Complete NLO Single-Inclusive π^0 Production in Forward pA Collisions

Yossathorn (Josh) Tawabutr

University of Jyväskylä, Department of Physics, Centre of Excellence in Quark Matter

In collaboration with: Heikki Mäntysaari

CoE

HELSINKI INSTITUTE OF PHYSICS

Based on: 2310.06640

Motivation

• Single-inclusive particle production provides a way to probe heavy nuclei at small Bjorken *x*.

Setup

Setup

Semi-Hard Factor

- Includes soft-parton (small plus momenta) emissions by the quarks/gluons from the dilute projectile.
- Collectively expressed in terms of Wilson lines, averaged over target state.

Dipole Amplitude at small X

For each b_⊥, determine S(r_⊥, b_⊥, X) by numerically solving **BK evolution** from initial X₀ = 0.01 (relatively large).
 Renormalization group equation in ln(1/X).

- Includes non-linear effects, i.e. saturation
- At leading order (and large N_c) for each b_{\perp} ,

$$\begin{aligned} &\frac{\partial}{\partial \ln(1/X)} S(r_{\perp} = x_{\perp} - y_{\perp}, X) \\ &= \frac{\alpha_s N_c}{2\pi^2} \int d^2 z \, \frac{(x_{\perp} - y_{\perp})^2}{(x_{\perp} - z_{\perp})^2 (z_{\perp} - y_{\perp})^2} \\ &\times \left[S(x_{\perp} - z_{\perp}, X) \, S(z_{\perp} - y_{\perp}, X) - S(x_{\perp} - y_{\perp}, X) \right] \end{aligned}$$

In this work, we include largest NLO corrections to BK evolution.

NLO Corrections to BK

- LO: single rapidity logarithm per α_s
- NLO contains terms with double-log in anti-collinear (large daughter dipole) region.
 - Dominate the NLO corrections.
 - Needs to resum separately
- In this work, we consider 3 different resummation schemes:
 - Kinematically constraint BK (KCBK) [Beuf, 1401.0313]
 - Local-rapidity resum BK (**ResumBK**) [lancu et al, 1502.05642]
 - Target momentum fraction BK (**TBK**) [Ducloué et al, 1902.06637] with running coupling.

Initial Condition for BK Evolution

• At $X = X_0$, we take the generalized MV model for **proton target**:

$$S_{pp}^{(0)}(r_{\perp}, b_{\perp}, X_0) = \exp\left[-\frac{(r_{\perp}^2 Q_{s,0}^2)^{\gamma}}{4} \ln\left(\frac{1}{r_{\perp} \Lambda_{\text{QCD}}} + e\right)\right]$$
for any b_{\perp} within the disk of area $\sigma_0/2$.

Parameters

- $\succ Q_{s,0}$: saturation scale at $X = X_0$
- > γ : "anomalous dimension", determining the shape of S at small r_{\perp}
- > $\sigma_0/2$: proton's effective area See also: [Casuga, Karhunen, Mäntysaari, 2311.10491]

Determined by a fit of structure functions to HERA data [Beuf et al, 2007.01645].

Separately for each r.c. and resummation scheme (KCBK, ResumBK, TBK)

Initial Condition for BK Evolution

• For a **nucleus target**, generalize pp via optical Glauber model [Lappi, Mäntysaari, 1309.6963]:

$$S^{(0)}_{pA}(r_{\perp}, b_{\perp}, X_0) \,=\, \exp\left[-rac{\sigma_0}{2}\,AT_A(m{b}_{\perp})\,rac{(r_{\perp}^2 Q_{s,0}^2)^{\gamma}}{4}\ln\left(rac{1}{r_{\perp}\Lambda_{
m QCD}}+e
ight)
ight]$$

- > $T_A(b_{\perp})$: Nuclear transverse thickness function, obtained from Woods-Saxon dist.
- Essentially, modify the initial saturation scale to account for nuclear profile in impact parameter, b_{\perp} .
- Evolve S separately for each discrete value of b_{\perp} .

Setup

Setup

Hard Factor – Leading Order

$$X_g = \frac{k_\perp}{\sqrt{s}} \, e^{-y}$$

- Quark(gluon) from the proton interacts with the target and fragments into π^0 .
- At small X_{o} , interaction time scale is short \rightarrow shockwave picture
- Transverse Fourier transform (over r_1) of the semi-hard factor (the dipoles).

Hard Factor – Leading Order

$$X_g = \frac{k_\perp}{\sqrt{s}} e^{-y}$$

$$\begin{split} \frac{\mathrm{d}\sigma^{p+A\to h+X}}{\mathrm{d}y\,\mathrm{d}^{2}\boldsymbol{p}_{\perp}}\Big|_{\mathrm{LO, q}} &= \frac{1}{4\pi^{2}}\int_{\tau}^{1}\frac{\mathrm{d}z}{z^{2}}\,D_{h/q}(z)\,x_{p}\,q(x_{p})\int\mathrm{d}^{2}\boldsymbol{b}_{\perp}\int\mathrm{d}^{2}\boldsymbol{r}_{\perp}\,e^{-i\boldsymbol{k}_{\perp}\cdot\boldsymbol{r}_{\perp}}S(\boldsymbol{r}_{\perp},\boldsymbol{b}_{\perp},X_{g})\\ \frac{\mathrm{d}\sigma^{p+A\to h+X}}{\mathrm{d}y\,\mathrm{d}^{2}\boldsymbol{p}_{\perp}}\Big|_{\mathrm{LO, g}} &= \frac{1}{4\pi^{2}}\int_{\tau}^{1}\frac{\mathrm{d}z}{z^{2}}\,D_{h/g}(z)\,x_{p}\,g(x_{p})\int\mathrm{d}^{2}\boldsymbol{b}_{\perp}\int\mathrm{d}^{2}\boldsymbol{r}_{\perp}\,e^{-i\boldsymbol{k}_{\perp}\cdot\boldsymbol{r}_{\perp}}\left[S(\boldsymbol{r}_{\perp},\boldsymbol{b}_{\perp},X_{g})\right]^{2} \end{split}$$

q channel:

Hard Factor – NLO

- Contains one emission & absorption of hard parton (real & virtual)
- With real emission, only one outgoing parton is measured ("single-inclusive").
 The momentum of the other outgoing parton is integrated over.

Example qg-channel contribution:

Hard Factor – NLO

- Contains one emission & absorption of hard parton (real & virtual)
- With real emission, only one outgoing parton is measured ("single-inclusive"). The momentum of the other outgoing parton is integrated over.

Hard Factor – NLO

- The measured parton (below: gluon) has momentum fraction $\xi \sim 1$.
- The Wilson lines correlation is evaluated at $X(\xi) = \frac{X_g}{1-\xi}$ [Ducloué et al, 1712.07480].
 - > Based on available rapidity interval (initially $\ln(1/X_g)$, quark emission takes away $\ln[1/(1-\xi)]$.)

qq channel:

qg channel:

gq channel:

gg channel:

Collinear Divergence

- The emission contains integrals over transverse positions, which lead to collinear divergence.
 - Cancels with LO DGLAP evolution of PDF and FF [Chirilli, Xiao, Yuan, 1203.6139].

Rapidity Divergence

- In qq and gg channels, the integrals over ξ lead to rapidity divergence.
- This corresponds to soft-parton emission included in BK evolution at LO in the hard factor [Chirilli, Xiao, Yuan, 1203.6139].

Rapidity Divergence

- In qq and gg channels, the integrals over ξ lead to rapidity divergence.
- This corresponds to soft-parton emission included in BK evolution at LO in the hard factor [Chirilli, Xiao, Yuan, 1203.6139].
- Two "subtraction schemes":
 - Subtracted scheme:

Subtracted ξ -integral dominated by $\xi \rightarrow 1$ and put it with LO. But making the replacement would lead to negative cross section [Ducloué et al, 1712.07480].

$$\mathcal{H}^{\mathrm{LO}} \otimes S + \mathcal{H}^{\mathrm{NLO}} \otimes S = \mathcal{K}^{\mathrm{LO}}(x_p) S(X_g) + \int d\xi \left[\mathcal{K}^{\mathrm{NLO}}(\xi) - \mathcal{K}^{\mathrm{NLO}}(\xi = 1) \right] S(X(\xi))$$

> Unsubtracted scheme:

$$\mathcal{H}^{\mathrm{LO}} \otimes S + \mathcal{H}^{\mathrm{NLO}} \otimes S = \mathcal{K}^{\mathrm{LO}}(x_p) S(X_0) + \int d\xi \, \mathcal{K}^{\mathrm{NLO}}(\xi) \, S(X(\xi))$$

Ingredients

- Hard factor
 - > NLO with momentum-space running coupling
 - Unsubtracted scheme (calculated all other channels except for the existing qq-channel result from [Ducloué et al, 1712.07480])
- Semi-hard factor (The dipole)
 - NLO BK evolution (KCBK [Beuf, 1401.0313], ResumBK [lancu et al, 1502.05642] and TBK [Ducloué et al, 1902.06637]) with running coupling
 - Seneralized MV model (MV^{γ} model) for pp dipole at X_0 , with parameters fitted to HERA data [Beuf et al, 2007.01645].
 - > For pA, use optical Glauber model to incorporate nuclear profile [Lappi, Mäntysaari, 1309.6963].
- NLO PDF [Martin et al, 0901.0002] and FF [de Florian et al, hep-ph/0703242].

Neutral Pion Spectra (p+Pb)

<u>Kinematics</u>: y = 3 and $\sqrt{s} = 8.16$ TeV.

LHCb: *y* ∈ [2.5, 3.5] [LHCb, 2204.10608].

Neutral Pion Spectra (p+Pb)

<u>Kinematics</u>: y = 3 and $\sqrt{s} = 8.16$ TeV.

LHCb: *y* ∈ [2.5, 3.5] [LHCb, 2204.10608].

- All cases: normalization mismatch.
- Balitsky + smallest dipole: falls more steeply than LHCb results.
- Each r.c. has different γ , $Q_{s,0}^2$ and σ_0 in the IC, such that DIS structure functions come out identical.
- Forward pA collisions put additional constraints on NLO BK parameters.

Nuclear Modification Factor

<u>Kinematics</u>: y = 3 and $\sqrt{s} = 8.16$ TeV.

LHCb: *y* ∈ [2.5, 3.5] [LHCb, 2204.10608].

Nuclear Modification Factor

$$R_{p\rm Pb} = \frac{\mathrm{d}\sigma^{pA \to h+X}}{A\,\mathrm{d}\sigma^{pp \to h+X}}$$

Similarly for both cases,

- Weak nuclear suppression at low p_{\perp} .
- $R_{pPb} \rightarrow 1$ at moderate to high p_{\perp} , overshooting LHCb data.
- Resulted from small σ_0 from the DIS fit, which is mostly sensitive to $\sigma_0 Q_{s,0}^2$.
- Small σ₀ is also preferred by other analyses, e.g. exclusive J/ψ production [Caldwell, Kowalski, 0909.1254].

Cronin Effect at Parton Level

- Large Cronin peak at k_⊥≈ 12 GeV for LO. So, NLO corrections to BK have qualitative effects on R_{pA}.
- Since measurements have no Cronin peak, need to include NLO corrections to all ingredients.
- Weaker low- k_{\perp} nuclear suppression at NLO due to its 1 \rightarrow 2 kinematics.
- NLO case approaches R_{pA}→1 at much lower k_⊥ compared to H^{LO} ⊗ S^{LO} case (not shown), since NLO BK preserves qualitative features of IC.

<u>Kinematics</u>: y = 3 and $\sqrt{s} = 8.16$ TeV Factorization scale: $\mu = 4k_{\perp}$ LO: $\mathcal{H}^{\text{LO}} \otimes S^{\text{NLO}}$, NLO: $\mathcal{H}^{\text{NLO}} \otimes S^{\text{NLO}}$

Rapidity Dependence

<u>Kinematics</u>: \sqrt{s} = 8.16 TeV.

- Spectra suppressed as *y* increases, since PDFs vanish as $x_p \rightarrow 1$.
- Stronger low-p₁ nuclear suppression at larger y because nuclear saturation scale increases.
- Still see $R_{pPb} \rightarrow 1$ at high p_{\perp} for all y.
- Qualitatively consistent with the charged hadron data from LHCb [LHCb, 2108.13115]. Here, we get a slightly weaker *y* dependence.

Conclusion and Outlook

- For the first time, we compute the forward single inclusive hadron production with **NLO hard factor** and **NLO dipole.** The latter employs parameters fitted to HERA structure function data.
- NLO corrections have significant effects on π^0 spectra and R_{nPh} .
- The spectra qualitatively agree with the LHCb π^0 data, while R_{pPb} overestimates LHCb data and approaches 1 at high p_{\perp} .
- This calls for a comprehensive global analysis of NLO BK evolution, including both DIS and forward pA collision data.
- The NLO corrections to dipole's BK evolution is important in **removing the Cronin peak** that comes in with NLO corrections to the hard factor.
- Spectra and R_{pPb} are suppressed at high rapidities, in qualitative agreement with LHCb charged hadron data.

Parameters for Initial Condition of BK Equation

Resummation + r.c. schemes for BK	$Q_{s,0}^2$ (GeV ²)	γ	σ ₀ /2 (mb)
KCBK, parent dipole r.c.	0.0833	0.98	9.74
ResumBK, parent dipole r.c.	0.0964	0.98	7.66
TBK, parent dipole r.c.	0.0917	0.90	6.19
KCBK, Balitsky + smallest dipole r.c.	0.0905	1.21	8.68

All cases: $X_0 = 0.01$ and momentum-space r.c. in the hard factor