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OUTLINE

« Factorisation of amplitudes in the high-energy limit
« Amplitudes by iterated solution of the BFKL equation

e The Regge trajectory at three loops

« JHEP 1706 (2017) 016, [arXiv:1701.05241], with S. Caron-Huot and E. Gardi,

« JHEP 1803 (2018) 098, [arXiv:1711.04850], with S. Caron-Huot, E. Gardi, and J. Reichel,

« JHEP 08 (2020) 116, [arXiv:2006.01267], with S. Caron-Huot, E. Gardi and J. Reichel,

« JHEP 03 (2022), 053, [arXiv:2111.10664], with G. Falcioni, E. Gardi, N. Maher and C. Milloy,

 Phys. Rev. Lett. 128, (2022) no.13, [arXiv:2112.11098], with G. Falcioni, E. Gardi, N. Maher,
C. Milloy.



FACTORISATION OF AMPLITUDES
IN THE HIGH-ENERGY LIMIT




TWO-PARTON SCATTERING AMPLITUDES

P1 t = (p1 — p4)2 P4

« Expansion in the strong coupling and in towers of (large) logarithms:
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o Goal: develop a theory to calculate systematically the tower of logarithms at any order in
the strong coupling expansion.



HIGH-ENERGY LIMIT

e Very interesting theoretical problem:

o toy model for full amplitude, yet
— retain rich dynamic in the 2D transverse plane,
— non-trivial function spaces;

e Understand the high-energy QCD asymptotic
in terms of Regge poles and cuts;

o predict amplitudes and other observables in overlapping limits:

— soft limit, infrared divergences.

o Relevant for phenomenology at the LHC and future colliders:

o perturbative phenomenology of forward scattering, e.g.

— Deep inelastic scattering/saturation (small x = Regge, large Q?

— Mueller-Navelet: pp — X+2jets, forward and backward.

MRK in N=4 SYM:
Dixon, Pennington,
Duhr, 2012;

Del Duca, Dixon,
Pennington, Duhr,
2013;

Del Duca, Druc,
Drummond, Duhr,
Dulat, Marzucca,
Papathanasiou,
Verbeek 2019

= perturbative),

See e.g. Andersen, Smillie, 2011; Andersen, Medley
Smillie, 2016; Andersen, Hapola, Maier, Smillie, 2017; ...



TWO-PARTON AMPLITUDES: LL

o LL tower: one-Reggeon exchange in the t-channel:
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where the Regge trajectory at one loop reads
Regge, Gribov ~ 1960;
Lipatov; Fadin,Kuraev,Lipatov 1976
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« What happens beyond LL?



TWO-PARTON AMPLITUDES: TOOLS

We need some tools. 1) Color: amplitude is a vector in color space:
YL (K] 4 4lK]
Mijij = E :Cz'j A
k
Decompose the amplitude on a orthonormal color basis in the t-channel:

qq : Ba =St &R,
qq : S et IR R

gg: 8®8 — 1388:,®8,®(10+10)Pd27a0.
Tree (LL) amplitude involves the exchange of a gluon (Reggeon) in the t-channel, thus
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Beyond LL we expect all components to contribute. ==




TWO-PARTON AMPLITUDES: TOOLS

e 2) Signature: in the high-energy limit u ® —s; amplitude acquires an effective quantum
number, describing the symmetry property w.r.t the exchange s < u:

M(s,t) = MB)(s,8) + M (s, ), > >
M(i)(s,t):%(M(s,t)ij\/l(—s—t,t)). —S—
e —

« At LL accuracy
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e« Beyond LL we expect both signature components to contribute.

e For gg —» gg amplitude, Bose symmetry requires the color components to have definite
symmetry under the signature:

odd : 8., 10+ 10,

even : | B e e b S



TWO-PARTON AMPLITUDES: N(N)LL

e« Expand the amplitude in terms of the signature-symmetric logarithm:
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It ensures that MC-n.m) is purely real, while M(+:n.m) is purely imaginary.

« The odd component at NLL is still given in terms of a single Reggeon exchange:
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Fadin, Fiore, Kozlov, Reznichenko, 2006; Ioffe, Fadin,
Lipatov, 2010; Fadin, Kozlov, Reznichenko, 2015

where the Regge trajectory is taken at two loops, and the impact factors C;; at one loop.



TWO-PARTON AMPLITUDES: N(N)LL

e In general, we expect higher logarithmic terms to be described in terms of multi-Reggeon

states:
Fadin,Kuraev,Lipatov 1975-77; Balitsky,Lipatov 1978

RS ) sn (C) VR Pl § g

ME) — pmH), MR \ % g %

o« Task 1: develop a framework to calculate quantitatively multi-Reggeon exchanges.



MULTI-REGGEON STATES

Multiple Reggeon exchange contribution in scattering amplitudes elusive, until recently.

First evidence of violation of Regge-pole factorization in
Del Duca, Glover 2001;

Interplay with the infrared factorization theorem investigated in

Del Duca, Duhr, Gardi, Magnea, White 2011; Del Duca, Falcioni, Magnea, LV, 2013, 2014;

High-energy scattering via Wilson lines:

Korchemskaya, Korchemsky, 1994,1996,; Balitsky 1995; Babansky, Balitsky 2002,

Two-parton scattering from rapidity evolution of Wilson lines

Caron-Huot, 2013; Caron-Huot, Gardi, LV, 2017; Caron-Huot, Gardi, Reichel, LV, 2017,
2020; Falcioni, Gardi, Milloy, LV, 2020; Falcioni, Gardi, Maher, Milloy, LV, 2021,2022.

— This talk

SCET-based formulation in
Rothstein, Stewart 2016; Ridgway, Moult, Stewart, 2019, 2020.

Calculation of multiple Reggeon exchanges within QCD also obtained in

Fadin, Lipatov 2017; Fadin 2019, 2020.



REGGE POLES AND CUTS

e The Regge trajectory is related to a Regge pole in the complex angular momentum plane.
o Multi-Reggeon contributions are expected to be related to Regge cuts.
o Write the amplitude as a dispersion relation

et de Gy di
M(s,t) = —/ L —/ - D (4, 1),
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where D, and D, are discontinuities of M in the s- and u-channels. They are real (spectral

density of positive energy states propagating in the s- and u-channels). Parametrize them
as a sum of power laws by means of a Mellin transformation:
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« Substituting the inverse transform into the dispersive representation and integrating over §
and d, one obtains a Mellin representation of the amplitude:
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Caron-Huot, Gardi, Vernazza, 2017.




REGGE POLES AND CUTS

In particular:

Y+100 di : .
M) (s, t) = / S (W—Zj) at () eIk
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where a\™ () = L(a3(t) £ a¥(2)).

At leading power in t/s the Mellin variable j is identical to the spin j which enters
conventional partial wave expansion.

Simplest asymptotic behavior: pure power law, whose Mellin transform is a Regge pole:

(—) 1 s n ) oL a(t)
R =Tl , t)|Regge pole =
a, ( ) PR oz(t) (5 )‘R gge pol e Wa(t) t S

a(t) is interpreted as the gluon Regge trajectory.

Z Caron-Huot, Gardi, Vernazza, 2017.
A Regge cut arises e.g. from

1
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Task 2: relate single- and multi-Reggeon states to Regge poles and cuts in perturbation
theory.
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TASK 1: A MULTI-REGGEON
EFFECTIVE THEORY
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FROM BALITSKY-JIMWLK TO AMPLITUDES

e The physical picture: high-energy limit = forward scattering:

Korchemskaya,
> Korchemsky, 1994, 1996;
Babansky, Balitsky, 2002;
Caron-Huot, 2013

e To leading power, the fast projectile and target described in terms of Wilson lines:
+o00
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e Upon evolution in energy (rapidity), emitted radiation
gives additional Wilson lines!
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FROM BALITSKY-JIMWLK TO AMPLITUDES

+pers.

This is expressed by the (nonlinear!) Balitsky-JIMWLK evolution equation:

d
S0 ¢ | d?20 K (20, 21, 22) [U(ZO)UU . UU].
NLL: Balitsky Chirilli, 2013;
Shock = Lorentz-contracted target; Kovner, Lublinsky, Mulian,
2013, 2014, 2016;
45° lines = fast projectile partons; (some) NNLL: Caron-Huot,

Gardi, Vernazza, 2017.
Each parton crossing the shock gets a Wilson line

S T
Evolution in rapidity resums the high-energy log: 71 = L = log ’Z’ 05



FROM BALITSKY-JIMWLK TO AMPLITUDES

e The Balitsky-JIMWLK equation is non-linear: leads to the phenomenon of saturation.

e For scattering amplitudes, we can consider the dilute regime: expand Wilson lines around
unity in an effective degree of freedom dubbed as "Reggeon”:

+0o0
U"(z.) = Pexp [f/ﬁgs Ta/ de™ A% (zV, 2 =0,21)| = SE W)

— OO

Caron-Huot, 2013
e T2 group generator in the parton representation

e n = L (implicit) cutoff

o Scattering states (target and projectile) are expanded in Reggeon fields We:

W
W W




FROM BALITSKY-JIMWLK TO AMPLITUDES

o Scattering states (target and projectile) are expanded in Reggeon fields We:

Wal Wal Waz W
W) ~ g + g g + ... = w W
s gs2
o Evolution in rapidity resums the high-energy log: NLL: Balitsky Chirilli, 2013;

Kovner, Lublinsky, Mulian,
2013, 2014, 2016;
(some) NNLL: Caron-Huot,

d . L
d_L ‘w’l,> — _H‘w?,)' H = Ba“tSKY'JIMWLK Ham||t0n|an Gardi, Vernazza, 2017.

o Scattering amplitude: expectation value of Wilson lines evolved to equal rapidity:

L SR A AR Q'W
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(Z; = collinear poles)

Caron-Huot, 2013, Caron-Huot, Gardi, LV, 2017




FROM BALITSKY-JIMWLK TO AMPLITUDES

o Structure of the leading-order Balitsky-JIMWLK equation:

( |44 \ / J5EIG 0 /5 0 o S \ ( %4 \
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Caron-Huot, 2013, Caron-Huot, Gardi, LV, 2017

« At NLL we need m — m transition only — the LO BFKL kernel.
« At NNLL we need the m — m+2 transition from the LO B-JIMWLK kernel.

e Define the reduced amplitude: subtract single-Reggeon exchange:

Z’ P = ik =5 ~
Q_SMz'j—m'j = 5 HHl)LWi) —= W4 HLWQ'



THE ODD AMPLITUDE

o A few examples: decompose the amplitude

LMij—wlj Ll - (M(H + M

28 28 Z]—)Z] Z]—)Zj)

e One has e.qg.:
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e Taking into account that
(%‘,1\ ﬁ1—>10 \ibzn) = <wj,n‘ Oﬁl—ﬂ Wz‘,1> — [l § § §

up to three loops the odd amplitude reads

Caron-Huot, Gardi, LV, 2017
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THE ODD AMPLITUDE

e To all orders the amplitude takes the form
: ) T
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e In diagrams:
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Falcioni, Gardi,

Milloy, LV, 2020;

Falcioni, Gardi,

Maher, Milloy,
LV, 2021
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THE ODD AMPLITUDE

 Effective Hamiltonian: one has Falcioni, Gardi,
Milloy, LV, 2020;
ol Falcioni, Gardi,
Jalng =R B Maher MIIET
: LV, 2021
with
Ao == [ 8] Cary 02 i) W (0) 55
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THE ODD AMPLITUDE

Two tasks: 1) evaluate (Euclidean) integrals in d = 2-2€ dimensions:

O Lo <

2) Express the color factors as operators acting on the tree level amplitude:

Outmost generators clearly associated with external particles

%1

At lowest order there is no ambiguity

? ) T4 Caron-Huot,
§ : Gardi, LV, 2017;
Falcioni, Gardi,
Milloy, LV, 2020;
Falcioni, Gardi,
Maher, Milloy,
LV, 2021

=

Starting at three loops one has entangled contributions: needs identities such as

L RX -2 X




TWO PARTON SCATTERING AMPLITUDES

- We have now a framework for the calculation of amplitudes in the high-energy limit;

- Systematic relation between logarithmic accuracy and number of Reggeons.

Even

LL

Analysed to 2
loops in Del Duca,
Falcioni, Magnea, |
Vernazza 2014;

Calculated to 3

ON@VO | MWW &

loops in Caron-
Huot, Gardi, LV,

2017; —

NNLL

Calculated to 4
loops in Falcioni,

Gardi, Milloy, LV,
2020; Falcioni,
Gardi, Maher,

Milloy, LV, 2021. N3LL

OA@VO  OABVO

|

I

IR rivergences
» calculated to all

/ orders in Caron-
Huot, Gardi,

Reichel, LV, 2017;

Finite terms
calculated to 13
loops in Caron-

Huot, Gardi,

Reichel, LV, 2020.




TASK 2: REGGE POLE AND CUT
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THE ODD AMPLITUDE

Result at two and three loops:
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Matching to the explicit calculation of the amplitude gives the Regge trajectory and impact

factors in the "SR/MR"” scheme. \
Caola, Chakraborty, Gambuti,

von Manteuffel, Tancredi, 2021



REGGE POLE AND CUT

We have written the amplitude in terms of SR/MR exchange contribution:
M) = ME)SR 4 A2 MR ,Caas(D o (3) ¢l M:;e—em + MmE)MR

It would be good to express the amplitude in terms of Regge pole and cut contribution:

i O M = PR G0 C () Ms R

] FI==40]

This task is non-trivial, because the high-energy analytic properties are only manifest
upon resumming the entire perturbative series: it is not at all obvious how to

disentangle the Regge pole from the Regge cut in an order-by-order computation.
However, we have some “guiding principles” which can help with this task:
The pole contribution is universal:

e 2 " el
i e e
Mtree o Mtree : Mtree ;

q9—49g 99—499g a9—qq

The pole has a “"good” infrared behaviour: Korchemskaya, Korchemsky, 1994,1996

G0 = K+0(), Ko =1 [ Sroaon) = 52

SR

where K is the integral over the scale of the cusp anomalous dimension.



REGGE POLE AND CUT

While the Regge cut arises exclusively due to MR contributions to the amplitude, MR
exchanges do contribute also to the Regge pole.

This is evident in the large-Nc limit, where it is known that the amplitude only features
a Regge pole, and yet, MR contributions are present.

Eden, Landshoff, Olive, Polkinghorne, 1966; P. D. B. Collins, 2009

It is also known that Regge cuts only arise due to nonplanar diagrams: the Regge cut
should be identified as the nonplanar part of the MR contribution, while the Regge pole
corresponds to SR plus the planar MR contributions:

Mandelstam 1963; P. D. B. Collins 2009

Putting together all these requirements, we make the ansatz:
Gardi, Falcioni, Maher,
Milloy, LV, 2021.
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REGGE POLE AND CUT

In the end we get Gardi, Falcioni, Maher,
2 Milloy, LV, 2021.
ﬂ' V 4 Y 4
. 1_28(2) (6)7
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explicitly:
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The Regge-pole contribution is universal among all two-parton scattering processes, but
theory dependent (i.e. different in N=4 SYM, QCD, etc);

The Regge-cut contribution is different for each channel but depends only on the action
of color operators in the gauge theory considered.

See also: Gao, Moult, Raman, Ridgway, Stewart 2023; Fadin 2023



REGGE POLE AND CUT

The scheme dependence does not give rise to infinite freedom: once the impact factors

at two loops and the Regge trajectory at three loops have been fixed, there are no more
free parameters at NNLL to be adjusted.

Consequence: from four loops all MR contributions must be entirely nonplanar!

We have verified this explicitly at four loops:

Mtree:

e 1 3
Gl [€4K(4) + (EC3 + 5@) K" + O(e)

where the color operators reads Gardi, Falcioni, Maher, Milloy, LV, 2021
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CONCLUSION

e Modern approach to high-energy scattering via Wilson lines:
— new theoretical control up to NNLL.
— 2 — 2 amplitudes obtained by iteration of the Balitsky-JIMWLK Hamiltonian.

e« Imaginary part at NLL to all orders in the strong coupling: (not discussed here)
— Extracted the soft anomalous dimension to all orders;
— Numerical studies on the convergence of the perturbative expansion.

e Real part at NNLL up to four loops:
— Extracted the corresponding term of the soft anomalous dimension;
— Real part of the 2 — 2 amplitude in QCD and N=4 SYM at four loops.
— Identified the Regge pole as the planar contribution of single- and
multi-Reggeon exchange, and the Regge cut as the non-planar part of the
multi-Reggeon exchange.



EXTRA SLIDES



REGGE VS INFRARED FACTORISATION

Applications: 1) test (and predict) the analytic structure of infrared divergences.

The infrared divergences of amplitudes are controlled by a renormalization group equation:

My ({pi}, by as(p?)) = Zn ({pi}, 1y as(1?)) He ({05}, 15 s (p?))

where Z; is given as a path-ordered exponential of the soft-anomalous dimension:

Becher, Neubert, 2009; Gardi, Magnea, 2009

Zy ({p’i}aﬂaa«S(ﬂz)) = Pexp {_% /;u d)\% ' ({pi}a)\v aS(AZ))} ’

The soft anomalous dimension for scattering of massless partons is an operator in color
space given by

'y ({pi}v A, O‘S()\z)) = ngp. ({pi}a A, 048()\2)) S ({Pijkl}) .

Given M, as calculated in the high-energy limit, use IR factorisation to extract the soft
anomalous dimension.



REGGE VS INFRARED FACTORISATION

L log =t [ exponentiation

- Y 0 D) A:

¢ SN of IR div )
| soft limit of BFKL ]

Soft L = Regge limit of I'y.g

A)ft Regge
BFKL | }
Regge resummeation

L ~ log =

Use amplitudes calculated in the high-energy limit to extract the soft anomalous
dimension in that limit;

Bootstrap the result to constrain the structure of infrared divergences in general
kinematic.



REGGE VS INFRARED FACTORISATION

Re || LY 5 e JIRCA R S T e T
1 — 1 1
of || Fx BT, Ci+ i 7k T?
o || i’ I Tia Ci+ Tiywi” Wt | o0
| st et <o | gm0
3 A+42) )0 0
-wr""‘I
a? 0] 0
af 0 0
0 1 2 3 4 5 6
s L x 5 L i L Caron-Huot, Gardi,
al 2‘5?}()sz2 0 LV, 2017;
\ Caron-Huot, Gardi,
a2 || 13PizT2_, 0 Reichel, LV, 2017;
3 S 2 Y Gardi, Falcioni,
T A( 19, ) AN?’;I)
o || Tt ~ ! N Milloy, LV, 2020;
o SN AG43) \‘\.0 Gardi, Falcioni,
N . 2
o A 5,?\\0 Maher, Milloy, LV,
: LE 2021.
ab \ A(—’f}“g 0
» J




REGGE VS INFRARED FACTORISATION

- Structure of the soft anomalous dimension in general kinematic up to four loops:

%K(as ZT T, log ZJ +Z’y@ )
(2,9)

+ flos) D Tanj + Z Tijkr F(Bijiks Bikig; s)

(i,5,k) (4,4,k,0)
il Z g (20‘8) [Z (Df —2pi i = IEE ﬁ]
i (4,5)

o Z Z Dzjklg 5@3“@ szlj,ﬁs 1= Z Tjkl?,Hl(lB%jlk ﬁ%klj;aS)

(4,7,k,1) (4,4,k,1)
Tijkim Ha(Bijkt, Bijmks Bikmys Biimis Bjimi; as) + O(a2).

L'y ({Sij}a Hs Oés(/,L2)) N

- From the Regge limit we obtain constrains, useful for a bootstrap approach:

Signature even Signature odd See e.g
Gardi, Falcioni, o
i s - s i e I (comi) I3 72 o Almelid, Duhr,
Maher, Milloy, : Gardi, McLeod,
LV, 2021. ./—_-1(44-,4) 0 _%C2C3 0 f,(él_’él) iﬂ%gs 2 ? White, 2017
B a0 0 0 Bl ? ?
s Y 3G (50
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