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Back-to-back di-jets in DIS

= probe of the saturated regime of QCD

= access to the Weizsacker-Williams gluon TMD in the back-to-back limit.
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LO: common language between small-x and TMD communities

@ Def: |Py|=|znki1— 21

= |ki1+ ki o

@ LO in photon-gluon fusion channel: TMD factorization
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Conceptual questions relevant for TMD and small-x communities

Small x and back-to-back regime

We work in the regime W? > Q% ~ P2 > g7 ~ Q2.
Two kinds of large logs: In(W?/Q?) ~ In(1/x) and In(P1/q.)

Does TMD factorization hold at NLO in the small x limit?

@ Do we recover the same NLO hard factor as in TMD calculations?

Can we isolate Sudakov from small-x logarithms beyond double logarithmic accuracy ?

What value of Y =In(1/x) enters the CGC definition of the WW TMD?

Can we prove CSS evolution at small x?
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Dipole picture and CGC EFT

@ We work in the dipole picture of DIS, large g~.

@ Covariant perturbation theory.

@ CGC effective vertex:
= (2m)0(q~ — p~ )y~ [ dPxp e P Vy(x, )

= multiple gluon interactions with the target resummed via Wilson lines V/(x,)
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Outline of the NLO calculation

@ We have done the full computation for general kinematics in

@ In the CGC EFT+ dipole picture of DIS, the diagrams are
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@ Rapidity divergence f,(f ii: isolated = gives JIMWLK evolution of the LO cross-section.
g

@ Explicit computation of the NLO impact factor. 5/23



Definition of the NLO impact factor

@ Schematically, we have the following one loop result

dU/\ zZf
1L =In{—

1 .
dz, _ .
7d2Pld2qL = Zo> HLL®dUﬁO+as /0 —Zgg / d’z, {dU{‘L(Zg, z))— dai\L(O, z1)O(zr — zg)

@ zo=A"/q", rapidity cut-off, zr = k; /q~ is the projectile rapidity factorization scale.

@ z, is the transverse coordinate of the gluon while eikonally interacting with the dense
target.

@ Hij, leading log BK-JIMWLK hamiltonian such that

d r2,
HiL @ S(rop) = @s/ QZL 522~ (Sy (rz5) Sy (Fzt) — Sy (rowr))
0 rzbrzb’

@ Goal: extract the leading power in g, /P, term in the NLO impact factor.
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Concrete example with the quark dressed self-energy

@ Back-to-back limit of virtual graphs are very challenging! Need to find a judicious
expansion in coordinate space.
(o1 21
(e1.@1)
Uy =XxL —yL~rL =z —x1 Kbl =2zX +ny

UJ_NrJ_N]./PJ_,bJ_Nl/qJ_

(22,91)

@ In the end, the leading power contribution can be extracted and computed fully
analytically within a TMD factorized expression:

x HNLO W(PL)Gi(qL)+ 0O ( ) +0 (Sj)

SE1

2 2
A=Ljij i dzg 1+x Z e
= 1-= -1+ —In{—— || — dity div.
Fnd ee aerLo/o Zg ( 21 - 2z} 1> { i ( X " 2(z1 — zg) rapiay G

@ Byproduct: a double logarithmic divergence as z; — 0 arises.

do —aatX

d’p.d%q.
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Cancellation of rapidity divergences in the back-to-back limit

@ To cure the double log divergence in the rapidity cut-off,

1
dz ~
dali}féb = as/ —g/dzzl [dai‘inb(zg,zL)f
0 Zg
dayP?"(0,21)0(zr — 2,)© (= In(zg) — In(min(r,, rzzb,)2kc+q*))]

@ Include an additional constraint in the small-x evolution which is k.~ dependent.
@ Effectively imposes lifetime ordering l/kgfr <1/g" of gluon emissions.

@ We have now

o .. Z1 dz z ¥43 dz
Hl)\\filausc = asHio {/ —£ { —In <g>] - / —£7ke rapidity div.”}
’ 0 Zg 2(z1 — zg) 0 Z

@ Cancellation of z;, — 0 singularity demands kinematic constraint and
kP11 M2+ Q3

ﬂ_ecg W2 + @2
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Universality of small-x resummation: target rapidity evolution

@ Our kinematically constrained evolution equation seems process dependent:

85y(rbb/) _ d2ZJ_ r? ’
Ol _ 045/7@ (Y n(202) 2 [Sy () Sy ) — Sy )

(po~ P, r2 =min(r, rZy) )

@ It is because it is formulated in terms of the projectile rapidity Y = In(k; /q™).
@ Change of variable n = Y + In(r2 Q?) — In(xg;/xo):

0S,(roy)  _ [ d’zy 2,
775777 O / o © (1= Oewrz) % [Si—6.4(F26) Sy, (Fatr) — Sy(Fopr)]

@ Recover result by + NLO
matching relation for the coefficient function (for ns = In(P*/k;))
1 = i+ In(13 i) + In(L/x,)

@ Choosing xf ~ xg = Y5 ~ In(Pf_rgb,) = zF ~ qf_/Pf_ )
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Kinematic constraint in high energy resummation vs Sudakov

@ Kinematic improvement: impose both k, and kg+ ordering (lifetime ordering).

— Resum large transverse double logarithms to all orders.
= Solve the instability of NLO BFKL or BK-JIMWLK evolution.

@ With this modification Hr;, = Hrr coll , One gets the expected Sudakov double logarithm
in the NLO impact factor

*5q+X 2 —igy -
dojpo™ NHLO(PL)/d Pppre LT

2 2
X [liasi/\/c In? <PL—§""’) + ...+ asin <&) HLLA,C<>11®} Gww (rep ) + O(as)
4 S Xf
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Kinematic constraint in high energy resummation vs Sudakov

In summary

@ Without kinematic constraint in high energy evolution: uncancelled light cone singularities
in NLO coefficient functions for back-to-back dijets.

@ Without kinematic constraint: Sudakov double logarithms do not match the CSS ones.

@ Remarkable that the need for the kinematic constraint arises at leading log-x! Due to
additional constraint on the final state (back-to-back config).
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Final TMD factorized result

1 Proy g A
(4o +asdolily) = 3G [ Tovre " 6 )
nf

(2m)*

2 2 2 2
x {1 +& {—ﬁ In (Plrbb’> —stln <7PL£W> + Boln (LR;""')
T 4 CO G c

0
+%f1 (Q/MQQ7217R Xf/Xg)+ 7f2 (Q/quvzl R):|}

Qs 5 i 4o e 9L Mo ;0 Ne N 2
22 M0 [ e RO (xt, Pog ) 2[1+In(R)] TRAGELS)

@ xr dependence of TMD given by k-c. kg ordered non-linear evolution. Saturation
corrections O(Qs/q. ) fully included in this dependence!

@ First line should be exponentiated a la CSS to resum large double and single Sudakov logs.

o s, = —CrIn(z2122R?) + Nc In(1 4+ Q*/MZ,) = agreement with collinear calculations.

@ Last line: dependence on linearly polarized WW, due to real soft gluon radiation. 12/23



Analytic results for NLO coefficient functions

@ Gathering all diagrams together:

O(Ozs) _ HU % GU(QJ_) % |:ach f-lA:L+ Qs f2A:L:|

27 27N,
A=l ) . _ 372 3 2125 R? > 14 2
i (x=Q/Myg,z1,R, xr = xc) =9 > 5 In N In(z1) In(z2) — In(1 4+ x7) In i

* {”2 <z222(1_ f>><<22)> 4= - )
e xz)(22(2:Ezz—_21;1;|<-2§12(221 —2)X) |, (22(1 X+ Xz)) +(1e 2)}

@ Similar expressions for subleading 1/N. term f, and for transversely polarized virtual
photons.

@ Very fast numerical implementation.
@ Still potentially large logs as z;, — 1 = link with threshold resummation?
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Numerical NLO results: inclusive back-to-back dijet cross-section
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Rapidity factorization scale dependence at EIC kinematics
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@ xr variation around a central value to gauge the sensitivity to missing N°LO corrections.
@ Scale variations shrink from LO to NLO.
@ One expects thinner NLO bands when as In(xo/x¢) = O(1).
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Numerical NLO results: nuclear modification factor
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@ In Rep ratio, "vacuum” physics largely cancels.

@ High energy resummation gives a strong

suppression.

@ These results depends on the initial condition:

need to fit the WW TMD at small x.

16/23



Non-linear saturation effects in back-to-back dijet
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@ g, dependence of the x-section ratio with/without high energy resummation.

@ In ep: mild g, dependence.

@ In eA: slower evolution especially at small g . 1723



Summary

First proof of WW gluon TMD factorization at NLO at small x: non trivial because of
"all twist” Qs/q. power corrections.

TMD factorization and isolation of Sudakov logs demand kinematic constraint + target
rapidity small x evolution.

First calculation of Sudakov single log for this process at small x, agreement with collinear
calculations.

We postulate exponentiation of Sudakov logs a la CSS, a rigorous proof will require to go
beyond our one-loop computation

Outlook: look at dihadron production and other TMD factorizable processes at small x.

18/23



Back-up slides



LO cross-section

@ Differential cross-section at leading order:

d 07; +A—qg+X

d’kd’p.dngdng

8 —ikr —ipr, 5 — / ’ A /
= /d X e it g7 PL W Zro (XL, Y1 Y1 X1 )Rio(hy, )

LO

@ Factorization between perturbative factor describing the v* — qg splitting...
R%O(’xya ’>/<y) = 8ZSZSQ2KO(@er)KO(Qer’)
@ ... and a color structure describing the interaction of gg with the dense target

SolxL,yx,yl) = <Q(XJ_7.YJ_;.Y3_;X3_) —D(x1,y1) — D(Ylaxi)+1>
———

quadrupole dipole Yy

Dipole: D(x.,y.)= l\ll (Tr(V(x1)VTi(yL))

c
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Structure of NLO amplitudes in the CGC

@ Example: the dressed vertex correction for longitudinally polarized v*.

eerq . . .
=9 / dPxy d’yy d®z; e KX TPLY L [PV (x VT (20)6aV(z )V (v1) — 28]

™

zg dz, i z, z,
q 9% —izgk) /zq rzx <1+ f) (1 _ £> Ko (QXy)

Xs 3/2
X —2(zq75) / 050,—5/
s 0 zg ] 2q

zg zg Fox - Fzy . zg zg Iz X Izy
X l1-—— — >3 o | ===~
2zg  2Azg+zg)| i, 2z 2(zg + zg) 23,

with
2 2 2 2
XV* ZQ(Zq - Zgrxy + Zg(Zq - Zg)rzx + Zngrzy
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The single log proportional to [

@ At NLO, quantum correction to the classical field: A = A'.l’(o) + A"L’(l)
~——

N e

O(QS)

@ We have

Qs

N .
€ Bo[1/e + finite] A (® (1)

i1
AL !

@ UV divergence removed by renormalization =- renormalization scale dependence of the
WW gluon TMD:

9Gy (Fopr, 1) _ A
o) asfo x Gy (o, 1) - (2) 22



Dijet azimuthal anisotropy
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