How to Make a Monte Carlo Production

Kuunal Kelash Mahtani June 19th, 2023

Geant4 & EDepSim

- Simulations of particles interacting in matter
 - Geant toolkit using MonteCarlo techniques
 - https://geant4.web.cern.ch/
- Requires input information
 - Detector geometry, materials
 - Most functions (wrapper)

- EDepSim the Energy **Dep**osition **Sim**ulation
 - Provides ROOT file to record Geant output
 - Can be linked as a library
 - Implements energy deposition as ionizing and non-ionizing energy loss
 - <u>https://github.com/ClarkMcGrew/edep-sim</u>

Producing a Geant4 Output

• Using EDepSim as a wrapper

LANL_\${LOWEND}MeV_\${HIGHEND}MeV.mac

-u \

• To use EDepSim, we provide it with the following:

Geometry (can check for overlaps)	Provided by .gdml file	impl	
Number of events	Command line argument	o lau	
Random seed (Reproducibility)	Command line argument	 Proc inter 	
Physics list (Intranuclear Cascade Model)	Command line argument		
Macro file	Provided by a .mac file		
<pre>edep-sim \ -C \ -g \${GEOMETRY} \ -o \${OUTDIR}/\${PROTONAME}.edepsim_\${CONFIGG}_\$ -e \${NEVT} \ -s \${RNDSEED} \ -p \${PHYSICSLIST} \</pre>	{ <mark>PHYSICSLIST</mark> }_\${LOWEND}MeV_\${HIG	HEND}MeV.root \	

- Shell script produced for easy implementation
 launchjobarray.sh
- Produces 1 MeV intervals by default

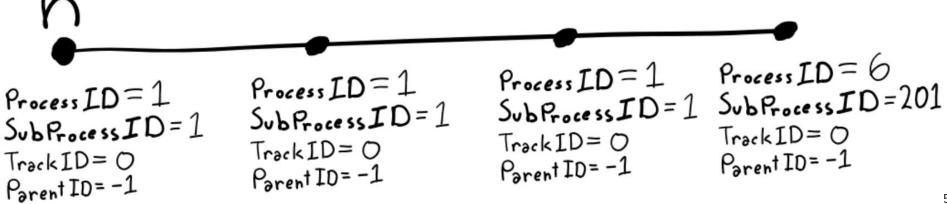
Produce a MC Output

- <u>https://github.com/neutron-lanl</u> <u>tb-analysis/neutronsimulation</u>
 - Clone this repository
 - All relevant scripts in this github
- Edit shell script:
 - Outfile to /your/path/to/directory/
 - Rest of naming convention to be followed

MCProduction Directory

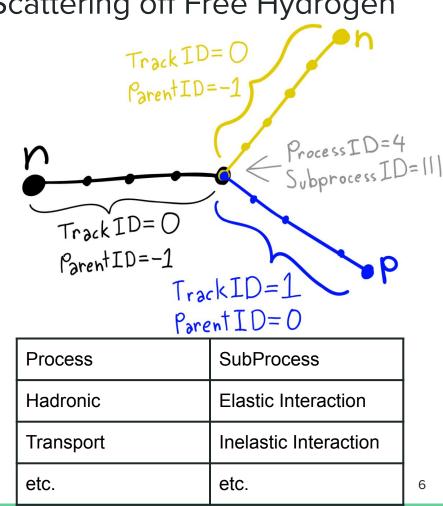
- Geometry File
 LANL_24x8x48_wFiber_wDead
 _realSize_wTyvek_noGap_v7.gd
 ml
- Macro File neutron-flat3.mac
- Shell script for single run

run_edepsim_LANL.sh

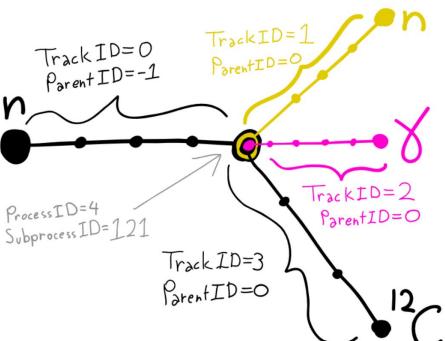

Event Organization in Geant4

• 1 Trajectory/tracked particle • Particle number in stack

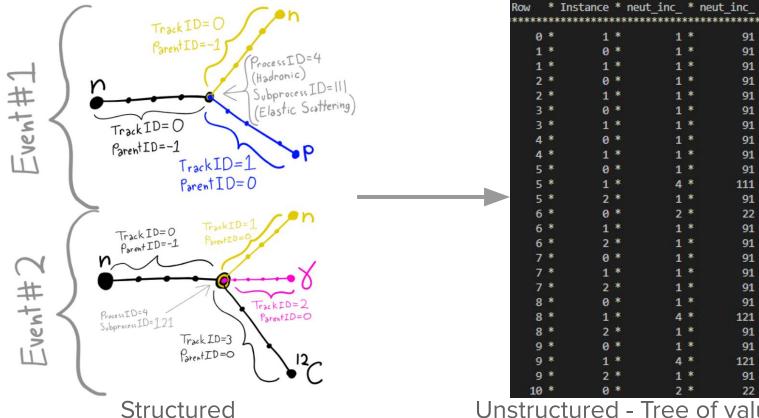
unique to trajectory


- Kinematics information stored per point
 - Process, SubProcess,
 total energy,
 momentum, position,

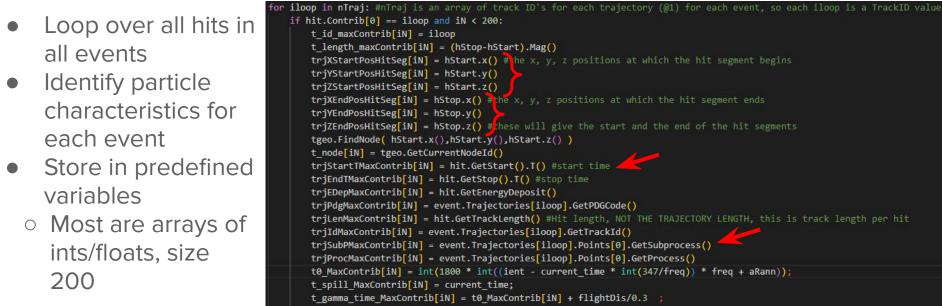
etc.


Example: Neutron Hadronic Elastic Scattering off Free Hydrogen

- 1 Trajectory per particle: Incoming Neutron, Outgoing Neutron, Outgoing Proton
- Each trajectory has a TrackID and a ParentID; these index the particle as well as it's parent
- Each trajectory has multiple points, and each point has a Subprocess ID and a Process ID
- The Process ID: interaction process
- The Subprocess ID: interaction type


Neutron Hadronic Inelastic Scattering off Carbon

- Incoming & outgoing neutron have different tracks
 - Geant4's handling of intranuclear interactions
- Interaction Vertex
 - Interaction type
 - Relative to start position of outgoing particles → Vertex Cut
 - Kinematics


Dumping to a Tree - General

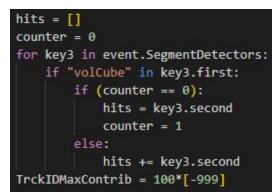
Reformat simulation to resemble data

Unstructured - Tree of values

Dumping to a Tree - Specifics

• Construct vector of hit segments objects to loop over

for hit in hits: hStart = ROOT.TVector3(hit.GetStart().X()/10., hit.GetStart().Y()/10., hit.GetStart().Z()/10.) hStop = ROOT.TVector3(hit.GetStop().X()/10., hit.GetStop().Y()/10., hit.GetStop().Z()/10.)


• Obtain information from hit segments

```
hits = []
counter = 0
for key3 in event.SegmentDetectors:
    if "volCube" in key3.first:
        if (counter == 0):
            hits = key3.second
            counter = 1
        else:
            hits += key3.second
TrckIDMaxContrib = 100*[-999]
```

Dumping to a Tree - Specifics

- Loop over all hits in all events
- Identify particle characteristics for each event
- Store in predefined variables
 - Most are arrays of ints/floats, size 200

- **TG4HitSegment** Objects
 - Hit segment
 corresponds to a
 single voxel
 - Script specific to
 SFGD & Prototype
- Multiple voxels per event
- Vector of hit segments

• Obtain information from hit segments

```
for hit in hits:
```

hStart = ROOT.TVector3(hit.GetStart().X()/10., hit.GetStart().Y()/10., hit.GetStart().Z()/10.)
hStop = ROOT.TVector3(hit.GetStop().X()/10., hit.GetStop().Y()/10., hit.GetStop().Z()/10.)

Dump MC Production to a Tree

• One Line implementation

python3 dumpTreeNeutron_LANL4.py

--topdir='/path/to/directory'

--first_run=X --last_run=Y

--outfile=/path/to/output/file.root

- X = start energy, Y = end energy (MeV)
- Let's do 300, 301 for consistency with previous example

- DumpTree Directory
 - python3 file
 - Note line **791**
 - Naming convention manually input here
 - Important information located and dumped in loop with line **415**
 - Branches to store information defined from line **558**
 - DATA TYPE MUST BE CONSISTENT
 - Variables branches point to initialized from line **71**

Restructuring Events

- Selection cuts on each entry in tree
 - Organize information to represent neutron interactions
- Event objects
 - Class of objects containing particle interaction information
- Output:
 - Resembles organization of information we expect from data
 - Usable file format for analyses

t.SetBranchAddress("trjXStartPosHitSeg", trjXStartPosHitSeg); Float t trjXStartPosHitSeg 200] t.SetBranchAddress("trjYStartPosHitSeg", trjYStartPosHitSeg); Float t trjYStartPosHitSeg[200] t.SetBranchAddress("trjZStartPosHitSeg", trjZStartPosHitSeg); Float_t trjZStartPosHitSeg[200] t.SetBranchAddress("trjXEndPosHitSeg", trjXEndPosHitSeg); Float t trjXEndPosHitSeg[200]; t.SetBranchAddress("trjYEndPosHitSeg", trjYEndPosHitSeg); Float t trjYEndPosHitSeg[200]; t.SetBranchAddress("trjZEndPosHitSeg", trjZEndPosHitSeg); Float t trjZEndPosHitSeg[200]; t.SetBranchAddress("trjEDepMaxContrib", trjEDepMaxContrib); t.SetBranchAddress("trjStartTMaxContrib", trjStartTMaxContrib); Float t trjEDepMaxContrib[200]; t.SetBranchAddress("trjEndTMaxContrib", trjEndTMaxContrib); Float t trjLenMaxContrib[200]; t.SetBranchAddress("trjPdgMaxContrib", trjPdgMaxContrib); Int t trjPdgMaxContrib[200]; t.SetBranchAddress("trjLenMaxContrib", trjLenMaxContrib); Int t trjIdMaxContrib[200]; t.SetBranchAddress("trjIdMaxContrib", trjIdMaxContrib); Int t trjSubPMaxContrib[200]; t.SetBranchAddress("trjSubPMaxContrib", trjSubPMaxContrib); Int t trjProcMaxContrib[200]; t.SetBranchAddress("trjProcMaxContrib", trjProcMaxContrib);

Defining variables and reading from branches

```
event->SetHitSegStart(ivt, 0, (float)trjXStartPosHitSeg[ivt] + 12.12);
event->SetHitSegStart(ivt, 1, (float)trjYStartPosHitSeg[ivt] + 4.1);
event->SetHitSegStart(ivt, 2, (float)trjZStartPosHitSeg[ivt] + 25.24);
event->SetHitSegStart(ivt, 3, (float)trjStartTMaxContrib[ivt]);
event->SetHitSegEnd(ivt, 0, (float)trjXEndPosHitSeg[ivt] + 12.12);
event->SetHitSegEnd(ivt, 1, (float)trjYEndPosHitSeg[ivt] + 4.1);
event->SetHitSegEnd(ivt, 2, (float)trjZEndPosHitSeg[ivt] + 25.24);
event->SetHitSegEnd(ivt, 3, (float)trjZEndPosHitSeg[ivt] + 25.24);
event->SetHitSegEnd(ivt, 3, (float)trjEndTMaxContrib[ivt]);
event->SetTrajectoryMaxLen(ivt, (float)trjLenMaxContrib[ivt]);
event->SetTrajectoryMaxEnd(ivt, (int)trjPdgMaxContrib[ivt]);
event->SetTrajectoryMaxEDep(ivt, (float)trjEDepMaxContrib[ivt]);
event->SetTrajectoryMaxId(ivt, (int)trjIdMaxContrib[ivt]);
event->SetTrajectoryMaxId(ivt, (int)trjSubPMaxContrib[ivt]);
event->SetTrajectoryMaxId(ivt, (int)trjSubPMaxContrib[ivt]);
```

Using Setter functions after selection Defined in Events.hh (touched upon later)

(int ivt = 0; ivt < 200; ivt++)

Restructure from Tree

- Build:
 - o "data_preprocessing/build/"
 - Remove all files, "cmake ...
 - "make"
- /bin/EventStructure_MC_update
 1000

"/path/to/input/file.root"

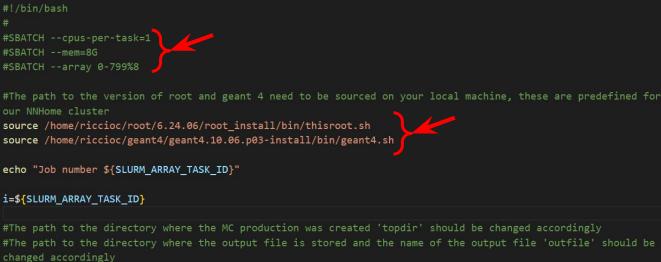
"/path/to/output/file.root"

• Select output file of dumptree

dumpTreeNeutron LANL4.py)as

input file of this script

"/path/to/input/file.root")


- Event Structure Directory
 - Executable located in
 "data preprocessing/bin/"
 - Information setting starts from In
 778
 - Setter functions defined in "Event.hh", located in "analysis/src/classes/"
 - Variables, setter and getter functions defined

13

- DATA TYPE MUST BE CONSISTENT
- C++ code: must be compiled

Sbatch

- Shell scripts produced to batch many jobs
 - $\circ~$ Located in shell_scripts/ directory
 - Each shell script launches Dumptree or Event Structure scripts
 - Hardcoded to batch 800 jobs, 8 jobs at a time can be changed
- Standard format is to use 1 MeV intervals
- Standard format is to use naming convention specified

python3 ../DumpTree/dumpTreeNeutron_LANL4.py --topdir='/storage/shared/LANL/geant4output/2019/ bertini-upstream_material' --first_run=\$((i)) --last_run=\$((i)) --outfile=/storage/shared/mahtani/ Conversion_Results/bertini-upstream_material/DumpTree_Output/DT_\$((i))_MeV.root;

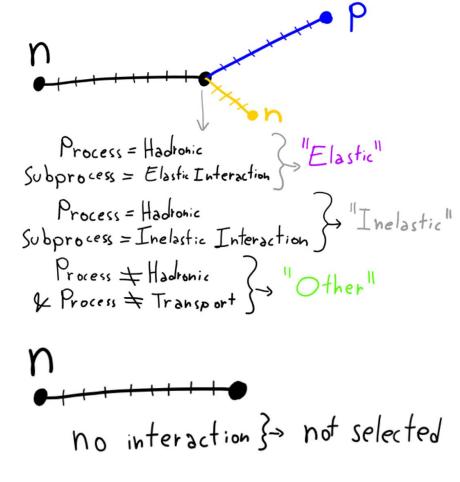
ni/

Example: Dumptree shell script

Note: Always be careful when submitting batch jobs to not take up too many computing

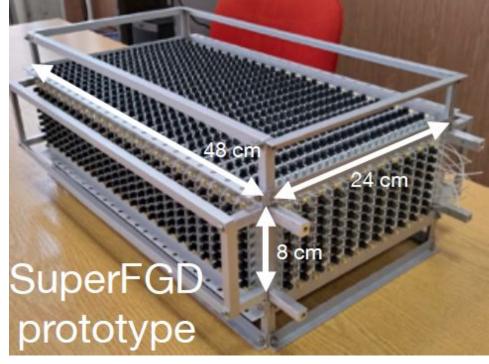
resources

Notable saved variables


- Can determine most particle kinematics with this information
- Hit object
 - Computational
 object resembling
 'hit' from a single
 detector cube

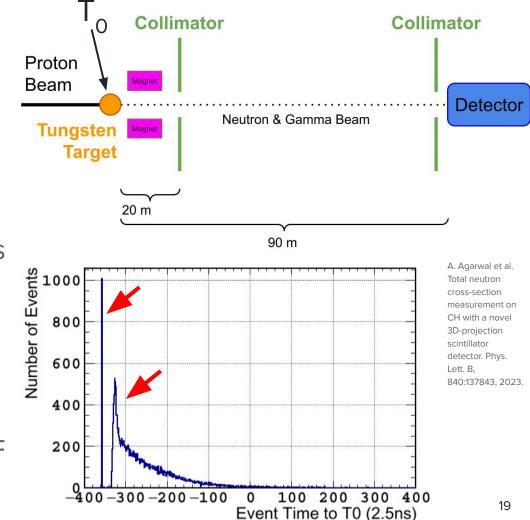
Variable Name	Meaning
trjXStartPosHitSeg	Start position in X of EACH hit segment
trjYStartPosHitSeg	Start position in Y of EACH hit segment
trjZStartPosHitSeg	Start position in Z of EACH hit segment
trjStartTMaxContrib	Start time of EACH hit segment
trjXEndPosHitSeg	End position in X of EACH hit segment
trjYEndPosHitSeg	End position in Y of EACH hit segment
trjZEndPosHitSeg	End position in Z of EACH hit segment
trjEndTMaxContrib	End time of EACH hit segment
trjLenMaxContrib	Length of EACH hit segment
trjPdgMaxContrib	Particle type contributing to each hit segment
trjEDepMaxContrib	Energy deposition in each hit segment
trjIdMaxContrib	Track ID
trjSubPMaxContrib	Subprocess for the FRIST POINT in EACH trajectory
trjProcMaxContrib	Process for the FIRST POINT in EACH trajectory

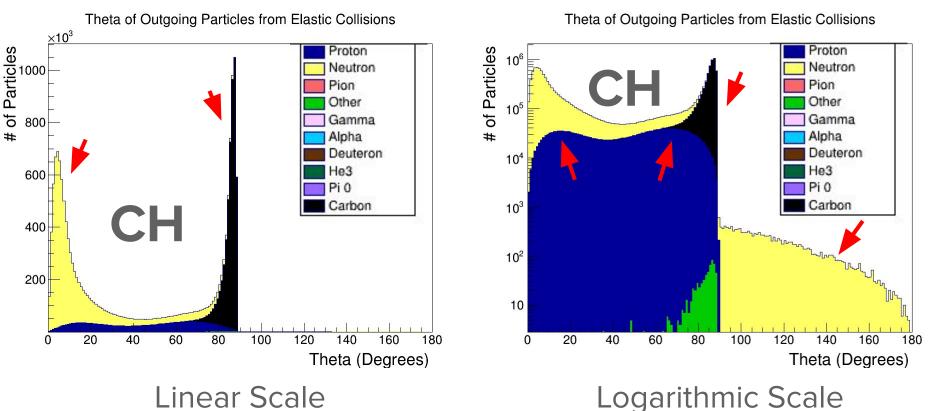
15


Backup

- For our selection, we only look at outgoing particles from the first Hadronic interaction from the incoming neutron
- If the incoming neutron has:
 - An Elastic Hadronic interaction, we classify this as "Elastic"
 - An Inelastic Hadronic interaction, we classify this as "Inelastic"
 - An Non-Hadronic interaction, we classify this as "Other"
 - **No interaction** (if we only have Transport), we do not consider these events
 - Since we don't store the events with no neutron interaction, our stacked histogram for incoming neutron energy is not flat
 - If we were to store these in another category, we would have a flat stacked distribution

Prototypes


- 2 Prototypes constructed to prove SuperFGD technology & study detector performance
 SuperFGD > 24x8x48 cubes
 US-Japan - 8x8x32 cubes
- Assembled at CERN
- Tested at Los Alamos
 National Lab (LANL) Weapons
 Neutron Research (WNR)
 facility
 - Data taken in 2019, 2020


Credit: Ciro Riccio

LANL Beam Test

- Exposure to Neutron beam, 0-800 MeV
- Neutron arrival time relative to gamma → neutron (ToF)
- Measured total neutron cross section on CH
- Results published in Phys. Lett. B
- Proved Capability of SuperFGD to measure neutron kinematics using ToF
- First physics result!

θ of Outgoing Particles from Elastic collisions on CH (Stacked)

Single Track Selection

- Recall: LANL Test Beam Paper Aims:
 - Measured total neutron cross section looking at depletion of # of events along detector
 - Selected neutron interactions with 1 outgoing charged particle - clear vertex identification
- Reduction & restructuring of MC simulations to resemble data
- Computed distances between reconstructed tracks and truth
 - Verify matching between reco & true
- Percentage of particle types contributing to single track events

Purity Analysis

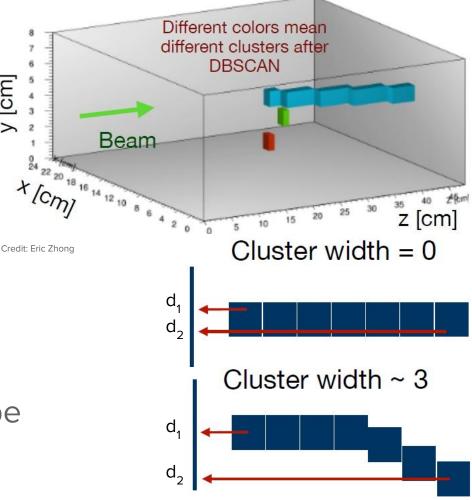
- Largest distance between true and reconstructed tracks is
 - 8.3mm, < half diagonal cube
- Purity analysis
 - Particle with maximum energy deposition per single track event
 - Particle type using MC information

Particle Type	Purity			
р	84.7%			
π^{\pm}	5.9%			
α	2.7%			
e^-	2.5%			
${}^{8}C - {}^{13}C$	1.3%			
^{2}H	1.0%			
e^+	0.3%	0.3%		
^{3}He	0.3%			
μ^+	0.01%			
μ^-	< 0.01%			
γ	< 0.01%			
n	< 0.01%			
Others	1.19%			
First Interaction Process	First Interaction Type	Purity		
(ProcessID)	(SubProcessID)			
	Inelastic Scattering	56.0%		
Hadronic	Elastic Scattering	41.2%		
	Hadron at Rest < 0			
	Compton Scattering	2.3%		
Electromagnetic	Gamma Conversion	0.3%		
	Ionization	< 0.01%		
Decay	Decay	0.2%		

Ongoing & Future Work

- SuperFGD
 - Neutron kinematics measurements for the first time!
 - Data taking in November
- Analyses on simulations of neutron interactions on CH show features consistent with ENDF data
 - Features of Geant4 version require further investigation
- Protons contribute most to single track events
- 56% of single track events from inelastic scattering, 41.2% from elastic
- Comparisons of analysis on MC simulations to 2019, 2020 LANL beam test data
 - Particle multiplicity, outgoing particle angles, kinetic energies, etc.
- Investigations into different software versions to understand limitations of simulation analyses better

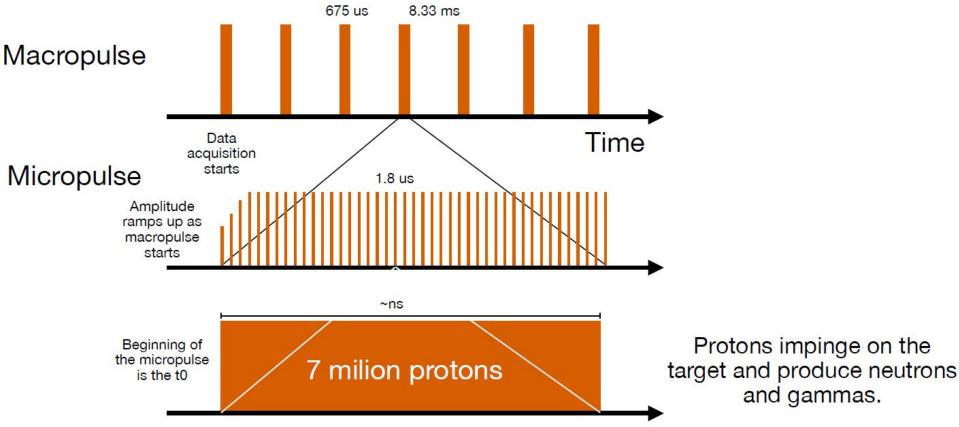
Outline


- G4 & EDep Background
- G4 Theory (particle assignments)
- What we want to do in a nutshell (g4, dt, edep cover this in one slide)
- How do? G4
- How do? DT
 - Variables that are saved
- How do? EDep
 - Note that previous variables are saved, note that we can save the beam flux here too

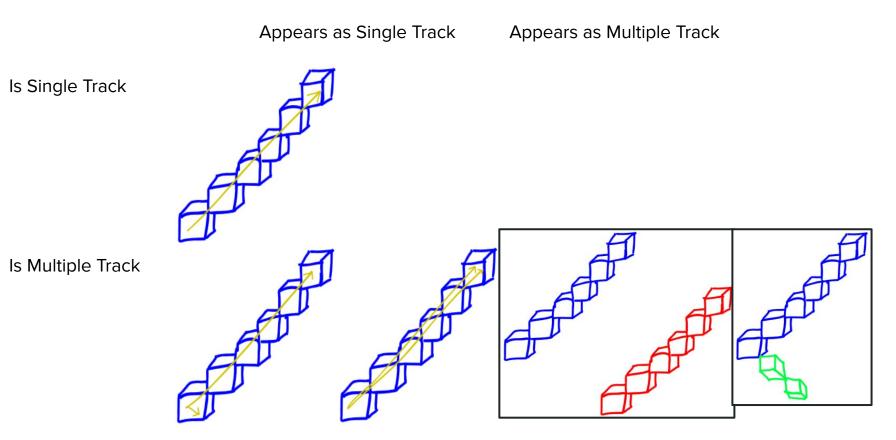
Geant4 & EDepSim

- We aim to create simulations of particles interacting in matter
 - Neutron beam test at LANL
- In order to do this, we employ Geant a toolkit used to simulate particle interactions in matter
- Geant uses MonteCarlo techniques and requires information of the geometry and materials in the detector to perform these simulations
- We use the 4th version of Geant Geant4
- For our purposes, we are also interested in using EDepSim the Energy Deposition
 Simulation a wrapper for Geant4
- Geant4 requires users to provide most programs, and edep-sim serves as a wrapper to do so, allowing users to concentrate on physics
- edep-sim provides a ROOT based file to record the output of GEANT4
- Ede-sim can also be linked as a library to another application and makes the same information as a class
- EdepSim implements energy deposition as ionizing and non-ionizing energy loss, using the EM saturation model provided for Geant4 for all models except for liquid argon (which uses NEST)

Single Track Selection


- Minimum energy deposit threshold
- >3 voxels (cubes), each with PE>20
- Within fiducial volume
- Clustering algorithm (DBSCAN)
- Cluster width within 1.7cm (cube diagonal)

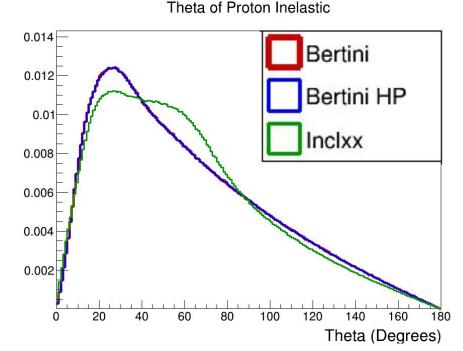
[cm]


>

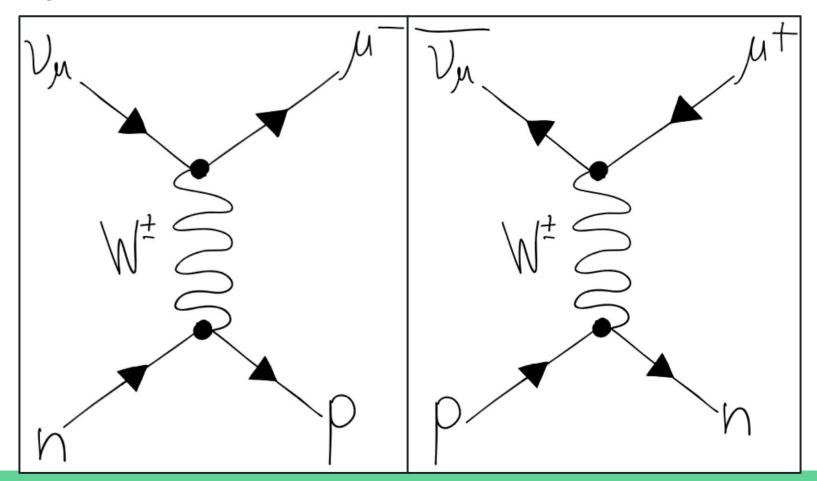
Beam Structure

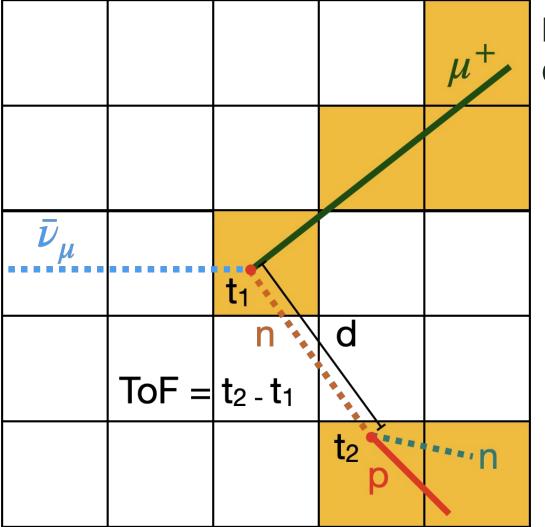
Credit: Ciro Riccio

Single Track Selection: Physics Perspective

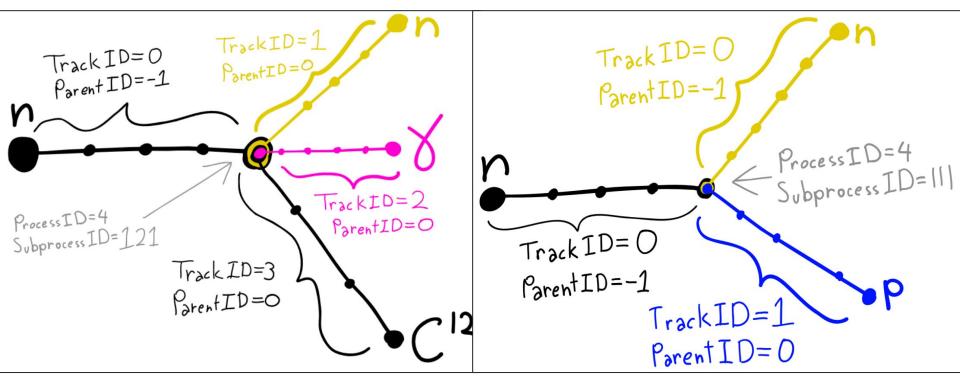


Physics List Comparisons


- Different models for particle-nuclei interactions
 - Expect: mostly effect neutron inelastic scattering on carbon

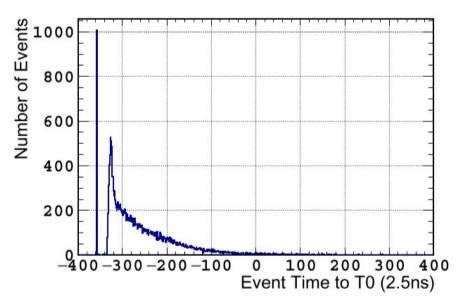

• Bertini

- Uses Fermi Gas model
- Small nucleon size relative to medium size
- Bertini High Precision (HP)
 - Extension of Bertini to 0-20 MeV
- Inclxx
 - Leige Intranuclear Cascade model
 - Reactions induced by light nuclei


Examples of CCQE interactions

Neutrino Interactions in a Cubic Detector

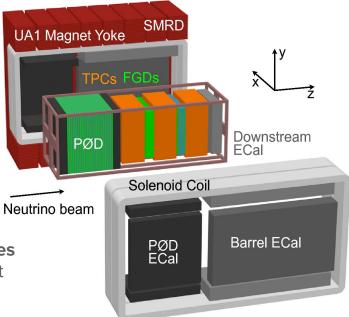
Geant4 Interaction Process Examples



Non-Hadronic Process Interactions for Incoming Neutrons

Process Distribution for Non-Hadronic Processes		Process ID	Process Type
	hNonHadProcess Entries 4.876191e+07 Mean 2.112 Std Dev 0.6616	0	NotDefined
10 ⁷		1	Transportation
10 ⁶		2	Electromagnetic
10 ⁵		3	Optical
		4	Hadronic
10 ⁴		5	Photolepton_hadro n
0 2 4 6 8 10	10	6	Decay
Process ; # of F	Particles	7	General
		8	Parameterisation

LANL Beam Test Results


- Improvements to measurements of neutron cross section for 500-688 MeV
 - $\sigma_{99-688MeV} = 0.36 \pm 0.05$ barn • $\chi^2/d.o.f = 22.03/38$
- Proved Capability of SuperFGD to measure neutron kinematics using ToF
- First physics result!

A. Agarwal et al. Total neutron cross-section measurement on CH with a novel 3D-projection scintillator detector. Phys. Lett. B, 840:137843, 2023.

Near Detector

- UA1 Magnet
 - Measure momenta with good resolution
 - Measure sign of charged particles
- Pi-Zero Detector
 - Measures $v_{\mu} + n \Rightarrow v_{\mu} + n + \pi^{0} + X$ with the same neutrino beam flux that reach SK
- Time Projection Chamber (TPC)
 - Determines number, orientation, momenta of charged particles
 - Determines event rate as fxn of neutrino energy, ionization left for each particle
 - PID from ionization
- Fine Grain Detector (FGD)
 - Tracks charged particles
- Electromagnetic Calorimeter
 - Photon detection, energy and direction measurement
- Side muon range Detector
 - Records muons escaping with high angle relative to the beam (θ)
 - Identify beam-related event interactions in cavity walls and magnet

