(k + l) + p/⇣ in order to emerge with momentum p/⇣. The unity in the square bracket
would be the probability for such scattering if the quark would scatter independently of the rest of the spectators.

The second term, � (k+l)·q
q2 corrects this by taking into account that the quark has to decohere from the gluon with

which it is correlated in the incoming wave function, in order to be actually produced.
Eqs.(3.24),(3.25) are our final result for the hadron produced from the projectile quark. In addition we need of

course to account for all available channels. Those include the quark initiated channel, which produces a gluon which
eventually fragments into the hadron, as well as all gluon initiated channels. The detailed calculation of these processes
is presented in Appendix C. In the next section we summarize the results of these calculations.
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Summary

• The progress continues in order to provide full NLO results which will provide
the necessary precision for quantitive studies to determine whether saturation
is exhibited by experimental data.

• We have discussed the issues and the suggested solutions for pA collisions at
forward rapidities for NLO calculations.

• A new approach to forward pA scatterings is discussed.
Still have a lot of work to do:

- NLO calc. without TMD FFs, single jet production in forward pA collisions.

- NLO calc. without TMD PDFs, single inclusive hadron production in DIS.

Tolga Altinoluk Single inclusive production at NLO 23/23



Back up - Rapidity balance

in Sec. III. C, in a certain kinematic regime our evolution
interval turns out to be effectively similar to the one in
[24,34]. The different scales are illustrated in Fig. 1.
With this partition of degrees of freedom between the

projectile and the target, our setup is fixed. Any projectile
parton scatters on a member of the same target field
ensemble. Averaging over this ensemble leads to the dipole
scattering matrix sYT

ðx; yÞ, which at fixed energy of the
process does not depend on the transverse momentum or
rapidity of the final state hadron.
Note that at this point we do not have to specify what is

exactly the evolution equation that governs the evolution of
the target. This equation is self-consistently determined
from the calculation itself. Unsurprisingly, we will find that
at the accuracy of our calculation the relevant evolution is
the leading-order BK equation.

B. YT vs Yg

Importantly, the above discussion does not uphold the
prescription used in [24] and in current numerical imple-
mentations [26–28]. The procedure set out in [24] is to
evolve the target to rapidity Yg ¼ ln 1

xg
with xg ¼ p⊥ffiffi

s
p e−η.

The reason for choosing this particular value of Yg in [24] is
based on the following kinematic argument. At leading
order the incoming projectile parton carries momentum
ðpþ; 0; 0Þ. The parton measured in the final state has the
same þ component of momentum, transverse momentum
p⊥, and is on shell. This means that during the scattering it

picks up the − component of momentum p− ¼ p2
⊥

2pþ ¼
e−η p⊥ffiffi

2
p from the target. If one assumes that this momentum

has been transferred to the projectile parton by a single
gluon of the target, the gluon in question must have carried
at least this amount of p−, and therefore had to have the
longitudinal momentum fraction of the target

xg ¼
p−

P− ¼ e−η
p⊥ffiffiffi
s

p : ð2:12Þ

On the other hand, the high-energy evolution (in the dilute
regime) has the property that any hadronic wave function is
dominated by softest gluons. One thus may conclude that
xg is the longitudinal momentum fraction of the softest
gluons in the target wave function, and thus the target has to
be evolved to Yg.
On closer examination, however, it transpires that this

argument does not hold water. It overlooks the fact that the
target is in fact dense. For the dense target, the projectile
parton undergoes multiple scatterings, and therefore picks
up momentum p− not from a single target gluon but from
several. This means that xg is actually an upper bound on
the momentum fraction of the target gluons, and therefore
Yg only gives a lower bound on the rapidity up to which the
target wave function has to be evolved. In fact, it is very
natural that the total rapidity YT should not depend on the
transverse momentum of the produced particle rather than
depend on it as in (2.12). Recall that in the dense scattering
regime, the transverse momentum of the scattered parton
“random walks” as the parton propagates through the
target. Thus the total transverse momentum is proportional
to the square root of the number of collisions with the target
gluons, p2

⊥ ∝ Ng. On the other hand, the transferred p−

does not random walk, since all the gluons in the target
have p− of the same sign. Thus p− ∝ Ng, which is perfectly
consistent with the relation between p− and p⊥ that follows
from the on-shell-ness condition of the outgoing parton.
Therefore, increasing p⊥ of the observed parton (at fixed
pþ), while increasing the total p− acquired by the projectile
parton, does not change the fraction of longitudinal
momentum of individual gluons in the target wave function
that participate in the scattering, and therefore does not
affect the value of YT .
In the leading-logarithmic approximation it is not impor-

tant what exactly is the value of the evolution parameter for

FIG. 1. Different rapidity and momenta scales in our setup.
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Back up - Exact kinematical constraint
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The corresponding contribution to the single inclusive cross section in this channel can be written
as
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It is not hard to show that the above contribution from L(k?) is free of both UV and IR divergences.
When b? ! x?, the first bracket vanishes. When b? ! 1, the second bracket vanishes. Due to
these strong cancellations, it was believed that this contribution should be small. In fact, Ewerz
et al [55] studied the Io↵e time e↵ect of the dipole model in deep inelastic scattering for inclusive
total cross sections, and they found that this e↵ect is small. For single inclusive hadron production
in pA collisions, as we demonstrate below, the e↵ect is small when p? is small, but it becomes as
large as other NLO corrections when p? ⇠ Qs.

Note that this term is physically and fundamentally di↵erent from the so-called �H correction

from Kang et al [56], which is proportional to the rapidity interval Y � Yg = ln 1
xp

+ ln
k2
?

m2
p
. As

commented in Ref. [57], the choice of the rapidity interval leads to an unphysical conclusion and
violates the small-x factorization. The new additional term Lq(k?) does not depend on either the
projectile longitudinal momentum fraction xp, or the hadronic mass mp. It is important to notice
that QCD factorization does not allow us to have hadronic mass mp in any hard factors. Otherwise,
this implies that we can not separate the non-perturbative physics from the perturbative calculable
hard factors. It is also clear from our above derivation that xp naturally cancels out and thus does
not appear in Lq. We would like to emphasize that the so-called �H correction discussed in
Ref. [56] is unjustified and should be absent in view of the small-x factorization.

Let us derive the following simplified expression for Lq(k?) which is much easier to evaluate
numerically. It is straightforward to use the following Fourier transform identities4
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4 Note that this Fourier transform may be problematic for u? = 0, therefore we should exclude the point where
u? = 0, in principle. However, since the first bracket in Eq. (10) vanishes when x? ! b? (or equivalently
u? ! 0), which suggests that we are justified in ignoring the fact that Lq(k?) is undefined at that point. We have
also numerically tested that the two expressions of L(k?), before and after the Fourier transform, give the same
numerical results.
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.

The leftover terms can be cast into an additional hard factor which reads
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The corresponding contribution to the single inclusive cross section in this channel can be written
as

d3�Lq

dyd2p?
=
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⌧
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X

f

xpqf (xp)Dh/q(z)Lq(k?). (11)

It is not hard to show that the above contribution from L(k?) is free of both UV and IR divergences.
When b? ! x?, the first bracket vanishes. When b? ! 1, the second bracket vanishes. Due to
these strong cancellations, it was believed that this contribution should be small. In fact, Ewerz
et al [55] studied the Io↵e time e↵ect of the dipole model in deep inelastic scattering for inclusive
total cross sections, and they found that this e↵ect is small. For single inclusive hadron production
in pA collisions, as we demonstrate below, the e↵ect is small when p? is small, but it becomes as
large as other NLO corrections when p? ⇠ Qs.

Note that this term is physically and fundamentally di↵erent from the so-called �H correction

from Kang et al [56], which is proportional to the rapidity interval Y � Yg = ln 1
xp

+ ln
k2
?

m2
p
. As

commented in Ref. [57], the choice of the rapidity interval leads to an unphysical conclusion and
violates the small-x factorization. The new additional term Lq(k?) does not depend on either the
projectile longitudinal momentum fraction xp, or the hadronic mass mp. It is important to notice
that QCD factorization does not allow us to have hadronic mass mp in any hard factors. Otherwise,
this implies that we can not separate the non-perturbative physics from the perturbative calculable
hard factors. It is also clear from our above derivation that xp naturally cancels out and thus does
not appear in Lq. We would like to emphasize that the so-called �H correction discussed in
Ref. [56] is unjustified and should be absent in view of the small-x factorization.

Let us derive the following simplified expression for Lq(k?) which is much easier to evaluate
numerically. It is straightforward to use the following Fourier transform identities4
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ln
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(13)

4 Note that this Fourier transform may be problematic for u? = 0, therefore we should exclude the point where
u? = 0, in principle. However, since the first bracket in Eq. (10) vanishes when x? ! b? (or equivalently
u? ! 0), which suggests that we are justified in ignoring the fact that Lq(k?) is undefined at that point. We have
also numerically tested that the two expressions of L(k?), before and after the Fourier transform, give the same
numerical results.
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Back up - All channels
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considering p̄2 + Q2
s ' cµ2, c ⇠ 1. Therefore this piece of (B19) does not seem to contain any large logarithm.
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which looks at most a single logarithm multiplied by a small number ln c. With our standard choice µ2 = max{p̄2, Q2
s},

c ' 1 and this contribution should be indeed small.

Appendix C: Blablabla

Let us first write down all the real contributions:
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Back up - quark channel

Defining the quark TMD PDF as
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considering p̄2 + Q2
s ' cµ2, c ⇠ 1. Therefore this piece of (B19) does not seem to contain any large logarithm.
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which looks at most a single logarithm multiplied by a small number ln c. With our standard choice µ2 = max{p̄2, Q2
s},

c ' 1 and this contribution should be indeed small.
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then (#1 + #3) can be written as
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then (#5 + #7) can be written as
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After defining the quark TMD FF as
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then (#2 + #8) can be written as
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Finally after defining gluon TMD FF as
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then (#4 + #6) can be written as
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Finally, for the quark production we get
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and for the gluon production
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Finally, let us write down the genuine NLO corrections that do not contain any large logs. The correction from the
q ! q ! H channel reads:
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After defining the gluon TMD PDF as
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then (#5 + #7) can be written as
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After defining the quark TMD FF as
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then (#2 + #8) can be written as
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then (#4 + #6) can be written as
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Finally, for the quark production we get
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and for the gluon production
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Finally, let us write down the genuine NLO corrections that do not contain any large logs. The correction from the
q ! q ! H channel reads:
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Back up - quark channel
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then (#5 + #7) can be written as
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then (#2 + #8) can be written as
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then (#4 + #6) can be written as
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Finally, for the quark production we get
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Finally, let us write down the genuine NLO corrections that do not contain any large logs. The correction from the
q ! q ! H channel reads:
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