Monte Carlo Studies

Kuunal Kelash Mahtani June 20th, 2023

Los Alamos National Lab (LANL) Beam Test

- SuperFGD Prototype constructed to prove SuperFGD technology & study detector performance
- Tested at LANL Weapons Neutron Research (WNR) facility
 Data taken in 2019, 2020
- Exposure to Neutron & Gamma beam, 0-800 MeV Neutrons
- Neutron arrival time relative to gamma → neutron (ToF)
- Measured total neutron cross section on CH
 - Published in Phys. Lett. B

Number of Events

A. Agarwal et al. Total neutron cross-section measurement on CH with a novel 3D-projection 2 scintillator detector. Phys. Lett. B, 840:137843, 2023.

Monte Carlo (MC) Simulation Analysis

- Simulation of neutron interactions on a hydrocarbon (CH) target
 - Outgoing particle kinematics
 - Kinetic Energy, Momentum, θ (angle relative to beam)
 - Collision type (Elastic & Inelastic)
 - Particle Type (Proton, Neutron, etc.)
- First Hadronic interaction
- Vertex Cut
- Analyses on hydrogen & carbon target
- MC created using Geant4
- 1 Trajectory/tracked particle
 - Particle number in stack unique to trajectory
- Kinematics information stored per point
 - Process, SubProcess, total energy, momentum, position, etc.
- Notable results presented

Elastic neutron interaction on Hydrogen, outgoing particles: proton and neutron

θ of Outgoing Particles from Elastic collisions on CH (Stacked)

θ of Outgoing Neutrons from Elastic collisions (log scale)

- Sharp drop at ~90°
 - Elastic scattering of neutron on Hydrogen
- Dip Left peak higher than right peak

Cross Section as a function of $\boldsymbol{\theta}$

D. A. Brown et al. ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data. Nucl. Data Sheets, 148:1–142, 2018.

• Cross section changes as fxn of angle • Dip in cross section as a function of angle

d6/dn (b/sr)

Dip in cross section as a function of angle
Dip location changes as a function of energy

θ of Outgoing Protons from Elastic collisions (linear scale)

- Dip Right peak higher than left peak
 - 90° angle between p & n

θ of Outgoing Carbons from Elastic collisions (log scale)

- Sharp drop at 90°
 - Classical Kinematics → m_{c12} >> m_n

Kinetic Energy of Incoming Neutrons which interact Inelastically with Hydrogen

~75MeV Difference

• Future work

Momentum and $Cos(\theta)$ of Outgoing Particles from Inelastic

Scattering on CH (stacked) Momentum, Inelastic Cos(Theta) of Particles, Inelastic <u>×1</u>0³ of Particles Proton Proton Neutron Neutron Pion Pion Other Other Gamma Gamma CH CH # Alpha Alpha Deuteron Deuteron 5000 2000 He₃ He3 Pi 0 Pi 0 4000 Carbon Carbon 1500 3000 1000 2000 500 1000 -0.4 -0.8 -0.6 -0.20.2 0.4 0.6 0.8 200 800 1000 1200 1400 0 0 400 600 Cos (Theta) (Unitless) Momentum (MeV)

Linear Scale

Single Track Selection

- Recall: LANL Test Beam Paper Aims:
 - Measured total neutron cross section looking at depletion of # of events along detector
 - Selected neutron interactions with 1 outgoing charged particle - clear vertex identification
- Reduction & restructuring of MC simulations to resemble data
- Computed distances between reconstructed tracks and truth
 - Verify matching between reco & true
- Percentage of particle types contributing to single track events

Purity Analysis

- Largest distance between true and reconstructed tracks is
 - 8.3mm, < half diagonal cube
- Purity analysis
 - Particle with maximum energy deposition per single track event
 - Particle type using MC information

Particle Type	Purity				
p	84.7%				
π^{\pm}	5.9%	5.9%			
α	2.7%	2.7%			
e^{-}	2.5%				
${}^{8}C - {}^{13}C$	1.3%				
^{2}H	1.0%				
e^+	0.3%				
^{3}He	0.3%	0.3%			
μ^+	0.01%				
μ^{-}	< 0.01%				
γ	< 0.01%				
n	< 0.01%				
Others	1.19%				
First Interaction Process	First Interaction Type	Purity			
(ProcessID)	(SubProcessID)				
	Inelastic Scattering	56.0%			
Hadronic	Elastic Scattering	41.2%			
	Hadron at Rest	< 0.01%			
	Compton Scattering	2.3%			
Electromagnetic	Gamma Conversion	0.3%			
	Ionization	< 0.01%			
Decay	Decay	0.2%			

Conclusions & Future Work

- Analyses on simulations of neutron interactions on CH show features consistent with ENDF data
 - Features of Geant4 version require further investigation
- Protons contribute most to single track events
- 56% of single track events from inelastic scattering, 41.2% from elastic
- MA Thesis successfully defended
- Comparisons of analysis on MC simulations to 2019, 2020 LANL beam test data
 - Particle multiplicity, outgoing particle angles, kinetic energies, etc.
- Investigations into different software versions to understand limitations of simulation analyses better
- Tech note in progress

Thank you very much for your attention!

601

Apot

References

Image Citations

- T2K. "T2K_TOKAI_TO_KAMIOKA." *Science and Technology Facilities Council* | *Particle Physics Department (PPD)*, Science and Technology Facilities Council | Particle Physics Department (PPD), https://www.ppd.stfc.ac.uk/Pages/T2K.aspx.
- "NeutrinoArePoster_Final_v2." *Iowa State University* | *Neutrino*, Iowa State University of Science and Technology, https://neutrino.physics.iastate.edu/project/dune.
- L. Munteanu, S. Suvorov, S. Dolan, D. Sgalaberna, S. Bolognesi, S. Manly, G. Yang, C. Giganti, K. Iwamoto, and C. Jes us-Valls. New method for an improved antineutrino energy reconstruction with charged-current interactions in next-generation detectors. *Phys. Rev. D*, 101:092003, May 2020.
- A. Agarwal et al. Total neutron cross-section measurement on CH with a novel 3D-projection scintillator detector. *Phys. Lett. B*, 840:137843, 2023.

Content Citations

- K. Abe et al. The T2K Experiment. Nucl. Instrum. Meth. A, 659:106–135, 2011.
- [2] Y. Fukuda et al. The Super-Kamiokande detector. Nucl. Instrum. Meth. A, 501:418–462, 2003.
- [3] A. Agarwal et al. Total neutron cross-section measurement on CH with a novel 3D-projection scintillator detector. *Phys. Lett. B*, 840:137843, 2023.
- [4] MICHAEL F. L'ANNUNZIATA. 1 nuclear radiation, its interaction with matter and radioisotope decay. In Michael F. L'Annunziata, editor, *Handbook* of *Radioactivity Analysis (Second Edition)*, pages 1–121. Academic Press, San Diego, second edition edition, 2003.
- [5] D. A. Brown et al. ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data. *Nucl. Data Sheets*, 148:1–142, 2018.
- [6] Reference physics lists. https://geant4.web.cern.ch/node/155.
- [7] Zbigniew Jakubowski and Michael Kobel. A verified upgrade of the gheisha 67 simulation of particle interactions. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 297(1):60–86, 1990.

Content Citations^[8]

- [8] John Allison et al. Geant4 developments and applications. *IEEE Trans. Nucl. Sci.*, 53:270, 2006.
- [9] S. Agostinelli et al. GEANT4-a simulation toolkit. Nucl. Instrum. Meth. A, 506:250-303, 2003.
- [10] D.H. Wright and M.H. Kelsey. The geant4 bertini cascade. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 804:175–188, 2015.
- [11] All geant releases. https://geant4.web.cern.ch/download/all.
- [12] A Heikkinen, A Boudard, P Kaitaniemi, and G Folger. A Geant4 physics list for spallation and related nuclear physics applications based on INCL and ABLA models. J. Phys.: Conf. Ser., 219:032043, 2010.
- [13] edep-sim : An energy deposition simulation. https://github.com/ ClarkMcGrew/edep-sim.
- [14] Geant4 file list. https://apc.u-paris.fr/~franco/g4doxy/html/files. html.
- [15] Monte carlo particle numbering scheme. https://pdg.lbl.gov/2020/ reviews/rpp2020-rev-monte-carlo-numbering.pdf.
- [16] Neutron geant4 simulation analysis. https://gitlab.com/ neutron-lanltb-analysis/neutrong4simulationanalysis.
- [17] Conversion & single track selection scripts. https://git.t2k.org/sfgd_ tools/sfgd_framework.

Backup

Contents

- Introductions & Motivation
 - Basic theory behind neutrino oscillations
 - T2K Experiment
 - SuperFGD & Assembly
- Experimental Setup
 - LANL Beam Test on SuperFGD Prototype
- MC Simulation Analysis
 - Analysis of outgoing particles from neutron interactions on Hydrocarbon
- Single Track Event Selection
- Conclusions & Future Work

Single Track Selection

- Minimum energy deposit threshold
- >3 voxels (cubes), each with PE>20
- Within fiducial volume
- Clustering algorithm (DBSCAN)
- Cluster width within 1.7cm (cube diagonal)

[cm]

>

Beam Structure

Credit: Ciro Riccio

Single Track Selection: Physics Perspective

Momentum of Outgoing Particles from Inelastic Scattering on Carbon and Hydrogen Targets (stacked, log scale)

Hydrogen Target

Carbon Target

Physics List Comparisons

- Different models for particle-nuclei interactions
 - Expect: mostly effect neutron inelastic scattering on carbon

• Bertini

- Uses Fermi Gas model
- Small nucleon size relative to medium size
- Bertini High Precision (HP)
 - Extension of Bertini to 0-20 MeV
- Inclxx
 - Leige Intranuclear Cascade model
 - Reactions induced by light nuclei

25

Kinetic Energy of Outgoing Neutrons from Elastic collisions

(linear scale)

- Sharp drop at 800MeV
 - Elastic scattering of neutron on Carbon
- Dip ~350MeV
 - Cross Section

Neutron Interactions w/ Hydrogen (Inelastic)

$$E_{Threshold} = \frac{\left(\sum_{i=0}^{j} m_i c^2\right)^2 - \left(\sum_{j=0}^{j} m_j c^2\right)^2}{2m_n c^2}$$

 $i \in \text{incident particle \& target } j \in \text{products}$

(Some) Neutron on Free Proton Possible Interaction Mechanisms

$$1)n + p \to n + n + \pi^+$$

$$2)n + p \to p + p + \pi$$

$$3)n + p \to D + \pi^0$$

$$4)n + p \to n + p + \pi^0$$

Threshold Energy for Incoming Neutrons for these interactions to take place (products at rest) ~290MeV ~286MeV ~275MeV

Cross Section as a function of Incoming Neutron K.E.

D. A. Brown et al. ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data. Nucl. Data Sheets, 148:1–142, 2018.

Cross Section as a function of Energy for Outgoing Particles from Inelastic Scattering on Hydrogen

10 ⁻² 10 ⁻³	10^{-2} 10^{-3} 10^{-4}			Particle Type Production	Integrated Cross Section for 0-800 MeV using ENDF Data		
Section (ba	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		π^+	~0.511 barns	~2.702		
10^{-7} 10^{-8}		Pi0 Neutron		π^0	~1.676 barns	barns	
10 ⁻⁹	¥ ▼				Total	~2.709 barns	
	300 400	500 Energy (MeV	600 ′)	700 800	L	1	

D. A. Brown et al. ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data. Nucl. Data Sheets, 148:1–142, 2018.

- → This version of software doesn't track π^{0} 's?
- Future work

θ of Outgoing Particles from Inelastic Scattering on CH (stacked)

30

θ of Outgoing Particles from Inelastic Scattering on Carbon and Hydrogen Targets (stacked, log scale)

Hydrogen Target

Carbon Target

Notable Features for θ of Outgoing Particles from Inelastic Collisions on Carbon (log scale)

• θ_{γ} isotropic distribution • $m_{\gamma} = 0$

- Peak at $\theta_{12C} \cong 85^{\circ}$
 - Feature of elastic scattering
- Gradual decline for $\theta_{12C} > 90^{\circ}$
 - Inelastic → CoM Energy not

conserved

Kinetic Energy of Incoming Neutrons which interact Hadronically on Hydrogen Target (stacked)

- Start seeing inelastic processes occur at ~350 MeV
- Recall: Minimum threshold energy for incoming neutrons ~275 MeV
- ~75MeV Difference
 Future work

Kinetic Energy of Outgoing Particles from Inelastic Scattering on Carbon Target (stacked)

Examples of CCQE interactions

Cross Section as a function of Energy for Outgoing Particles from Inelastic Scattering on Carbon

Cross Sections for Various Particles (Log-Log Scale)

D. A. Brown et al. ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data. Nucl. Data Sheets, 148:1–142, 2018.
Kinetic Energy of Outgoing Particles from Inelastic Collisions on Hydrogen (logarithmic scale)

Kinetic Energy of Outgoing Particles from Inelastic Collisions on Hydrogen

(logarithmic scale)

Kinetic Energy of Outgoing Particles from Inelastic Collisions on Carbon (Stacked) Cross Section as a function of Energy for Outgoing

Kinetic Energy of Outgoing Particles, Inelastic

D. A. Brown et al. ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data. Nucl. Data Sheets, 148:1–142, 2018.

Momentum of Outgoing Particles from Inelastic Collisions on Carbon (Stacked) Momentum, Inelastic Momentum, Inelastic

Momentum (MeV)

Momentum Alpha, Inelastic

42

θ of Outgoing Particles from Inelastic collisions on Carbon (log scale)

θ of Outgoing Particles from Inelastic collisions on Carbon (log scale)

$\boldsymbol{\theta}$ of Outgoing Particles from Inelastic Scattering on Carbon

Theta of Outgoing Particles from Inelastic Collisions

Target (stacked, log scale)

Theta of Outgoing Particles from Inelastic Collisions

45

$\boldsymbol{\theta}$ of Outgoing Particles from Inelastic Scattering on Hydrogen

Theta of Outgoing Particles from Inelastic Collisions

Targets (stacked, log scale)

Theta of Outgoing Particles from Inelastic Collisions

Kinetic Energy of Outgoing Particles from Inelastic Collisions on Hydrogen (logarithmic scale)

Recall: E_{Thresh} ≅ 275 MeV

 \circ ~521 MeV E_{Max} Pion (800 MeV neutron, max energy transfer)

$$n + p \rightarrow n + p + \gamma$$

Outgoing Particles from Elastic collisions on CH

• $E_{\text{Deuteron}} < 20 \text{ MeV} \rightarrow E_{\pi 0} < 485 \text{ MeV}$ • No π^0 production whatsoever

Kinetic Energy of Outgoing Protons from Elastic collisions

(linear scale)

- Gradual decline
 - Matches cross section

Momentum of Outgoing Neutrons from Elastic collisions

(log scale)

Dip at ~600MeV

Momentum of Outgoing Protons from Elastic collisions

(log scale)

Momentum of Outgoing Carbons from Elastic collisions

(log scale)

Outgoing Particles from Elastic collisions on CH

Neutron Elastic Interactions on Hydrogen

- Q_{Max} ≅ 0.99E
- Similar N and P Kinetic Energy distributions
- Similar N and P angle w.r.t beam
 (*θ*) distributions
 - 90° difference in notable

Neutrino Interactions in a Cubic Detector

Geant4 Interaction Process Examples

Neutron Elastic Interactions on Carbon

- $m_n << m_{12C} \rightarrow \phi \in [90^\circ, ~148^\circ]$
 - Assuming max energy transfer
 - Lower energy transfer → $\phi \in$ [90°,~180°)
- Q_{Max} ≅ 0.28E
 - 800 MeV neutron → 227 MeV 12 C
- ¹²C Max Energy ≅ 227
- *Θ*_n∈(0°,~180°)
- *θ*_{12C} ∈[0°,90°)
 - Mass difference

Non-Hadronic Process Interactions for Incoming Neutrons

Process Distribution for Non-Hadronic Processes		Process ID	Process Type
E	hNonHadProcess		посезатуре
107	Entries 4.876191e+07 Mean 2.112 Std Dev 0.6616	0	NotDefined
		1	Transportation
10 ⁶		2	Electromagnetic
10^{5} 10^{4} 10^{3} 2 4 6 8 Process ; # of P		3	Optical
		4	Hadronic
		5	Photolepton_hadro n
	10 Particles	6	Decay
		7	General
		8	Parameterisation

- Consider the case of neutron elastic scattering on free proton (hydrogen)
- We have 3 Trajectories, one for each particle: Incoming Neutron, Outgoing **Neutron, Outgoing Proton**
- Each trajectory has a TrackID and a ParentID; these index the particle as well as it's parent
- Each trajectory has multiple points, and each point has a Subprocess ID and a Process ID
- The Process ID tells us the interaction process (Hadronic Interaction, Electromagnetic Interaction, etc.)
- The Subprocess ID tells us the interaction type (Elastic Scattering, Inelastic Scattering, Fusion, Capture, etc.)

- etc

- For our selection, we only look at outgoing particles from the first Hadronic interaction from the incoming neutron
- If the incoming neutron has:
 - An Elastic Hadronic interaction, we classify this as "Elastic"
 - An Inelastic Hadronic interaction, we classify this as "Inelastic"
 - An Non-Hadronic interaction, we classify this as "Other"
 - **No interaction** (if we only have Transport), we do not consider these events
 - Since we don't store the events with no neutron interaction, our stacked histogram for incoming neutron energy is not flat
 - If we were to store these in another category, we would have a flat stacked distribution

LANL Beam Test Results

- Improvements to measurements of neutron cross section for 500-688 MeV
 - $\sigma_{99-688MeV} = 0.36 \pm 0.05 \text{ barn}$ • $\chi^2/\text{d.o.f} = 22.03/38$
- Proved Capability of SuperFGD to measure neutron kinematics using ToF
- First physics result!

A. Agarwal et al. Total neutron cross-section measurement on CH with a novel 3D-projection scintillator detector. Phys. Lett. B, 840:137843, 2023.

Backup: Why are neutrino oscillations described by the PMNS matrix?

- SM $\rightarrow v_e, v_\mu, v_\tau$ • Neutrinos are SM particles and we have 3 flavours
- 3 flavours represented by eigenstates
 - Complete, orthonormal basis
- Also: 3 mass eigenstates
 - Complete, orthonormal basis
- Flavour eigenbasis ≠ mass eigenbasis !
- Flavour eigenbasis = mass eigenbasis * Unitary transformation
- Unitary transformation = PMNS matrix

Outgoing Particles from Elastic collisions on CH

Kinetic Energy of Outgoing Particles, Inelastic

How is the PMNS matrix related to the parameters we are interested in measuring?

- PMNS = 3x3 matrix; 9 d.o.f.
 - Actually we can fully describe it using four free parameters
 - Reasoning beyond the scope of this thesis
- These four free parameters are our parameters of interest
 - We can rewrite the PMNS matrix such that each of these parameters is expressed in a different matrix (shown above in presentation)

Near Detector

- UA1 Magnet
 - Measure momenta with good resolution
 - Measure sign of charged particles
- Pi-Zero Detector
 - Measures $v_{\mu} + n \Rightarrow v_{\mu} + n + \pi^{0} + X$ with the same neutrino beam flux that reach SK
- Time Projection Chamber (TPC)
 - Determines number, orientation, momenta of charged particles
 - Determines event rate as fxn of neutrino energy, ionization left for each particle
 - PID from ionization
- Fine Grain Detector (FGD)
 - Tracks charged particles
- Electromagnetic Calorimeter
 - Photon detection, energy and direction measurement
- Side muon range Detector
 - Records muons escaping with high angle relative to the beam (θ)
 - Identify beam-related event interactions in cavity walls and magnet

Neutrino Oscillation

Near Detector

- INGRID
- Beam direction Ο Beam Profile \bigcirc 23 ND280 θ_{13} Flux Oscillation \bigcirc • Cross Sections Parameters **S** \boldsymbol{P} • Super Kamiokande • CC candidates $v_{\rm e}/v_{\rm e}$ candidates
 - v_{μ}/v_{μ} candidates

Backup: Signal Contamination

$$v_{\gamma} > v_{\text{neutron (high E)}} > v_{\text{neutron (low E)}}$$
Path

More SuperFGD Assembly Pictures

SuperFGD Assembly

Credit: Jiayu Ji

Credit: Kuunal Mahtani

Credit: Kuunal Mahtani

