Transverse momentum dependent (TMD) factorization theorem

Alexey Vladimirov
Universidad Complutense de Madrid

Overlap between QCD resummations

Aussois, Centre Paul Langevin
January 14, 2024

Outline

PART I (15.01)

- TMD factorization theorem: conditions, and approaches
- TMD factorization theorem: structure
- Wilson lines and process (in)dependence
- Divergences
- TMD soft factor

PART II (16.01)

- Renormalization of rapidity divergences
- Soft-rapidity correspondence
- Small-b OPE
- Phenomenology

		Quark Polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
$\begin{aligned} & \frac{5}{5} \\ & \frac{5}{5} \\ & \frac{5}{5} \\ & \frac{0}{0} \\ & \frac{0}{2} \\ & \frac{0}{2} \end{aligned}$	U	$\begin{gathered} f_{i}\left(x, k_{7}^{2}\right) \bigcirc \\ \text { Unpolarized } \end{gathered}$		$h_{1}^{\perp}\left(x, k_{T}^{2}\right)$ Boer-Mulders
	L		$\underset{\text { Helicity }}{g_{1}\left(x, k_{\mathrm{r}}^{2}\right) \leftrightarrow}$	$h_{1 L}^{\perp}\left(x, k_{J}^{2}\right)$ Kozinian-Mulders, "worm" gear
	T	$\begin{gathered} f_{1}^{1}\left(x, k_{T}^{2}\right) \\ \text { Sivers } \end{gathered}$	$\begin{gathered} g_{17}\left(x, \hbar_{T}^{2}\right) \leftrightarrow-1 \\ \text { Kozinian-Mulders, } \\ \text { "worm" gear } \end{gathered}$	$\begin{aligned} & h_{1}\left(x, k_{T}^{2}\right) \\ & h_{11}^{\perp}\left(x, k_{T}^{2}\right) \\ & \text { Transversity } \end{aligned}$

- Sivers effect (1990) \rightarrow non-perturbative TMDs
- Classification [Mulders, et al, 90's]
- Gauge structure, rapidity divergences, ... 00's
- Proof of TMD factorization [Collins,2011] [SCET,2009-2012]
- 2-loop [2015-2018], 3-loop [2019-2022], 4-loop [2022-..]
- Power corrections [2021-...]

TMD Handbook

Renaud Boussarie ${ }^{1}$, Matthias Burkardt ${ }^{2}$, Martha Constantinou ${ }^{3}$, William Detmold ${ }^{4}$, Markus Ebert ${ }^{4,5}$,
Michael Engelhardt ${ }^{2}$, Sean Fleming ${ }^{6}$, Leonard Gamberg ${ }^{7}$, Xiangdong Ji ${ }^{8}$, Zhong-Bo Kang ${ }^{9}$,
Christopher Lee ${ }^{10}$, Keh-Fei Liu ${ }^{11}$, Simonetta Liuti ${ }^{12}$, Thomas Mehen ${ }^{13}$, Andreas Metz ${ }^{3}$, John Negele ${ }^{4}$,
Daniel Pitonyak ${ }^{14}$, Alexei Prokudin ${ }^{7,16}$, Jian-Wei Qiu ${ }^{16,17}$, Abha Rajan ${ }^{12,18}$, Marc Schlegel ${ }^{2,19}$, Phiala Shanahan ${ }^{4}$, Peter Schweitzer ${ }^{20}$, Iain W. Stewart ${ }^{4}$, Andrey Tarasov ${ }^{21,22}$, Raju Venugopalan ${ }^{18}$, Ivan Vitev ${ }^{10}$, Feng Yuan ${ }^{23}$, Yong Zhao ${ }^{24,4,18}$

ArXiV: 2304.03302

- 350+ pages on TMD factorization and related topic
- Good introduction to the topic [with a strong SCET flavor]
- Various topics, from definitions to models, small-x, sub-leading power, etc.

TMD factorization

CSS-approach

- Method of regions
- Diagram-based
- Particular regularization
- $\sqrt{\text { soft-factors }}$
- difficult to generalize
- [Collins:2011zzd]

SCET-approach

- Modes defined by method of regions
- SCET operators
- $\sqrt{\text { soft-factor }}$
- Mostly unpolarized case
- [Becher:2010tm]
- [Echevarria:2011epo]

Background

field-approach

- Modes defined by physics
- QCD with 2 background fields
- Renormalization of rap.div
- [Vladimirov:2021hdn]
- All approaches agrees with each other (in physical terms)
- The main difference is the treatment of the soft-factor/contribution/rapidity divergences
- I will discuss using background field-approach (because it is clearer and simpler)

Standard TMD processes

$$
q^{2}=\underset{q_{T}^{\mu}}{ \pm Q^{2}} \quad \begin{aligned}
& \text { momentum of hard probe } \\
& q_{T}^{\mu}
\end{aligned} \text { transverse component }
$$

Hadron tensor:

$$
W^{\mu \nu}(q)=\int d^{4} y e^{-i(q y)}\left\langle p_{1}, p_{2}\right| J^{\mu}(y)|X\rangle\langle X| J^{\nu}(0)\left|p_{1}, p_{2}\right\rangle, \quad J^{\mu}=\bar{q} \gamma^{\mu} q
$$

Standard TMD processes

$q^{2}= \pm Q^{2} \quad \begin{aligned} & \text { momentum of hard probe } \\ & q_{T}^{\mu}\end{aligned} \quad$ transverse component

Limit of TMD factorization

$$
\begin{gathered}
Q \rightarrow \infty, \quad s \rightarrow \infty, \quad \text { such that } \quad \frac{Q^{2}}{s}=\text { const } \\
q_{T}=\text { finite }
\end{gathered}
$$

$$
\frac{q_{T}}{Q} \rightarrow 0, \quad \frac{\Lambda}{Q} \rightarrow 0, \quad \text { but } \quad q_{T} \nrightarrow 0
$$

Background field method for parton physics (in a nutshell)

$$
\langle h| T J^{\mu}(z) J^{\nu}(0)|h\rangle=\int[D \bar{q} D q D A] e^{i S_{\mathrm{QCD}}} \Psi^{*}[\bar{q}, q, A] J^{\mu}(z) J^{\nu}(0) \Psi[\bar{q}, q, A]
$$

Cannot be integrated since Ψ is unknown

Background field method for parton physics (in a nutshell)

$$
\langle h| T J^{\mu}(z) J^{\nu}(0)|h\rangle=\int[D \bar{q} D q D A] e^{i S_{\mathrm{QCD}}} \Psi^{*}[\bar{q}, q, A] J^{\mu}(z) J^{\nu}(0) \Psi[\bar{q}, q, A]
$$

Parton model
Ψ contains only collinear particles $\Psi[\bar{q}, q, A] \rightarrow \Psi\left[\bar{q}_{\bar{n}}, q_{\bar{n}}, A_{\bar{n}}\right]$ $\left\{\partial_{+}, \partial_{-}, \partial_{T}\right\} q_{\bar{n}} \lesssim\left\{1, \lambda^{2}, \lambda\right\} q_{\bar{n}}$

Integral can be partially computed

$$
\langle h| T J^{\mu}(z) J^{\nu}(0)|h\rangle=\int[D \bar{q} D q D A] e^{i S_{\mathrm{QCD}}} \Psi^{*}[\bar{q}, q, A] J^{\mu}(z) J^{\nu}(0) \Psi[\bar{q}, q, A]
$$

Parton model

$$
\Psi \text { contains only collinear particles }
$$

$$
\Psi[\bar{q}, q, A] \rightarrow \Psi\left[\bar{q}_{\bar{n}}, q_{\bar{n}}, A_{\bar{n}}\right]
$$

Background technique

$$
\left\{\partial_{+}, \partial_{-}, \partial_{T}\right\} q_{\bar{n}} \lesssim\left\{1, \lambda^{2}, \lambda\right\} q_{\bar{n}}
$$

$$
\begin{aligned}
q & =q_{\bar{n}}+\psi \\
A & =A_{\bar{n}}+B
\end{aligned}
$$

- $q_{\bar{n}}, A_{\bar{n}}$: background (external field)
- ψ, B : dynamical (to be integrated)

$$
\begin{gathered}
\langle h| T J^{\mu}(z) J^{\nu}(0)|h\rangle=\int\left[D \bar{q}_{\bar{n}} D q_{\bar{n}} D A_{\bar{n}}\right] e^{i S_{\mathrm{QCD}}} \Psi^{*}[\bar{q}, q, A] \mathcal{J}_{\mathrm{eff}}^{\mu \nu}\left[\bar{q}_{\bar{n}}, q_{\bar{n}}, A_{\bar{n}}\right](z) \Psi[\bar{q}, q, A] \\
\mathcal{J}_{\text {eff }}^{\mu \nu}=\int[D \bar{\psi} D \psi D B] e^{i S_{\mathrm{QCD}}+i S_{\mathrm{back}}[\bar{q}, q, A]} J^{\mu}[q+\psi](z) J^{\nu}[q+\psi](0) \\
\text { Generating function for operator product expansion }
\end{gathered}
$$

Background QCD with 2-component background

$$
q \rightarrow q_{n}+q_{\bar{n}}+\psi \quad A^{\mu} \rightarrow A_{n}^{\mu}+A_{\bar{n}}^{\mu}+B^{\mu}
$$

collinear-fields (associated with hadron 1)
$\left\{\partial_{+}, \partial_{-}, \partial_{T}\right\} q_{\bar{n}} \lesssim Q\left\{1, \lambda^{2}, \lambda\right\} q_{\bar{n}}$, $\left\{\partial_{+}, \partial_{-}, \partial_{T}\right\} A_{\bar{n}}^{\mu} \lesssim Q\left\{1, \lambda^{2}, \lambda\right\} A_{\bar{n}}^{\mu}$,
anti-collinear-fields
(associated with hadron 2)
$\left\{\partial_{+}, \partial_{-}, \partial_{T}\right\} q_{n} \lesssim Q\left\{\lambda^{2}, 1, \lambda\right\} q_{n}$,
$\left\{\partial_{+}, \partial_{-}, \partial_{T}\right\} A_{n}^{\mu} \lesssim Q\left\{\lambda^{2}, 1, \lambda\right\} A_{n}^{\mu}$.

TMD operator expansion

is conceptually similar to ordinary OPE
The only difference is counting rule for y

$$
\begin{aligned}
W^{\mu \nu}(q) & =\int d^{4} y e^{-i(q y)}\left\langle p_{1}, p_{2}\right| J^{\mu}(y)|X\rangle\langle X| J^{\nu}(0)\left|p_{1}, p_{2}\right\rangle, \quad J^{\mu}=\bar{q} \gamma^{\mu} q \\
(q \cdot y) & \sim 1 \quad \Rightarrow \quad\left\{y^{+}, y^{-}, y_{T}\right\} \sim\left\{\frac{1}{q^{-}}, \frac{1}{q^{+}}, \frac{1}{q_{T}}\right\} \sim \frac{1}{Q}\left\{1,1, \lambda^{-1}\right\}
\end{aligned}
$$

To be accounted in operator expansion

$$
z_{T}^{\mu} \partial_{\mu} q \sim \mathrm{NLP}, \quad y_{T}^{\mu} \partial_{\mu} q \sim \mathrm{LP}
$$

$$
\begin{array}{r}
\int[d q \ldots] e^{i S[\ldots]} \underbrace{\Psi_{1}^{\dagger} \Psi_{2}^{\dagger}}_{\left\langle p_{1}, p_{2}\right|} \underbrace{\left(\bar{q}_{\bar{n}}+\bar{q}_{n}\right) \gamma^{\nu}\left(q_{\bar{n}}+q_{n}\right)(y)}_{J^{\mu}(y)} \underbrace{\left(\bar{q}_{\bar{n}}+\bar{q}_{n}\right) \gamma^{\mu}\left(q_{\bar{n}}+q_{n}\right)(0)}_{J^{\nu}(0)} \underbrace{\Psi_{1} \Psi_{2}}_{\left|p_{1}, p_{2}\right\rangle} \\
=\left\langle p_{1}\right|\left\langle p_{2}\right| \bar{q}_{\bar{n}} \gamma^{\mu} q_{n}(y)|X\rangle\langle X| \bar{q}_{n} \gamma^{\nu} q_{\bar{n}}(0)\left|p_{1}\right\rangle\left|p_{2}\right\rangle+\ldots \\
\\
=-\frac{1}{N_{c}} \sum_{n, m} \frac{\operatorname{tr}\left(\gamma^{\mu} \bar{\Gamma}_{n} \gamma^{\nu} \bar{\Gamma}_{m}\right)}{4} \Phi^{\left[\Gamma_{n}\right]}(-y) \Phi^{\left[\Gamma_{m}\right]}(y)+\ldots
\end{array}
$$

TMD distribution

$$
\Phi^{[\Gamma]}(y)=\langle p| \bar{q}(y) \ldots \Gamma \ldots q(0)|p\rangle
$$

$$
\begin{array}{r}
\int[d q \ldots] e^{i S[\ldots]} \underbrace{\Psi_{1}^{\dagger} \Psi_{2}^{\dagger}}_{\left\langle p_{1}, p_{2}\right|} \underbrace{\left(\bar{q}_{\bar{n}}+\bar{q}_{n}\right) \gamma^{\nu}\left(q_{\bar{n}}+q_{n}\right)(y)}_{J^{\mu}(y)} \underbrace{\left(\bar{q}_{\bar{n}}+\bar{q}_{n}\right) \gamma^{\mu}\left(q_{\bar{n}}+q_{n}\right)(0)}_{J^{\nu}(0)} \underbrace{\Psi_{1} \Psi_{2}}_{\left|p_{1}, p_{2}\right\rangle} \\
=\left\langle p_{1}\right|\left\langle p_{2}\right| \bar{q}_{\bar{n}} \gamma^{\mu} q_{n}(y)|X\rangle\langle X| \bar{q}_{n} \gamma^{\nu} q_{\bar{n}}(0)\left|p_{1}\right\rangle\left|p_{2}\right\rangle+\ldots \\
\\
=-\frac{1}{N_{c}} \sum_{n, m} \frac{\operatorname{tr}\left(\gamma^{\mu} \bar{\Gamma}_{n} \gamma^{\nu} \bar{\Gamma}_{m}\right)}{4} \Phi^{\left[\Gamma_{n}\right]}(-y) \Phi^{\left[\Gamma_{m}\right]}(y)+\ldots
\end{array}
$$

TMD distribution

$$
\Phi^{[\Gamma]}(y)=\langle p| \bar{q}(y) \ldots \Gamma \ldots q(0)|p\rangle
$$

However, $\partial_{-} q \sim \lambda^{2}\left(\right.$ but $\left.y_{\mu} \partial_{T}^{\mu} q \sim 1\right)$

$$
\Phi^{[\Gamma]}(y) \rightarrow\langle p| \bar{q}\left(y^{-} n+y_{T}\right) \ldots \Gamma \ldots q(0)|p\rangle+\mathcal{O}\left(\lambda^{2}\right)
$$

$$
\begin{array}{r}
\int[d q \ldots] e^{i S[\ldots]} \underbrace{\Psi_{1}^{\dagger} \Psi_{2}^{\dagger}}_{\left\langle p_{1}, p_{2}\right|} \underbrace{\left(\bar{q}_{\bar{n}}+\bar{q}_{n}\right) \gamma^{\nu}\left(q_{\bar{n}}+q_{n}\right)(y)}_{J^{\mu}(y)} \underbrace{\left(\bar{q}_{\bar{n}}+\bar{q}_{n}\right) \gamma^{\mu}\left(q_{\bar{n}}+q_{n}\right)(0)}_{J^{\nu}(0)} \underbrace{\Psi_{1} \Psi_{2}}_{\left|p_{1}, p_{2}\right\rangle} \\
=\left\langle p_{1}\right|\left\langle p_{2}\right| \bar{q}_{\bar{n}} \gamma^{\mu} q_{n}(y)|X\rangle\langle X| \bar{q}_{n} \gamma^{\nu} q_{\bar{n}}(0)\left|p_{1}\right\rangle\left|p_{2}\right\rangle+\ldots \\
\\
=-\frac{1}{N_{c}} \sum_{n, m} \frac{\operatorname{tr}\left(\gamma^{\mu} \bar{\Gamma}_{n} \gamma^{\nu} \bar{\Gamma}_{m}\right)}{4} \Phi^{\left[\Gamma_{n}\right]}(-y) \Phi^{\left[\Gamma_{m}\right]}(y)+\ldots
\end{array}
$$

TMD distribution

$$
\Phi^{[\Gamma]}(y)=\langle p| \bar{q}(y) \ldots \Gamma \ldots q(0)|p\rangle
$$

However, $\partial_{-} q \sim \lambda^{2}\left(\right.$ but $\left.y_{\mu} \partial_{T}^{\mu} q \sim 1\right)$

$$
\Phi^{[\Gamma]}(y) \rightarrow\langle p| \bar{q}\left(y^{-} n+y_{T}\right) \ldots \Gamma \ldots q(0)|p\rangle+\mathcal{O}\left(\lambda^{2}\right)
$$

Also, taking into account EOM $\gamma^{-} \gamma^{+} q \sim \lambda^{2}$

$$
\Phi^{[\Gamma]}(y) \rightarrow\langle p| \bar{q}\left(y^{-} n+y_{T}\right) \ldots \Gamma^{+} \ldots q(0)|p\rangle+\mathcal{O}\left(\lambda^{2}\right)
$$

Γ^{+}can be only $\gamma^{+}, \gamma^{+} \gamma^{5}$ or $\sigma^{\alpha+}$.

$$
\begin{gathered}
W^{\mu \nu}=-\frac{1}{N_{c}} \sum_{n, m} \frac{\operatorname{tr}\left(\gamma^{\mu} \bar{\Gamma}_{n} \gamma^{\nu} \bar{\Gamma}_{m}\right)}{4} \int d^{4} y e^{-i q y}\left|C_{V}\left(\frac{Q}{\mu}\right)\right|^{2} \Phi^{\left[\Gamma_{n}\right]}\left(y^{+} n+y_{T} ; \mu\right) \Phi^{\left[\Gamma_{n}\right]}\left(y^{-} \bar{n}+y_{T} ; \mu\right) \\
C_{V}=1+a_{s} C_{F}\left(2 \ln ^{2}\left(\frac{-Q^{2}}{\mu^{2}}\right)+2 \ln \left(\frac{-Q^{2}}{\mu^{2}}\right)+\frac{\pi^{2}}{3}\right)+a_{s}^{2} \ldots \\
\Phi^{[\Gamma]}(y, \mu) \rightarrow Z_{V}^{2}(\mu)\langle p| \bar{q}(y)[\text { Wilson line }] \Gamma^{+} q(0)|p\rangle
\end{gathered}
$$

Dependence on μ cancels
(not that simple...)

Process dependence

TMD operator expansion has different geometry

TMD operator expansion has different geometry

TMD operator expansion
has different geometry

Four

light-cone operators
\Downarrow
Two
TMD distributions TMDPDFs \& TMDFFs

Process dependence

The background can be taken in any gauge (since it is gauge invariant)

- Light-cone gauge kills operators with $A_{+, \bar{n}}$ and $A_{-, n}$ (~ 1 in power counting).
- Convenient choice of gauges
- Collinear field $A_{+}=0$
- Anti-Collinear field $A_{-}=0$
- Dynamical field: Feynman gauge
- However one needs to specify boundary condition. The result depends on it.

$$
\begin{array}{rll}
A_{\bar{n}}^{\mu}(z)=-g \int_{-\infty}^{0} d \sigma F_{\bar{n}}^{\mu+}(z+n \sigma) & \text { vs. } & A_{\bar{n}}^{\mu}(z)=-g \int_{+\infty}^{0} d \sigma F_{\bar{n}}^{\mu+}(z+n \sigma) \\
\bar{q}[z, z-\infty n] & \text { vs. } & \bar{q}[z, z+\infty n]
\end{array}
$$

To specify boundary and WL direction, we should go to NLO

NLO expression in position space

$$
I=\int_{-\infty}^{\infty} d z^{+} d z^{-} \frac{f_{\bar{n}}\left(z^{-}\right) f_{n}\left(z^{+}\right)}{\left[-2 z^{+} z^{-}+i 0\right]^{\alpha}}
$$

		for DY	for SIDIS	for SIA	
f 's are TMDPDFs or TMDFFs	$f_{\bar{n}}\left(z^{-}\right)$is analytical in $f_{n}\left(z^{+}\right)$is analytical in	$\begin{aligned} & \text { lower } \\ & \text { lower } \end{aligned}$	lower upper	upper upper	half-plane half-plane

NLO expression in position space

$$
I=\int_{-\infty}^{\infty} d z^{+} d z^{-} \frac{f_{\bar{n}}\left(z^{-}\right) f_{n}\left(z^{+}\right)}{\left[-2 z^{+} z^{-}+i 0\right]^{\alpha}}
$$

		for DY	for SIDIS	IA	
f 's are TMDPDFs or TMDFFs	$f_{\bar{n}}\left(z^{-}\right)$is analytical in $f_{n}\left(z^{+}\right)$is analytical i	$\begin{aligned} & \text { lower } \\ & \text { lover } \end{aligned}$	lower	upper	half-plane

$$
I=\int_{-\infty}^{0} d z^{+} \frac{f_{n}\left(z^{+}\right)}{\left(-2 z^{+}\right)^{\alpha}}\left(I_{0}+I_{1}+I_{2}+I_{\infty}\right), \quad I_{C}=\int_{C} \frac{f_{\bar{n}}\left(z^{-}\right)}{\left(z^{-}\right)^{\alpha}}
$$

NLO expression in position space

$$
I=\int_{-\infty}^{\infty} d z^{+} d z^{-} \frac{f_{\bar{n}}\left(z^{-}\right) f_{n}\left(z^{+}\right)}{\left[-2 z^{+} z^{-}+i 0\right]^{\alpha}}
$$

		for DY	for SIDIS	for SIA	
f 's are TMDPDFs or TMDFFs	$f_{\bar{n}}\left(z^{-}\right)$is analytical in $f_{n}\left(z^{+}\right)$is analytical in	$\begin{aligned} & \text { lover } \\ & \text { lower } \end{aligned}$	lower upper	upper upper	half-plane half-plan

Divergences of TMDs

TMD-twist-(1,1)

(Usual TMDs)
$U_{1}=[..] \xi=$ good-component of quark field (twist-1)

$$
\widetilde{\Phi}_{11}^{[\Gamma]}\left(\left\{z_{1}, z_{2}\right\}, b\right)=\langle p, s| \bar{\xi}\left(z_{1} n+b\right) . . \frac{\Gamma}{2} . . \xi\left(z_{2} n\right)|p, s\rangle
$$

$U_{1}=[..] \xi=$ good-component of quark field (twist-1)

$$
\widetilde{\Phi}_{11}^{[\Gamma]}\left(\left\{z_{1}, z_{2}\right\}, b\right)=\langle p, s| \bar{\xi}\left(z_{1} n+b\right) . . \frac{\Gamma}{2} . . \xi\left(z_{2} n\right)|p, s\rangle
$$

UV divergence

- Local (number)
- Anomalous dimension of quark field in LC gauge

$$
\begin{gathered}
\text { 1-loop }=a_{S} C_{F} \frac{1}{\epsilon}\left(\frac{1}{\epsilon}+\frac{3}{\epsilon}+\ln \left(\frac{\mu^{2}}{2 p^{+} \nu^{-}}\right)\right) \\
\text {coef.func }=1-a_{s} C_{F}\left[\frac{1}{\epsilon}\left(\frac{1}{\epsilon}+\frac{3}{2}+\ln \left(\frac{\mu^{2}}{Q^{2}}\right)\right)+\ldots\right] \\
\text { requires (see later) } \\
\zeta \bar{\zeta}=Q^{4}
\end{gathered}
$$

$$
\mu^{2} \frac{d}{d \mu^{2}} F_{f \leftarrow h}(x, b ; \mu, \zeta)=\frac{\gamma_{F}^{f}(\mu, \zeta)}{2} F_{f \leftarrow h}(x, b ; \mu, \zeta)
$$

TMD-twist-(1,1)

(Usual TMDs)

$$
U_{1}=[. .] \xi=\text { good-component of quark field (twist-1) }
$$

$$
\widetilde{\Phi}_{11}^{[\Gamma]}\left(\left\{z_{1}, z_{2}\right\}, b\right)=\langle p, s| \bar{\xi}\left(z_{1} n+b\right) . . \frac{\Gamma}{2} . . \xi\left(z_{2} n\right)|p, s\rangle
$$

Rapidity divergence

- Non-Local (depends on b)
- Not regularized by dim.reg.
- Rapidity anomalous dimension

$$
\zeta \frac{d}{d \zeta} F_{f \leftarrow h}(x, b ; \mu, \zeta)=-\mathcal{D}^{f}(b, \mu) F_{f \leftarrow h}\left(x, b ; \mu_{\mathcal{f}}\right.
$$

TMD-twist-(1,1)
(Usual TMDs)
$U_{1}=[..] \xi=$ good-component of quark field (twist-1)

$$
\widetilde{\Phi}_{11}^{[\Gamma]}\left(\left\{z_{1}, z_{2}\right\}, b\right)=\langle p, s| \bar{\xi}\left(z_{1} n+b\right) . . \frac{\Gamma}{2} . . \xi\left(z_{2} n\right)|p, s\rangle
$$

In non-singular gauges infinity is a single point

Rapidity divergence

- = Anomalous dimension of a distant cusp
- Distance $b \leftrightarrow$ angle

$$
\widetilde{\Phi}_{11}^{[\Gamma]}\left(\left\{z_{1}, z_{2}\right\}, b\right)=\langle p, s| \bar{\xi}\left(z_{1} n+b\right) . . \frac{\Gamma}{2} . . \xi\left(z_{2} n\right)|p, s\rangle
$$

Spatially compact

$$
\begin{gathered}
v_{1}^{2}=v_{2}^{2}=0 \\
\left(v_{1} v_{2}\right) \sim \frac{b^{2}}{A+b^{2}} \\
\hline
\end{gathered}
$$

$$
\widetilde{\Phi}_{11}^{[\Gamma]}\left(\left\{z_{1}, z_{2}\right\}, b\right)=\langle p, s| \bar{\xi}\left(z_{1} n+b\right) \cdot . \frac{\Gamma}{2} . . \xi\left(z_{2} n\right)|p, s\rangle
$$

$2 \mathcal{D}(\mu, b)=\gamma_{S}\left(\left(v_{1} v_{2}\right), \mu\right)$
RAD \leftrightarrow SAD correspondance
Exact in conformal field theories

In QCD:

$$
\begin{gathered}
2 \mathcal{D}\left(\mu, b ; \epsilon^{*}\right)=\gamma_{S}\left(\left(v_{1} v_{2}\right), \mu\right) \\
\epsilon^{*}=\frac{\beta\left(\alpha_{s}\right)}{\alpha_{s}}(\text { Wilson-Fisher critical dimension })
\end{gathered}
$$

Consequences

- Rapidity divergence is multiplicatively renormalizable, by factor R

$$
\mathcal{D}(b, \mu)=\frac{1}{2} R^{-1}(b, \mu ; \nu) \frac{d}{d \ln \nu} R(b, \mu ; \nu)
$$

- Same RAD for all TMDs of twist-2 and twist-3 (same soft-factor at sub-leading power)
- ...
- N-loop RAD $+(\mathrm{N}+1)$-loop $\mathrm{SAD} \Rightarrow(\mathrm{N}+1)$-loop RAD
- Absence of odd-color structures in SAD

$$
W^{\mu \nu} \simeq \int d^{2} b e^{-i\left(q_{T} b\right)}\left|C_{\mathrm{bare}}\left(\frac{Q}{\mu} ; \epsilon\right)\right|^{2} \Phi_{\mathrm{bare}}^{[\Gamma]}\left(x_{1}, b ; \epsilon, \delta^{+}\right) \Phi_{\text {bare }}^{[\Gamma]}\left(x_{2}, b ; \epsilon, \delta^{-}\right)
$$

Here:

$\Phi^{[\Gamma]}(x, b)=\int d y^{-} e^{-i x p^{+} y^{-}} \Phi^{[\Gamma]}\left(y^{-} n+b\right)$
ϵ for IR/UV divergences
δ for rapidity divergences

$$
W^{\mu \nu} \simeq \int d^{2} b e^{-i\left(q_{T} b\right)}\left|C_{V}\left(\frac{Q}{\mu} ; \mu\right) Z_{V}(\epsilon, \mu)\right|^{2}\left|Z_{1}\right|^{-2}(\epsilon, \mu) R\left(\delta^{+}, \zeta\right) \Phi^{[\Gamma]}\left(x_{1}, b ; \mu, \zeta\right)\left|Z_{1}\right|^{-2}(\epsilon, \mu) R\left(\delta^{-}, \bar{\zeta}\right) \Phi^{[\Gamma]}\left(x_{2}, b ; \mu, \bar{\zeta}\right)
$$

Should be:

$$
Z_{V}(\epsilon, \mu) Z_{1}^{-2}(\epsilon, \mu) \sqrt{R\left(\delta^{+}, \zeta\right) R\left(\delta^{-}, \bar{\zeta}\right)} \sim 1
$$

But there is $\delta^{ \pm}$

Here we come to the issue of the soft factor

Soft-factor

Standard approach (CSS, SCET)

introduce extra modes (collinear, anti-collinear, (ultra)SOFT)

It results into "soft factor" in W

$$
W \sim \Phi\left(x, b ; \delta^{+}\right) S\left(b, \delta^{+} \delta^{-}\right) \Phi\left(x, b ; \delta^{-}\right)
$$

Standard approach (CSS, SCET)

introduce extra modes (collinear, anti-collinear, (ultra)SOFT)

It results into "soft factor" in W

$$
W \sim \Phi\left(x, b ; \delta^{+}\right) S\left(b, \delta^{+} \delta^{-}\right) \Phi\left(x, b ; \delta^{-}\right)
$$

Zero-bin subtraction (SCET) not very well defined

$$
\begin{aligned}
& \text { Z.b. }(b) \simeq \int_{\text {soft }}[d \bar{q} d q d A] e^{i S} W \\
& \text { see }[\text { Manohar: } 2006 \mathrm{nz}]
\end{aligned}
$$

Define each TMD in "full" domain $\Phi\left(x, b ; \delta^{+}\right) \sim \frac{\Phi_{\mathrm{QCD}}(x, b ; \zeta)}{Z . b .\left(b, \zeta, \delta^{+} \delta^{-}\right)}$

Collins

$Z . b .(b) \simeq S(b ;$ different regulator $)$

Standard approach (CSS, SCET)

introduce extra modes (collinear, anti-collinear, (ultra)SOFT)

It results into "soft factor" in W

$$
W \sim \Phi\left(x, b ; \delta^{+}\right) S\left(b, \delta^{+} \delta^{-}\right) \Phi\left(x, b ; \delta^{-}\right)
$$

Define each TMD in "full" domain

$$
\Phi\left(x, b ; \delta^{+}\right) \sim \frac{\Phi_{\mathrm{QCD}}(x, b ; \zeta)}{Z . b .\left(b, \zeta, \delta^{+} \delta^{-}\right)}
$$

Altogether

$$
\begin{gathered}
W \sim \Phi_{\mathrm{QCD}}(x, b ; \zeta) \frac{S\left(b, \delta^{+} \delta^{-}\right)}{Z . b .\left(b, \zeta, \delta^{+} \delta^{-}\right) Z . b .\left(b, \bar{\zeta}, \delta^{+} \delta^{-}\right)} \Phi_{\mathrm{QCD}}(x, b ; \bar{\zeta}) \\
\text { this extra factor compensates } R\left(\delta^{+}\right) R\left(\delta^{-}\right)
\end{gathered}
$$

Origin of scales ζ

\checkmark Renormalization of rapidity divergences introduces boost-dependent scales $\nu^{ \pm}$

$$
\Phi\left(x, b ; \nu^{ \pm}\right) R\left(\delta^{ \pm}, \nu^{ \pm}\right)
$$

- Soft factor is boost-invariant $S\left(b ; \delta^{+} \delta^{-}\right)$
- Thus, the combination of soft factor and R's is boost-invariant (because $\delta^{ \pm}$cancel)

$$
R\left(\delta^{+}, \nu^{+}\right) \frac{S\left(b, \delta^{+} \delta^{-}\right)}{Z . b \cdot\left(b, \zeta, \delta^{+} \delta^{-}\right) Z . b \cdot\left(b, \bar{\zeta}, \delta^{+} \delta^{-}\right)} R\left(\delta^{-}, \nu^{-}\right)=\Sigma_{0}\left(b, \nu^{+} \nu^{-}\right)
$$

- Factor Σ_{0} can be distributed between TMDs

$$
\Phi\left(x, b, \nu^{+}\right) \Sigma_{0}\left(b, \nu^{+} \nu^{-}\right) \Phi\left(x, b, \nu^{-}\right)=\underbrace{\Phi\left(x, b, \nu^{+}\right) \sqrt{\Sigma_{0}\left(b, \nu^{+} \nu^{-}\right)}}_{" \text { physical" TMD }} \underbrace{\sqrt{\Sigma_{0}\left(b, \nu^{+} \nu^{-}\right)} \Phi\left(x, b, \nu^{-}\right)}_{" \text { physical" TMD }}
$$

- "Physical" TMD depends on boost invariant combinations

$$
\zeta \sim 2\left(p^{+}\right)^{2} \frac{\nu^{+}}{\nu^{-}}, \quad \bar{\zeta} \sim 2\left(p^{-}\right)^{2} \frac{\nu^{-}}{\nu^{+}}
$$

- To cancel IR divergences one must set $\zeta \bar{\zeta}=Q^{4}$

Non-Standard approach

avoid overlap + renormalize

"physical" TMDs are defined on this "reduced" set of fields.

The renormalization condition is that $W \simeq \Phi_{1} \Phi_{2}$ (without any extra factor Σ_{0})

Non-Standard approach

avoid overlap + renormalize

"physical" TMDs are defined on this "reduced" set of fields.

The renormalization condition is that $W \simeq \Phi_{1} \Phi_{2}$ (without any extra factor Σ_{0})

Final expressions from both approaches are identically the same. However, "renormalization" approach is easier to generalize (e.g. beyond LP)
(Also, there are indications that soft factor formula does not work at b^{2} order...)

TMD factorization theorem for DY

$$
\begin{gathered}
W^{\mu \nu}=\frac{-1}{4 N_{c}} \sum_{n, m} \operatorname{tr}\left(\Gamma_{n} \gamma^{\mu} \Gamma_{m} \gamma^{\nu}\right) \int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i(q b)}\left|C_{V}\left(\frac{Q}{\mu}\right)\right|^{2} \Phi_{q \leftarrow h_{1}}^{\left[\Gamma_{n}\right]}\left(x_{1}, b ; \mu, \zeta\right) \Phi_{\bar{q} \leftarrow h_{2}}^{\left[\Gamma_{n}\right]}\left(x_{2}, b ; \mu, \bar{\zeta}\right) \\
+\mathcal{O}\left(\frac{q_{T}}{Q}, \frac{1}{b Q}, \frac{\Lambda}{Q}\right) \\
x_{1}=\frac{q^{+}}{p^{+}}=\sqrt{\frac{Q^{2}+\mathbf{q}_{T}^{2}}{s}} e^{y}, \quad x_{2}=\frac{q^{-}}{p^{-}}=\sqrt{\frac{Q^{2}+\mathbf{q}_{T}^{2}}{s}} e^{-y} \\
\left(\text { Is } q_{T}^{2} \text { a power correction }(? ?) \Rightarrow \text { frame-dependence }\right)
\end{gathered}
$$

TMD factorization theorem for DY

$$
\begin{array}{r}
W^{\mu \nu}=\frac{-1}{4 N_{c}} \sum_{n, m} \operatorname{tr}\left(\Gamma_{n} \gamma^{\mu} \Gamma_{m} \gamma^{\nu}\right) \int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i(q b)}\left|C_{V}\left(\frac{Q}{\mu}\right)\right|^{2} \Phi_{q \leftarrow h_{1}}^{\left[\Gamma_{n}\right]}\left(x_{1}, b ; \mu, \zeta\right) \Phi_{\bar{q} \leftarrow h_{2}}^{\left[\Gamma_{n}\right]}\left(x_{2}, b ; \mu, \bar{\zeta}\right) \\
+\mathcal{O}\left(\frac{q_{T}}{Q}, \frac{1}{b Q}, \frac{\Lambda}{Q}\right)
\end{array}
$$

Evolution equations

$$
\begin{align*}
\mu^{2} \frac{d}{d \mu^{2}} \Phi^{[\Gamma]}(\mu, \zeta) & =\gamma_{F}(\mu, \zeta) \Phi^{[\Gamma]}(\mu, \zeta) \tag{1}\\
\zeta \frac{d}{d \zeta} \Phi^{[\Gamma]}(\mu, \zeta) & =-\mathcal{D}(b, \mu) \Phi^{[\Gamma]}(\mu, \zeta) \tag{2}
\end{align*}
$$

- Evolution is universal for all polarizations, depends only on color-representation (quark/gluon)
- Hard coefficient function is also universal for all polarizations
- Hard coefficient function and ADs are known at 4-loops
- Collins-Soper kernel is independent non-perturbative function

TMD factorization theorem for DY

$$
\begin{array}{r}
W^{\mu \nu}=\frac{-g_{T}^{\mu \nu}}{4 N_{c}} \sum_{q} \int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i(q b)}\left|C_{V}\left(\frac{Q}{\mu}\right)\right|^{2} f_{1}\left(x_{1}, b ; \mu, \zeta\right) f_{2}\left(x_{2}, b ; \mu, \bar{\zeta}\right) \\
+\mathcal{O}\left(\frac{q_{T}}{Q}, \frac{1}{b Q}, \frac{\Lambda}{Q}\right)
\end{array}
$$

Parametrization of TMDs

$$
\begin{aligned}
\Phi^{\left[\gamma^{+}\right]}(x, b) & =f_{1}(x, b)-i(b \times s) M f_{1 T}^{\perp}(x, b), \\
\text { etc. } &
\end{aligned}
$$

TMD factorization theorem for DY

$$
\begin{array}{r}
W^{\mu \nu}=\frac{-g_{T}^{\mu \nu}}{4 N_{c}} \sum_{q} \int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i(q b)}\left|C_{V}\left(\frac{Q}{\mu}\right)\right|^{2} f_{1}\left(x_{1}, b ; \mu, \zeta\right) f_{2}\left(x_{2}, b ; \mu, \bar{\zeta}\right) \\
+\mathcal{O}\left(\frac{q_{T}}{Q}, \frac{1}{b Q}, \frac{\Lambda}{Q}\right)
\end{array}
$$

LP expression is incomplete:

1. Violation of gauge invariance

$$
q_{\mu} W^{\mu \nu} \sim q_{T}^{\nu}
$$

2. Frame-dependence

$$
n^{\mu} \rightarrow n^{\mu}+\frac{\Delta^{\mu}}{q^{-}}-\bar{n}^{\nu} \frac{\Delta^{2}}{2\left(q^{-}\right)^{2}}
$$

Factorization theorem holds, but variables flow....
Solution: kinematic power corrections

TMD evolution

$$
\begin{aligned}
\mu^{2} \frac{d}{d \mu^{2}} \Phi^{[\Gamma]}(\mu, \zeta) & =\frac{\gamma_{F}(\mu, \zeta)}{2} \Phi^{[\Gamma]}(\mu, \zeta) \\
\zeta \frac{d}{d \zeta} \Phi^{[\Gamma]}(\mu, \zeta) & =-\mathcal{D}(b, \mu) \Phi^{[\Gamma]}(\mu, \zeta)
\end{aligned}
$$

Integrability condition (CS-equation)

$$
\zeta \frac{d}{d \zeta} \frac{\gamma_{F}(\mu, \zeta)}{2}=-\mu^{2} \frac{d}{d \mu^{2}} \mathcal{D}(b, \mu)=-\frac{\Gamma_{\text {cusp }}}{2}
$$

- It provides evolution for Collins-Soper kernel

$$
\mathcal{D}(b, \mu)=\mathcal{D}\left(b, \mu_{0}\right)+\int_{\mu_{0}}^{\mu} \frac{d \mu}{\mu} \Gamma_{\mathrm{cusp}}(\mu)
$$

- It specifies the structure of γ_{F}

$$
\gamma_{F}(\mu, \zeta)=\Gamma_{\operatorname{cusp}}(\mu) \ln \left(\frac{\mu^{2}}{\zeta}\right)-\gamma_{v}(\mu)
$$

TMD evolution is 2 D evolution

Evolution field	$\mathbf{E}=\left(\frac{\gamma_{F}}{2},-\mathcal{D}\right)$
is conservative	$\vec{\nabla} \times \overrightarrow{\mathbf{E}}=0$
Evol.potential:	$\mathbf{E}=\nabla U$
Evolution eqn:	$\nabla \ln \Phi^{[\Gamma]}=\mathbf{E}=\nabla U$

$$
\begin{aligned}
R[\mathbf{b} ; i \rightarrow f]= & \exp \int_{P} d \boldsymbol{\nu} \cdot \mathbf{E}=\exp \left(U_{f}-U_{i}\right)= \\
& \exp \left[\int_{P}\left(\gamma_{F}(\mu, \zeta) \frac{d \mu}{\mu}-\mathcal{D}(\mu, \mathbf{b}) \frac{d \zeta}{\zeta}\right)\right]
\end{aligned}
$$

Example 1

$$
\begin{gathered}
\ln R=\int_{\mu_{i}}^{\mu_{f}} \frac{d \mu}{\mu} \gamma_{F}\left(\mu, \zeta_{f}\right)-\mathcal{D}\left(\mu_{i}, b\right) \ln \left(\frac{\zeta_{f}}{\zeta_{i}}\right) \\
\text { given in [Collins' textbook] }
\end{gathered}
$$

Solution 3

$$
\begin{aligned}
& \ln R=\int_{0}^{1}\left(\gamma_{F}(\mu(t), \zeta(t)) \frac{\mu_{f}-\mu_{i}}{\left(\mu_{f}-\mu_{i}\right) t+\mu_{i}}\right. \\
&\left.-\mathcal{D}(\mu(t), b) \frac{\zeta_{f}-\zeta_{i}}{\left(\zeta_{f}-\zeta_{i}\right) t+\zeta_{i}}\right) d t
\end{aligned}
$$

TMD distributions on the same equipotential line are equivalent.

TMD distributions on the same equipotential line are equivalent.

TMD distributions on the same equipotential line are equivalent.

We can enumerate them by a lines not by (μ, ζ)

$$
\text { optimal line }=\zeta_{\mu}(b)
$$

1. In $\operatorname{PT} \zeta_{\mu}(b)=\frac{\mu}{b} 2 e^{-\gamma_{E}}\left(1+a_{s} \ldots\right)$
2. Generally, is a functional of \mathcal{D}

Small-b regime

(From TMD factorization to "resummation" approach)

"Resummation" regime

$$
\begin{gathered}
\Lambda \ll q_{T} \ll Q \\
W \sim \int d^{2} b e^{-i b q_{T}} \widetilde{W}(b) \xrightarrow{q_{T} \gg \Lambda} \int d^{2} b e^{-i b q_{T}} \lim _{b \rightarrow 0} \widetilde{W}(b)+\ldots \\
W(b)=\underbrace{\left|C_{V}(Q)\right|^{2}}_{\text {hard.c. }} \underbrace{R^{2}[\mathcal{D}(b)]\left(Q \rightarrow \mu_{0}\right)}_{\text {evol. }} \underbrace{\Phi\left(x_{1}, b ; \mu_{0}\right) \Phi\left(x_{2}, b ; \mu_{0}\right)}_{\text {TMDs }}
\end{gathered}
$$

One needs:

- Collins-Soper kernel at small-b
- TMDs at small-b ("matching")

Collins-Soper kernel at small-b

There are several ways:
1 Compute soft-factor and extract rapidity divergence
2 Compute TMD and extract rapidity divergence
3 Use RAD/SAD correspondence (actual 4-loop computation)

$$
=a_{s} C_{F}\left(\mu^{2} \mathbf{b}^{2}\right)^{\epsilon} \Gamma(-\epsilon) \ln \left(\delta^{+} \delta^{-} \mathbf{b}^{2}\right)+\ldots
$$

$\mathcal{D}=2 a_{s} C_{F} \mathbf{L}+a_{s}^{2}\left[\frac{\Gamma_{0} \beta_{0}}{4} \mathbf{L}^{2}+\frac{\Gamma_{1}}{2} \mathbf{L}+C_{F} C_{A}\left(\frac{404}{27}-14 \zeta_{3}\right)-\frac{56}{27} C_{F} N_{F}\right]+\ldots$

$$
\mathbf{L}=\ln \left(\frac{\mu^{2} \mathbf{b}^{2}}{4 e^{-2 \gamma_{E}}}\right)
$$

TMDs at small-b

(small-b OPE)

$$
\begin{gathered}
\bar{q}(\lambda n+b)[\lambda n+b, \infty n+b] \Gamma[\infty n, 0] q(0)=\int d z C(z, \mathbf{L}) \bar{q}(z n)[z n, 0] \Gamma q(0)+\mathcal{O}\left(b^{2}\right) \\
\downarrow \downarrow \downarrow \quad \downarrow \quad \downarrow \downarrow \\
\underbrace{f_{1}(x, b ; \mu, \zeta)}_{\text {TMD }}=\int \frac{d y}{y} \underbrace{C\left(\frac{x}{y}, \mathbf{L} ; \mu, \zeta, \mu_{\mathrm{OPE}}\right)}_{\text {coef.func. }} \underbrace{f_{1}\left(y, \mu_{\mathrm{OPE}}\right)}_{\text {PDF }}+\mathcal{O}\left(b^{2}\right)
\end{gathered}
$$

$$
\begin{aligned}
\tilde{\mathcal{U}}_{\mathbf{A}} & =2 a_{s} C_{F} \Gamma(-\epsilon) \boldsymbol{b}^{2 \epsilon} \int_{-\infty}^{z_{1}} d \sigma \int_{0}^{1} d \alpha \bar{\alpha} \bar{q}\left(z_{1} n+\boldsymbol{b}\right) \gamma^{+} \overrightarrow{\partial_{+}} q\left(z_{2 \sigma}^{\alpha} n-(1-2 \alpha) \boldsymbol{b}\right), \\
\tilde{\mathcal{U}}_{\mathbf{A}^{*}} & =2 a_{s} C_{F} \Gamma(-\epsilon) \boldsymbol{b}^{2 \epsilon} \int_{-\infty}^{z_{2}} d \sigma \int_{0}^{1} d \alpha \bar{\alpha} \bar{q}\left(z_{1 \sigma}^{\alpha} n+(1-2 \alpha) \boldsymbol{b}\right) \overleftarrow{\partial_{+}} \gamma^{+} q\left(z_{2} n-\boldsymbol{b}\right) \\
\tilde{\mathcal{U}}_{\mathbf{B}} & =2 a_{s} C_{F} \Gamma(-\epsilon) \boldsymbol{b}^{2 \epsilon} \int[d \alpha d \beta d \gamma]\left\{(1-\epsilon) \bar{q}\left(z_{12}^{\alpha} n+\boldsymbol{b}(1-2 \alpha)\right) \gamma^{+} q\left(z_{21}^{\beta} n-\boldsymbol{b}(1-2 \beta)\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& f_{1}(x, \boldsymbol{b} ; \mu, \zeta)=f_{1}(x)+a_{s}(\mu)\left\{-2 \mathbf{L}_{\mu} P \otimes f_{1}+C_{F}\left(-\mathbf{L}_{\mu}^{2}+2 \mathbf{l}_{\zeta} \mathbf{L}_{\mu}+3 \mathbf{L}_{\mu}-\frac{\pi^{2}}{6}\right) f_{1}(x)\right. \\
& \left.\quad+\int d \xi \int_{0}^{1} d y \delta(x-y \xi)\left[C_{F} 2 \bar{y} f_{1}(\xi)+2 y \bar{y} g(\xi)\right]\right\}+O\left(a_{s}^{2}\right)+O\left(b^{2}\right)
\end{aligned}
$$

Table from [Moos, AV,2008.01744]

Name	Function	Twist of leading matching	Twist-2 distributions in matching	Twist-3 distributions in matching	Order of leading power coef.function	Ref.
unpolarized	$f_{1}(x, b)$	$\mathrm{tw}-2$	$f_{1}(x)$	-	$\mathrm{N}^{3} \mathrm{LO}\left(\alpha_{s}^{3}\right)$	$[21,22]$
Sivers	$f_{1 T}^{\perp}(x, b)$	$\mathrm{tw}-3$	-	$T(-x, 0, x)$	NLO $\left(\alpha_{s}^{1}\right)$	$[23]$
helicity	$g_{1 L}(x, b)$	$\mathrm{tw}-2$	$g_{1}(x)$	$\mathcal{T}_{g}(x)$	NLO $\left(\alpha_{s}^{1}\right)$	$[16,17]$
worm-gear T	$g_{1 T}(x, b)$	$\mathrm{tw}-2 / 3$	$g_{1}(x)$	$\mathcal{T}_{g}(x)$	NLO $)$	$[13,14]$
transversity	$h_{1}(x, b)$	$\mathrm{tw}-2$	$h_{1}(x)$	$\mathcal{T}_{h}(x)$	NNLO $\left(\alpha_{s}^{2}\right)$	$[19]$
Boer-Mulders	$h_{1}^{\perp}(x, b)$	$\mathrm{tw}-3$	-	$\delta T_{\epsilon}(-x, 0, x)$	NLO $)$	$[14]$
worm-gear L	$h_{1 L}^{\perp}(x, b)$	$\mathrm{tw}-2 / 3$	$h_{1}(x)$	$\mathcal{T}_{h}(x)$	$\mathrm{NLO})$	$[13,14]$
pretzelosity	$h_{1 T}^{\perp}$	$\mathrm{tw}-3 / 4$	-	$\mathcal{T}_{h}(x)$	$\mathrm{LO}\left(\alpha_{s}^{0}\right)$	eq. (4.8)

[Rein, Rodini, et al,2209.00962]

$$
\begin{gathered}
\Phi\left(x, b ; Q, Q^{2}\right) \\
\Phi\left(x, b, Q, Q^{2}\right)=R[b, Q] \Phi\left(x, b ; \frac{1}{b^{*}}, \frac{1}{b^{*}}\right) f_{\mathrm{NP}}(x, b) \\
b^{*}(b) \sim\left\{\begin{array}{l}
b, \\
\text { const. }<\Lambda^{-1}, \\
b \rightarrow 0 \\
\lim _{b \rightarrow 0} f_{\mathrm{NP}}(x, b)=1
\end{array}\right.
\end{gathered}
$$

$$
\Phi\left(x, b ; Q, Q^{2}\right) \quad \begin{gathered}
\text { (} \left.x, b, Q, Q^{2}\right)=R[b, Q] \Phi\left(x, b ; \frac{1}{b^{*}}, \frac{1}{b^{*}}\right) f_{\mathrm{NP}}(x, b) \\
\text { Non-perturbative } \\
b^{*}(b) \sim \begin{cases}b, & b \rightarrow \infty \\
\text { const. }<\Lambda^{-1}, & b \rightarrow \infty\end{cases}
\end{gathered}
$$

$$
\begin{aligned}
& \Phi\left(x, b ; Q, Q^{2}\right) \\
& \text { Node } \leftrightarrow \text { zero }
\end{aligned}
$$

ART23

$\mathrm{N}^{4} \mathrm{LL}$
[V.Moos, I.Scimemi, AV, P.Zurita, 2305.07473]
627 data points
$4 \mathrm{GeV}<Q<1000 \mathrm{GeV}$

Power corrections:

(many works during last year)

- I.Stewart, A.Gao, et al,
- S.Rodini, AV, et al,
- I.Balitsky, et al,
- ...

NLP TMD factorization is done!

 e.g. [2306.09495] for SIDIS(it is much more compli-
cated than one expected)

TMD factorization at NLP

- 4 TMDFFs, 16 TMDPDFs of twist-3
- NLP restoration of frame-invariance, gauge invariance, boost invariance
- NLO expression for coefficient functions
- LO evolution for twist-3 TMDs
- Qiu-Sterman-like terms in TMD factorization

Power corrections:

1. q_{T} / Q-corrections Y-term
2. $\Lambda / Q \& M / Q$-corrections higher-twist target-mass
3. k_{T} / Q-corrections kinematic
[AV,2307.13054]

Power corrections:

1. q_{T} / Q-corrections Y-term
2. $\Lambda / Q \& M / Q$-corrections higher-twist target-mass
3. k_{T} / Q-corrections kinematic
[AV,2307.13054]

Power corrections:

1. q_{T} / Q-corrections Y-term
2. $\Lambda / Q \& M / Q$-corrections higher-twist target-mass
3. k_{T} / Q-corrections kinematic
[AV,2307.13054]

Power corrections:

1. q_{T} / Q-corrections Y-term
2. $\Lambda / Q \& M / Q$-corrections higher-twist target-mass
3. k_{T} / Q-corrections kinematic

$$
[\mathrm{AV}, 2307.13054]
$$

Power corrections:

1. q_{T} / Q-corrections

$$
Y \text {-term }
$$

2. $\Lambda / Q \& M / Q$-corrections higher-twist target-mass
3. k_{T} / Q-corrections kinematic

$$
[\mathrm{AV}, 2307.13054]
$$

This explains why there are problems with low- k_{T} at $Q \sim 10 \mathrm{GeV}$ LHC is "pure" perturbation theory

EIC will be "more interesting"

(some) References

TMD factorization

- [1] J.Collins "Foundations of Perturbative QCD" [Collins:2011zzd]
- [2] Becher \& Neubert, [1007.4005] (SCET, collinear anomaly)
- [3] Echevaria, Idilbi, Scimemi, [1111.4996](SCET)
- [4] Vladimirov, Moos, Scimemi [2109.09771] (background QCD)

Divergences

- [5] Chiu, Jain, Neill, Rothstein [1202.0814] (rap.div. vs. double logs)
- [6] Vladimirov [1707.07606] (proof of renormalization of rap.div.)
- [7] Vladimirov [1610.05791] (SAD/RAD correspondence)

TMD evolution

- [8] Aybat, Rogers [1101.5057] ("standard solution")
- [9] Scimemi, Vladimirov [1803.11089] (2D evolution)

Small-b

- [10] Moult, Zhu, Zhu, Jiao [2205.02249] (CS at small-b at 4-loops)
- [11] [Luo:2019szz, Ebert:2020yqt, Luo:2020epw] (3 loop for f_{1})
- [12] Scimemi, Tarasov, Vladimirov [1901.04519] (Small-b in background QCD)

Backup

Collins-Soper kernel

Very small uncertanties
(despite huge uncertanties in TMDPDFs)

