Workshop: <u>Overlap between QCD resummations</u>

Centre Paul Langevin, Aussois, France 14-17 January 2024

Integrability of Planar N=4 SYM and BFKL

Vladimir Kazakov

Motivation and outline

- N = 4 Super-Yang-Mills theory a great non-perturbative playground for 4d gauge theories
- Emblematic, and well understood example of AdS/CFT duality
- N =4 SYM is integrable in the 't Hooft (planar, large N) limit
- Quantum Spectral Curve (QSC) exact system Riemann-Hilbert equations and an efficient formalism for planar spectrum of anomalous dimensions in N =4 SYM at any comping
- QSC allows to study analytically a few non-trivial (nonperturbative) limits: strong coupling, fishnet CFT, Regge (BFKL), very high orders of PT, high precision numerics, etc
 Gurdogan, V.K., '15

Plan of the talk

- Perturbative integrability
- Quantum Spectral Curve (general formulation)
- Regge limit from QSC and reproduction of LO BFKL spectrum

Alfimov, Gromov, V.K.,'12

Gromov, V.K., Leurent, Volin '13, '14

V.K., Leurent, Volin '15

• NLO, NNLO and much more - in Nikolay Gromov's talk (the force of QSC)

$\mathcal{N}=4$ SYM: planar integrability from AdS/CFT duality

$$S_{SYM} = \frac{1}{\lambda} \int d^4x \operatorname{Tr} \left(F^2 + (\mathcal{D}\Phi)^2 + [\Phi, \Phi]^2 \right) + \text{fermions}$$

super-conformal theory: PSU(2,2|4) symmetry β-function=0, no massive particles

operators

Beisert, V.K., Sakai, Zarembo 05'

 $\mathcal{O}(x) = \operatorname{Tr} \left[\mathcal{D} \mathcal{D} \Psi \Psi \Phi \Phi \mathcal{D} \Psi \ldots \right] (x)$

Anomalous dimensions $\Delta_{\mathcal{O}}$ $\mathcal{O}(\xi x) \to \xi^{\Delta_{\mathcal{O}}(\lambda)}\mathcal{O}(x)$

Operator product expansion, $\mathcal{O}_i(x)\mathcal{O}_j(0) = \sum_k |x|^{-\Delta_i - \Delta_j + \Delta_k} C_{i,j}^k \mathcal{O}_k(0) + \dots$ structure constants, correlators, amplitudes...

1- and 2-loop integrability Thermodynamical Y-system Quantum spectral Classical integrability Bethe ansatz (TBA) curve (QSC) Gromov, V.K,, Vieira '09 S-matrix, asymptotic Bethe ansatz Bombardelli, Fioravanti, Tateo '09 Gromov, V.K., Leurent, Volin '13, '14 Bena, Roiban, Polchinski 02' Beisert, Staudacher 04' Gromov, V.K., Kozak, Vieira '09 V.K., Leurent, Volin '15 Metsaev-Tseytlin 02' Beisert 05' Arutyunov, Frolov '09 Minahan, Zarembo 03' Janik 05' Cavaglia, Fioravanti, Tateo '09 Beisert, Eden, Staudacher '06 Beisert, Kristjansen, Staudacher 03' V.K.,Marshakov, Minahan, Zarembo 04'

Weak coupling calculation from SYM

• Example: O(6) sector (scalar fields): $\mathcal{O}(x) = \text{Tr} (\Phi_{n_1} \Phi_{n_2} \cdots \Phi_{n_L})$

k

- Tree level: $\Delta_0 = L$ degeneracy (for scalars)
- 1-loop (examples of graphs):

m

n

Examples: su(2) and sl(2) sectors at one loop

Notations:
$$Z = \Phi_1 + i\Phi_2$$
, $X = \Phi_3 + i\Phi_4$, $Y = \Phi_5 + i\Phi_6$

su(2) operators:

$$\operatorname{Tr} Z^{L-J} X^{J}(x)$$
 + permutations $-Z - Z - X - Z - X - Z - X$

• Dilatation operator - Heisenberg Hamiltonian, integrable by Bethe ansatz!

$$\hat{D} = L + \frac{\lambda}{16\pi^2} \sum_{l=1}^{L} \left(1 - \sigma_l \cdot \sigma_{l+1} \right) + O(\lambda^2)$$
 Mina
Beise

Minahan, Zarembo Beisert,Kristjansen,Staudacher

Solution in terms of Baxter equation

$$T(u)Q(u) = \left(u + \frac{i}{2}\right)^{L} Q(u+i) + \left(u - \frac{i}{2}\right)^{L} Q(u-i)$$

where the function T(u) – transfer matrix eigenvalue (a polynomial) It has with two solutions (Baxter functions): $Q_1(u) = \prod_{k=1}^{J} (u - u_k), \quad Q_2(u) = \prod_{k=1}^{L-J} (u - u_k)$ Equivalent, Wronskian equation: $\begin{vmatrix} Q_1(u + \frac{i}{2}) & Q_2(u + \frac{i}{2}) \\ Q_1(u - \frac{i}{2}) & Q_2(u - \frac{i}{2}) \end{vmatrix} = \text{Const } u^{L-1}$ Anomalous dimensions: $\Delta - L = \frac{\lambda}{8\pi^2} \partial_u \log \frac{Q(u + \frac{i}{2})}{Q(u - \frac{i}{2})} \end{vmatrix}_{u=0} + \mathcal{O}(\lambda^2)$ with trace cyclicity condition $Q\left(\frac{i}{2}\right) = Q\left(-\frac{i}{2}\right)$

sl(2) operators: $\operatorname{Tr} Z \nabla^S Z^{L-1}(x)$ + permutations

Baxter relation slightly change. Baxter functions are not necessarily polynomial

Quantum Spectral Curve of $\mathcal{N}=4$ SYM: algebraic structure

Gromov, V.K., Leurent, Volin '13,'14 V.K., Leurent, Volin '15

- QSC eqs. close on finite set of Baxter functions of spectral parameter $Q_I(u)$
- gl(n): each Q placed at an edge of Hasse diagram n-hypercube

for $\mathcal{N}=4$ SYM

Gromov, V.K., Leurent, Volin '13,'14 V.K., Leurent, Volin '15

Quantum Spectral Curve of AdS₅/CFT₅: analytic structure

• Special 8 + 8 Q-functions with nice analyticity on physical sheet

• Various Q-functions are related by complex conjugation ("gluing" relations)

$$\mathbf{Q}_1 \propto \bar{\mathbf{Q}}^2 \,, \quad \mathbf{Q}_2 \propto \bar{\mathbf{Q}}^1 \,, \quad \mathbf{Q}_3 \propto \bar{\mathbf{Q}}^4 \,, \quad \mathbf{Q}_4 \propto \bar{\mathbf{Q}}^3$$

• These Riemann-Hilbert conditions fix all physical solutions for Q-system and thus conformal dimensions $\Delta(g)$ with given PSU(2,2|4) charges

Dimensions of twist-2,3,... operators $Tr(\Phi \nabla^S \Phi)$

• Numerics, weak and strong coupling from Quantum Spectral Curve;

(A.

BFKL Dimension from Quantum Spectral Curve

• QSC allows for analytic continuation of exact dimension $\Delta(S, g)$ to continuous spins $-1 < S < \infty$ We need to find the appropriate analytic continuation of Q-functions.

> Janik Gromov, V.K. Gromov, Levkovich-Maslyuk, Sizov, Valatka

• BFKL is a double scaling limit:

 $w = S + 1 \rightarrow 0, \quad g \rightarrow 0, \quad \Lambda = \frac{g^2}{S + 1} - \text{fixed}$

• We will restore from QSC the leading order (LO) BFKL approximation for $\Delta(S, g)$ (already known up to NLO from direct summation of Feynman graphs)

Balitsky, Fadin, Kuraev, Lipatov

$$\frac{S+1}{4g^2} = \Psi(\Delta) + g^2 \delta(\Delta) + \mathcal{O}(g^4) \quad \text{where} \quad \Psi(\Delta) = -\psi\left(\frac{1+\Delta}{2}\right) - \psi\left(\frac{1-\Delta}{2}\right) + 2\psi(1)$$

$$\delta(\Delta) = 4\Psi''(\Delta) + 6\zeta_3 + 2\zeta_2\Psi(\Delta) - \frac{\pi^3}{\cos\frac{\pi\Delta}{2}} - 4\Phi(\frac{1}{2} - \frac{\Delta}{2}) - 4\Phi(\frac{1}{2} + \frac{\Delta}{2}), \qquad \Phi(x) = \sum_{k=0}^{\infty} \frac{(-)^k}{(x+k)^2} [\psi(k+1+x) - \psi(1)]$$

• In particular, near the Regge pole
$$\Delta - 1 \simeq \frac{-8g^2}{w} + w\zeta_3 \left(\frac{-4g^2}{w}\right)^3 + \mathcal{O}\left(\left(\frac{g^2}{w}\right)^4\right)$$

BFKL is an excellent test for the whole AdS/CFT integrability: it sums up "wrapped" graphs omitted in asymptotic Bethe ansatz
 Kotikov, Lipatov, Rei, Staudacher

Kotikov, Lipatov, Rej, Staudacher Bajnok, Janik, Lukowsky Lukowski, Rej, Velizhanin,Orlova

P-functions at LO BFKL

• We can split $\mathbf{P}(\mathbf{or } \mu)$ into regular and singular parts

$$\mathbf{P} = \frac{\tilde{\mathbf{P}} + \mathbf{P}}{2} + \sqrt{u^2 - 4g^2} \left(\frac{\tilde{\mathbf{P}} - \mathbf{P}}{2\sqrt{u^2 - 4g^2}} \right)$$

• In the regime $g \ll |u| \ll 1$ singular part gives poles at

$$\sqrt{u^2 - 4g^2} \equiv \sqrt{u^2 - 4\Lambda w} = u - \frac{2\Lambda}{u}w - \frac{2\Lambda^2}{u^3}w^2 + O(w^3)$$

• We can uniformize P by Zhukovsky map

$$\mathbf{P}_a = \sum_{n=-1}^{\infty} \frac{c_{a,n}}{[x(u)]^n}$$

Pµ-equations
$$\tilde{\mathbf{P}}_a = \mu_{ab} \mathbf{P}^b$$
 and μ

$$c_{a,n}(\Lambda, w) = (\sqrt{\Lambda w})^{n-4} \sum_{k=0}^{+\infty} c_{a,n}^{(k)} w^k$$

 $u = \sqrt{\Lambda w} (x + 1/x)$

$$\mu_{ab}(u+i) - \mu_{ab}(u) = \mathbf{P}_a \tilde{\mathbf{P}}_b - \mathbf{P}_b \tilde{\mathbf{P}}_a$$

ansatz for
$$\mu$$
: $\mu_{ab} = \frac{1}{w^2} \operatorname{Polyn}_{ab}(u) \cosh^2(\pi u)$

• Asymptotics $P_1 = \frac{1}{u}$, $P_2 = \frac{1}{u^2}$, $P_3 = A_3^{(0)}u + \frac{c_{3,1}^{(1)}}{\Lambda u}$, $P_4 = A_4^{(0)}$

where
$$A_3^{(0)} = -\frac{i(\Delta^2 - 1)(\Delta^2 - 9)}{32}$$
, $A_4^{(0)} = -\frac{i(\Delta^2 - 1)(\Delta^2 - 25)}{96}$, $c_{3,1}^{(1)} = -\frac{i(\Delta^2 - 1)^2}{96}$

Analytic properties of Q-functions

- Natural objects for BFKL limit are \mathbf{Q} -functions: asymptotics contain conformal charges, including Δ
- Re-gluing sheets: from long to short cuts

 $\begin{pmatrix} \mathbf{Q}_1 \\ \mathbf{Q}_2 \\ \mathbf{Q}_3 \\ \mathbf{Q}_4 \end{pmatrix} \sim \begin{pmatrix} u \overline{} \\ \frac{\Delta - 3 + w}{2} \\ u \overline{} \\ \frac{-\Delta + 1 - w}{2} \\ -\Delta - 3 + w \end{pmatrix}$

- In weak coupling limit "ladder" of cuts generates poles at $u=i\mathbb{Z}_{-}$
- From purely algebraic relations of Q-system we get a 4-th order finite difference equation with 4 solutions giving all 4 **Q**-functions:

$$0 = \mathbf{Q}^{[+4]}d_0 - \mathbf{Q}^{[+2]}\left[d_1 - \mathbf{P}_a^{[+2]}\mathbf{P}^{a[+4]}d_0\right] + \frac{1}{2}\mathbf{Q}\left[d_3 + \mathbf{P}_a\mathbf{P}^{a[+4]}d_0 + \mathbf{P}_a\mathbf{P}^{a[+2]}d_1\right] + \text{c.c.}$$

The coefficients depend only on **P**-functions: $d_m = \det_{1 \le a,k \le 4} (\mathbf{P}^a)^{[4-2k+2\delta_{k,m}]}$

 $f^{[n]} := f\left(u + n\frac{i}{2}\right)$

• Plugging here the LO **P**-functions we get an equation factorized as follows

$$\left[D + D^{-1} - 2 - \frac{1 - \Delta^2}{4u^2}\right] \mathbf{Q} = 0 \qquad \qquad \boxed{D = e^{i\partial_u}}$$

• 2-nd order equation is the Faddeev-Korchemsky-Baxter eq. for BFKL pomeron !

Finding the BFKL Dimension

• On the other hand, from the explicit knowledge of NLO we find the 4'th order NLO equation for \mathbf{P} which factorizes again, to give for j=1,3

reminder

$$\mathbf{Q}_{j}\left(\frac{\Delta^{2}-1-8u^{2}}{4u^{2}}+w\frac{\left(\Delta^{2}-1\right)\wedge-u^{2}}{2u^{4}}\right)+\mathbf{Q}_{j}^{--}\left(1-\frac{iw/2}{u-i}\right)+\mathbf{Q}_{j}^{++}\left(1+\frac{iw/2}{u+i}\right)=0$$

w = S + 1 $\wedge = \frac{g^2}{S + 1}$

Explicit \mathbf{Q}_1 , \mathbf{Q}_3 – a linear combination of solutions with $\pm \sqrt{w}$ with correct asymptotics:

$$\mathbf{Q} = \frac{\sqrt{w}(u^2 - 2\Lambda w)}{iu - \frac{w}{4} - i\sqrt{2\Lambda w}} \frac{\Gamma\left(iu - \frac{w}{4} + i\sqrt{2\Lambda w}\right)}{\Gamma\left(-iu - \frac{w}{4} - i\sqrt{2\Lambda w}\right)} \ {}_{3}F_2\left(\frac{1 - \Delta}{2}, \frac{1 + \Delta}{2}, -iu - \frac{w - i\sqrt{32\Lambda w}}{4}; -\frac{w}{2}, 2i\sqrt{2\Lambda w} + 1; 1\right)$$
Values at the pole
$$\frac{\mathbf{Q}_j^{(1)}(u)}{\mathbf{Q}_j^{(0)}(u)} = +\frac{iw}{2u} + \mathcal{O}(u^0) \ , \ j = 1, 3$$

- To extract the dimension we have to compute these Q-functions on the 2nd sheet via the monodromy $\tilde{\mathbf{Q}}_j = \omega_{jk} \mathbf{Q}_k$ from the LO \mathbf{Q} . This gives $\mathbf{Q}_3(u) \simeq 2iw\Lambda \mathbf{Q}_3(0) \frac{\Psi(\Delta)}{u} + \operatorname{regular}(u) + \mathcal{O}(w^2)$ where $\Psi(\Delta) = -\psi \left(\frac{1+\Delta}{2}\right) - \psi \left(\frac{1-\Delta}{2}\right) + 2\psi(1)$
 - This allows to fix the dimension and restore the BFKL formula

٠

$$\frac{S+1}{4g^2} = -\psi\left(\frac{1}{2} - \frac{\Delta}{2}\right) - \psi\left(\frac{1}{2} + \frac{\Delta}{2}\right) + 2\psi(1) + \mathcal{O}(g^2)$$

Conclusions and Future Directions

- Quantum Spectral Curve (QSC) is now a mature method for the study of anomalous dimensions in N =4 SYM in various perturbative and non-perturbative regimes
- Regge approximation for dimensions is under the full control in planar N =4 Super-Yang-Mills LO, NLO, NNLO are analytically computed (see talk of Nikolay)
- Structure constants (3-point correlators) of N =4 SYM are still an open problem, in intensive study. BFKL 3-point correlator is computed in LO by traditional PT methods
 Balitsky, V.K., Sobko '13, '15
- An interesting Fishnet limit of gamma-deformed N =4 SYM described via twisted QSC. Certain two dimensional generalization of Fishnet CFT is also described by Lipatov (BFKL) Hamiltonian.
- Gurdogan, V.K., '15 Gromov, V.K., Korchemsky, Negro, Sizov '16 Alfimov, Ferrando, V.K., Olivucci '23

• Comparing the BFKL limit in N =4 SYM and QCD: From SYM NNLO to QCD NNLO ?

Gromov, V.K., Leurent, Volin '13, '14