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Los Alamos National Lab 
(LANL) Beam Test

● Neutron arrival time relative to 
gamma → neutron (ToF)

● Measured total neutron cross section 
on CH
○ Published in Phys. Lett. B 2

Credit: Ciro Riccio

A. Agarwal et al. Total neutron cross-section measurement on CH with a novel 3D-projection 
scintillator detector. Phys. Lett. B, 840:137843, 2023.

● SuperFGD Prototype constructed to prove 
SuperFGD technology & study detector 
performance

● Tested at LANL Weapons Neutron 
Research (WNR) facility
○ Data taken in 2019, 2020

● Exposure to Neutron & Gamma 
beam, 0-800 MeV Neutrons



● Simulation of neutron interactions on a hydrocarbon (CH) target
Monte Carlo (MC) Simulation Analysis
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○ Outgoing particle kinematics
■ Kinetic Energy, Momentum, θ (angle relative 

to beam)
○ Collision type (Elastic & Inelastic)
○ Particle Type (Proton, Neutron, etc.)

● First Hadronic interaction
● Vertex Cut
● Analyses on hydrogen & carbon target
● MC created using Geant4
● 1 Trajectory/tracked particle

○ Particle number in stack unique to trajectory
● Kinematics information stored per point

○ Process, SubProcess, total energy, momentum, position, etc.
● Notable results presented

Elastic neutron interaction on Hydrogen, 
outgoing particles: proton and neutron
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θ of Outgoing Particles from Elastic collisions on CH 
(Stacked)

Logarithmic ScaleLinear Scale

CH

CH
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θ of Outgoing Neutrons from Elastic collisions (log scale)

● Dip - Left peak higher than right peak

● Sharp drop at ~90°
○ Elastic scattering of neutron on Hydrogen

CH
C

H



● Dip in cross section as a function of angle
● Dip location changes as a function of energy
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Cross Section as a function of 𝜃

● Cross section changes as fxn of angle

D. A. Brown et al. ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data. Nucl. 
Data Sheets, 148:1–142, 2018.

C H
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θ of Outgoing Protons from Elastic collisions (linear scale)

● Dip - Right peak higher than left peak
○ 90° angle between p & n

HCH
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θ of Outgoing Carbons from Elastic collisions (log scale)

● Sharp drop at 90°
○ Classical Kinematics → mC12 >> mn

CH C



Kinetic Energy of Incoming Neutrons which interact Inelastically 
with Hydrogen
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(Some) Neutron on Free 
Proton Possible 
Interaction Channels

EThresh 
(products at 
rest)

~290MeV

~286MeV

~275MeV

~279MeV

~75MeV Difference

● Future work

H



10

Momentum and Cos(θ) of Outgoing Particles from Inelastic 
Scattering on CH (stacked)

Linear Scale

CH CH



● Recall: LANL Test Beam Paper Aims:
○ Measured total neutron cross section looking at depletion 

of # of events along detector
■ Selected neutron interactions with 1 outgoing charged 

particle - clear vertex identification
● Reduction & restructuring of MC simulations to resemble data
● Computed distances between reconstructed tracks and truth

○ Verify matching between reco & true
● Percentage of particle types contributing to single track events
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Single Track Selection



● Largest distance between true 
and reconstructed tracks is 
8.3mm, < half diagonal cube

● Purity analysis
○ Particle with maximum energy 

deposition per single track 
event

○ Particle type using MC 
information
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Purity Analysis



● Analyses on simulations of neutron interactions on CH show features 
consistent with ENDF data
○ Features of Geant4 version require further investigation

● Protons contribute most to single track events
● 56% of single track events from inelastic scattering, 41.2% from elastic
● MA Thesis successfully defended

● Comparisons of analysis on MC simulations to 2019, 2020 LANL beam test 
data
○ Particle multiplicity, outgoing particle angles, kinetic energies, etc.

● Investigations into different software versions to understand limitations of 
simulation analyses better

● Tech note in progress
13

Conclusions & Future Work
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Thank you very much 
for your attention!
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Backup
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Contents
● Introductions & Motivation

○ Basic theory behind neutrino oscillations
○ T2K Experiment
○ SuperFGD & Assembly

● Experimental Setup
○ LANL Beam Test on SuperFGD Prototype

● MC Simulation Analysis
○ Analysis of outgoing particles from neutron interactions on 

Hydrocarbon
● Single Track Event Selection
● Conclusions & Future Work
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● Minimum energy deposit 
threshold

● >3 voxels (cubes), each 
with PE>20

● Within fiducial volume
● Clustering algorithm 

(DBSCAN)
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Single Track Selection

Credit: Ciro Riccio

d1

d2

d1

d2

Credit: Eric Zhong

● Cluster width within 1.7cm (cube 
diagonal)
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Beam Structure

Credit: Ciro Riccio
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Single Track Selection: Physics Perspective
Appears as Single Track Appears as Multiple Track

Is Single Track

Is Multiple Track
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Hydrogen TargetCarbon Target

Momentum of Outgoing Particles from Inelastic Scattering on 
Carbon and Hydrogen Targets (stacked, log scale)



● Different models for particle-nuclei 
interactions
○ Expect: mostly effect neutron 

inelastic scattering on carbon
● Bertini

○ Uses Fermi Gas model
○ Small nucleon size relative to 

medium size
● Bertini High Precision (HP)

○ Extension of Bertini to 0-20 MeV
● Inclxx

○ Leige Intranuclear Cascade model
○ Reactions induced by light nuclei
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Physics List Comparisons
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Hydrocarbon Target

Kinetic Energy of Outgoing Neutrons from Elastic collisions 
(linear scale)

Carbon Target Hydrogen Target

● Dip - ~350MeV
○ Cross Section

● Sharp drop at 800MeV
○ Elastic scattering of neutron on Carbon



(Some) Neutron on Free Proton 
Possible Interaction Mechanisms
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Threshold Energy for Incoming Neutrons for 
these interactions to take place (products at rest)

~290MeV

~286MeV

~275MeV

~279MeV

Neutron 
Interactions w/ 
Hydrogen (Inelastic)
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Cross Section as a function of Incoming Neutron K.E.

Carbon Target Hydrogen Target

D. A. Brown et al. ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data. Nucl. 
Data Sheets, 148:1–142, 2018.



29

D. A. Brown et al. ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data. Nucl. 
Data Sheets, 148:1–142, 2018.

Cross Section as a function of Energy for Outgoing 
Particles from Inelastic Scattering on Hydrogen

Particle 
Type 
Production

Integrated Cross Section 
for 0-800 MeV using 
ENDF Data

𝜋+ ~0.511 barns
~2.702 
barns𝜋- ~0.515 barns

𝜋0 ~1.676 barns

Total ~2.709 barns

→ This version of software doesn’t track 𝜋0’s?
● Future work
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θ of Outgoing Particles from Inelastic Scattering on CH (stacked)

Logarithmic ScaleLinear Scale
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Hydrogen TargetCarbon Target

θ of Outgoing Particles from Inelastic Scattering on Carbon 
and Hydrogen Targets (stacked, log scale)
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Notable Features for θ of Outgoing Particles from 
Inelastic Collisions on Carbon (log scale)

● θ𝛾 isotropic distribution 
○ m𝛾 = 0

● Peak at θ12C ≅ 85°
○ Feature of elastic scattering

● Gradual decline for θ12C > 90°
○ Inelastic → CoM Energy not 

conserved



Kinetic Energy of Incoming Neutrons which interact Hadronically 
on Hydrogen Target (stacked)

● Start seeing inelastic 
processes occur at 
~350 MeV

● Recall: Minimum 
threshold energy for 
incoming neutrons 
~275 MeV

● ~75MeV Difference
○ Future work
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Kinetic Energy of Outgoing Particles from Inelastic Scattering on 
Carbon Target (stacked)

Logarithmic ScaleLinear Scale



Examples of CCQE interactions
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36D. A. Brown et al. ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross 
Sections, New Standards and Thermal Scattering Data. Nucl. Data Sheets, 148:1–142, 2018.

Cross Section as a function of Energy for Outgoing Particles 
from Inelastic Scattering on Carbon
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Kinetic Energy of Outgoing Particles from Inelastic 
Collisions on Hydrogen (logarithmic scale)
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Kinetic Energy of Outgoing Particles from Inelastic Collisions on Hydrogen 
(logarithmic scale)

● Higher mass → lower EMax

○ Conservation of Momentum



D. A. Brown et al. ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data. Nucl. 
Data Sheets, 148:1–142, 2018.

Cross Section as a function of Energy for Outgoing 
Particles from Inelastic Scattering on Carbon
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Kinetic Energy of Outgoing Particles from Inelastic 
Collisions on Carbon (Stacked)
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Momentum of Outgoing Particles from Inelastic Collisions on 
Carbon (Stacked)
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θ of Outgoing Particles from Inelastic collisions on Carbon (log scale)
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θ of Outgoing Particles from Inelastic collisions on Carbon (log scale)
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Hydrogen TargetCarbon Target

θ of Outgoing Particles from Inelastic Scattering on Carbon 
Target (stacked, log scale)
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Hydrogen TargetCarbon Target

θ of Outgoing Particles from Inelastic Scattering on Hydrogen 
Targets (stacked, log scale)
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Kinetic Energy of Outgoing Particles from Inelastic 
Collisions on Hydrogen (logarithmic scale)

● Recall: EThresh ≅ 275 MeV
○ ~521 MeV EMax Pion (800 MeV neutron, max energy transfer) 
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Outgoing Particles from Elastic collisions on CH 
(Stacked)

● EDeuteron < 20 MeV → E𝜋0 < 485 MeV
○ No 𝜋0 production whatsoever
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Hydrocarbon Target

Kinetic Energy of Outgoing Protons from Elastic collisions 
(linear scale)

Carbon Target Hydrogen Target

● Gradual decline
○ Matches cross section
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Hydrocarbon Target

Momentum of Outgoing Neutrons from Elastic collisions 
(log scale)

Carbon Target Hydrogen Target

● Dip at ~600MeV
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Momentum of Outgoing Protons from Elastic collisions 
(log scale)

Hydrocarbon Target Carbon Target Hydrogen Target
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Momentum of Outgoing Carbons from Elastic collisions 
(log scale)

Hydrocarbon Target Carbon Target Hydrogen Target
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Outgoing Particles from Elastic collisions on CH 
(Stacked)

𝜃 Kinetic Energy Momentum



● mn ≅ mp → 𝜙=90°

Neutron Elastic Interactions on Hydrogen

● QMax ≅ 0.99E

● Similar N and P Kinetic Energy 
distributions

● Similar N and P angle w.r.t beam 
(𝛳) distributions
○ 90° difference in notable 

features
54

𝜙
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Neutrino Interactions in a 
Cubic Detector



56

Geant4 Interaction 
Process Examples



● mn << m12C → 𝜙∈[90°,~148°]
○ Assuming max energy transfer
○ Lower energy transfer → 𝜙∈

[90°,~180°)
● QMax ≅ 0.28E

○ 800 MeV neutron → ~227 MeV 12C
● 12C Max Energy ≅ 227
● 𝛳n∈(0°,~180°)
● 𝛳12C∈[0°,90°)

○ Mass difference

Neutron Elastic Interactions on Carbon

57

𝜙



Non-Hadronic Process Interactions for Incoming Neutrons
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Process ID Process Type

0 NotDefined 

1 Transportation 

2 Electromagnetic 

3 Optical 

4 Hadronic 

5 Photolepton_hadro
n 

6 Decay 

7 General 

8 Parameterisation 



● Consider the case of neutron elastic 
scattering on free proton (hydrogen)

● We have 3 Trajectories, one for each 
particle: Incoming Neutron, Outgoing 
Neutron, Outgoing Proton

● Each trajectory has a TrackID and a 
ParentID; these index the particle as well 
as it’s parent

● Each trajectory has multiple points, and 
each point has a Subprocess ID and a 
Process ID

● The Process ID tells us the interaction 
process (Hadronic Interaction, 
Electromagnetic Interaction, etc.)

● The Subprocess ID tells us the interaction 
type (Elastic Scattering, Inelastic 
Scattering, Fusion, Capture, etc.) 59



● For our selection, we only look at outgoing 
particles from the first Hadronic interaction 
from the incoming neutron

● If the incoming neutron has:
○ An Elastic Hadronic interaction, we classify 

this as “Elastic”
○ An Inelastic Hadronic interaction, we classify 

this as “Inelastic”
○ An Non-Hadronic interaction, we classify this 

as “Other”
○ No interaction (if we only have Transport), we 

do not consider these events

● Since we don’t store the events with no 
neutron interaction, our stacked 
histogram for incoming neutron energy 
is not flat

○ If we were to store these in another category, 
we would have a flat stacked distribution

60
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LANL Beam Test Results
● Improvements to measurements 

of neutron cross section for 
500-688 MeV
○ 𝜎99-688MeV = 0.36±0.05 barn
○ 𝜒2/d.o.f = 22.03/38

● Proved Capability of SuperFGD to 
measure neutron kinematics using 
ToF

● First physics result!
A. Agarwal et al. Total neutron cross-section measurement on CH with a 
novel 3D-projection scintillator detector. Phys. Lett. B, 840:137843, 2023.



Backup: Why are neutrino oscillations described by the PMNS matrix?
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● SM → 𝜈e , 𝜈𝜇 , 𝜈𝜏
○ Neutrinos are SM particles and we have 3 flavours

● 3 flavours represented by eigenstates
○ Complete, orthonormal basis

● Also: 3 mass eigenstates
○ Complete, orthonormal basis

● Flavour eigenbasis ≠ mass eigenbasis !
● Flavour eigenbasis = mass eigenbasis * Unitary transformation
● Unitary transformation = PMNS matrix
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Outgoing Particles from Elastic collisions on CH 
(Stacked)
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6666

100MeV

800MeV

800 
MeV

100MeV



How is the PMNS matrix related to the parameters we are interested 
in measuring?
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● PMNS = 3x3 matrix; 9 d.o.f.
○ Actually we can fully describe it using four free parameters
○ Reasoning beyond the scope of this thesis

● These four free parameters are our parameters of interest
○ We can rewrite the PMNS matrix such that each of these 

parameters is expressed in a different matrix (shown above 
in presentation)
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Near Detector
● UA1 Magnet

○ Measure momenta with good resolution
○ Measure sign of charged particles

● Pi-Zero Detector
○ Measures 𝜈𝜇 + n → 𝜈𝜇 + n + 𝜋0 + X with the same neutrino beam 

flux that reach SK
● Time Projection Chamber (TPC)

○ Determines number, orientation, momenta of charged particles
○ Determines event rate as fxn of neutrino energy, ionization left 

for each particle
■ PID from ionization

● Fine Grain Detector (FGD)
○ Tracks charged particles

● Electromagnetic Calorimeter
○ Photon detection, energy and direction measurement

● Side muon range Detector
○ Records muons escaping with high angle relative to the beam (𝜃)
○ Identify beam-related event interactions in cavity walls and 

magnet



Neutrino Oscillation
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SM → 𝜈e , 𝜈𝜇 , 𝜈𝜏



Neutrino Oscillation
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Atmospheric & 
Accelerator

Reactor & Accelerator Solar & Reactor



● ND280

Near Detector
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● INGRID
○ Beam direction
○ Beam Profile

○ Flux
○ Cross Sections

● Super Kamiokande
○ CC candidates
○ 𝜈e/𝜈e  candidates
○ 𝜈𝜇/𝜈𝜇 candidates

Oscillation 
Parameters



Backup: Signal Contamination
Photo Credit: Ciro 
Riccio, Stony Brook 
University | DUNE 
collaboration 
meeting 

v𝛄 > vneutron (high E) > vneutron (low E)



Path
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Understanding kinematics of outgoing 
particles from neutron interactions w/ detector

CCQE

Better understanding of neutron energies

Better understanding of antineutrino energy 
reconstruction

Better understanding of neutrino oscillation 
probabilities



More SuperFGD Assembly Pictures
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SuperFGD Assembly

Credit: Jiayu Ji

Credit: Ciro RiccioCredit: Ciro Riccio
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Credit: 
Kuunal 
Mahtani

https://docs.google.com/file/d/1uOblm0LiTS4qrhUJmXZoygYF-tW5nXhI/preview
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Credit: Kuunal Mahtani



78Credit: Kuunal Mahtani

https://docs.google.com/file/d/1hELxuiwfWrGvVJwMtQlieTIloGgxoXU2/preview


79Credit: Kuunal Mahtani

Credit: Kuunal Mahtani
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87Credit: Ciro Riccio

Credit: Kuunal Mahtani
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