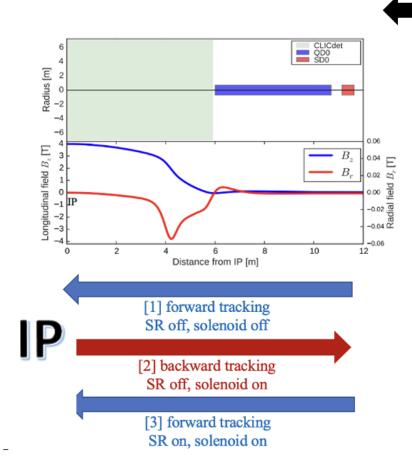
PhD 2nd half plan

Enrico Manosperti 26/05/2023

Shorter Collimation and Longer FFS


- ➤ BDS length = 6 km
- ightharpoonup Luminosity = $10^{35} \text{cm}^{-2} \text{s}^{-1}$
- Shorter Betatron Collimation (not started)
 - Max length reduction = 555 m

Longer FFS

- FFS length = 1016 m
- FFS max length = 1571 m for a 6 km BDS
- Last updates:
 - $L_{FFS} = 1117 \text{ m}, 1219 \text{ m} (MAD-X + MAD-NG)$
 - $L_{FFS} = 1321 \text{ m (MAD-NG)} \text{it does not optimize well}$
 - No luminosity improvement
 - Possibility to scale down the angles

L _{BDS} [m]	3474	6000
Full Collimation length [m]	2569	4437
Energy Collimation length [m]	1805	3118
Betatron Collimation length [m]	764	1319

Solenoid

[0] direct tracking

- Using Vera's file to implement the solenoid at the IP.
- > Same solenoid and crossing angle as the 3 TeV design (20 mrad).
- From Vera's thesis, the luminosity loss with the solenoid is about 4%
 - $\mathcal{L}_{\text{sol}} \approx 10^{35} \text{cm}^{-2} \text{s}^{-1} \rightarrow \mathcal{L}_{\text{sol}} \approx 9.6 \cdot 10^{34} \text{cm}^{-2} \text{s}^{-1}$

CLIC 3 TeV								
	σ_x^* [nm] σ_y^* [nm]		$\mathscr{L}_{TOT} [10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$					
	ideal	w/ SR	ideal	w/ SR	ideal	w/ SR	w/ sol.	w/sol.+SR
baseline	41.4	50.3	1.06	1.69	9.40	6.50	8.65	6.22

[Cilento, Vera, Optics Design of a novel Beam Delivery System for CLIC: the case of two Interaction Regions. First experiments for the validation of the ultra-low β_{ν}^* nanometer beam size at ATF2, 2021, https://cds.cern.ch/record/2834916]

ATF2 and Cool Copper Collider

> ATF2

- Operations start from May 29
- December 2023

> Cool Copper Collider

 Use the 380 GeV BDS to down (up) scale the length for a 250 GeV (550 GeV) C³

Collider	NLC 28	CLIC 29	ILC[5]	C_3	C^3
CM Energy [GeV]	500	380	250 (500)	250	550
$\sigma_z \; [\mu \mathrm{m}]$	150	70	300	100	100
$\beta_x \text{ [mm]}$	10	8.0	8.0	12	12
β_y [mm]	0.2	0.1	0.41	0.12	0.12
ϵ_x [nm-rad]	4000	900	500	900	900
ϵ_y [nm-rad]	110	20	35	20	20
Num. Bunches per Train	90	352	1312	133	75
Train Rep. Rate [Hz]	180	50	5	120	120
Bunch Spacing [ns]	1.4	0.5	369	5.26	3.5
Bunch Charge [nC]	1.36	0.83	3.2	1	1
Beam Power [MW]	5.5	2.8	2.63	2	2.45
Crossing Angle [rad]	0.020	0.0165	0.014	0.014	0.014
Crab Angle	0.020/2	0.0165/2	0.014/2	0.014/2	0.014/2
Luminosity $[x10^{34}]$	0.6	1.5	1.35	1.3	2.4
	(w/ IP dil.)	(max is 4)			
Gradient [MeV/m]	37	72	31.5	70	120
Effective Gradient [MeV/m]	29	57	21	63	108
Shunt Impedance $[M\Omega/m]$	98	95		300	300
Effective Shunt Impedance $[M\Omega/m]$	50	39		300	300
Site Power [MW]	121	168	125	~ 150	~175
Length [km]	23.8	11.4	20.5 (31)	8	8
L* [m]	2	6	4.1	4.3	4.3

[Mei Bai, et al., C^3 : A "Cool" Route to the Higgs Boson and Beyond, 2021]